首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
The spatial emission from the core of cooling-flow clusters of galaxies is inadequately described by a β -model. Spectrally, the central region of these clusters is well approximated with a two-temperature model, where the inner temperature represents the multiphase status of the core and the outer temperature is a measure of the ambient gas temperature. Following this observational evidence, I extend the use of the β -model to a two-phase gas emission, where the two components coexist within a boundary radius r cool and the ambient gas alone fills the volume shell at a radius above r cool. This simple model still provides an analytic expression for the total surface brightness profile     (Note in the first term the different sign with respect to the standard β -model.) Based upon a physically meaningful model for the X-ray emission, this formula can be used (i) to improve significantly the modelling of the surface brightness profile of cooling flow clusters of galaxies when compared to the standard β -model results, (ii) to constrain properly the physical characteristics of the intracluster plasma in the outskirts, like, e.g., the ambient gas temperature.  相似文献   

13.
At the faint end of the deepest X-ray surveys, a population of X-ray luminous galaxies is seen. In this paper, we present the results of a cross-correlation between the residual, unresolved X-ray photons in a very deep X-ray survey and the positions of faint galaxies, in order to examine the importance of these objects at even fainter flux levels. We measure a significant correlation on all angular scales up to ∼1 arcmin. This signal could account for a significant fraction of the unresolved X‐ray background, approximately 35 per cent if the clustering is similar to optically selected galaxies. However, the angular form of the correlation is seen to be qualitatively similar to that expected for clusters of galaxies and the X-ray emission could be associated with hot gas in clusters or with QSOs within galaxy clusters rather than emission from individual faint galaxies. The relative contribution from each of these possibilities cannot be determined with the current data.  相似文献   

14.
15.
We present an analysis of X-ray variability in a flux-limited sample of quasi-stellar objects (QSOs). Selected from our deep ROSAT survey, these QSOs span a wide range in redshift (0.1< z <3.2) and are typically very faint, so we have developed a method to constrain the amplitude of variability in ensembles of low signal-to-noise ratio light curves. We find evidence for trends in this variability amplitude with both redshift and luminosity. The mean variability amplitude declines sharply with luminosity, as seen in local active galactic nuclei (AGN), but with some suggestion of an upturn for the most powerful sources. We find tentative evidence that this is caused by redshift evolution, since the high-redshift QSOs ( z >0.5) do not show the anticorrelation with luminosity seen in local AGN. We speculate on the implications of these results for physical models of AGN and their evolution. Finally, we find evidence for X-ray variability in an object classified as a narrow-emission-line galaxy, suggesting the presence of an AGN.  相似文献   

16.
We have surveyed 188 ROSAT Position Sensitive Proportional Counter (PSPC) fields for X-ray sources with hard spectra ( α <0.5); such sources must be major contributors to the X-ray background at faint fluxes. In this paper we present optical identifications for 62 of these sources: 28 active galactic nuclei (AGN) which show broad lines in their optical spectra (BLAGN), 13 narrow emission line galaxies (NELGs), five galaxies with no visible emission lines, eight clusters and eight Galactic stars.
The BLAGN, NELGs and galaxies have similar distributions of X-ray flux and spectra. Their ROSAT spectra are consistent with their being AGN obscured by columns of 20.5< log( N H/cm−2)<23 . The hard spectrum BLAGN have a distribution of X-ray to optical ratios which is similar to that found for AGN from soft X-ray surveys (1< α OX<2) . However, a relatively large proportion (15 per cent) of the BLAGN, NELGs and galaxies are radio loud. This could be because the radio jets in these objects produce intrinsically hard X-ray emission, or if their hardness is caused by absorption, it could be because radio-loud objects are more X-ray luminous than radio-quiet objects. The eight hard sources identified as clusters of galaxies are the brightest, and softest group of sources and hence clusters are unlikely to be an important component of the hard, faint population.
We propose that BLAGN are likely to constitute a significant fraction of the faint, hard, 0.5–2 keV population and could be important to reproducing the shape of the X-ray background, because they are the most numerous type of object in our sample (comprising almost half the identified sources), and because all our high redshift ( z >1) identified hard sources have broad lines.  相似文献   

17.
We present an analysis of X-ray variability in a sample of 156 radio-quiet quasars taken from the ROSAT archive, covering a redshift range  0.12)  in the sense that QSOs of the same X-ray luminosity are more variable at  z>2  . We discuss possible explanations for this effect. The simplest explanation may be that high-redshift QSOs are accreting at a larger fraction of the Eddington limit than local AGNs.  相似文献   

18.
Recent analyses of Newton-XMM and Chandra data of the cores of X-ray bright clusters of galaxies show that modelling with a multi-phase gas in which several temperatures and densities are in equilibrium might not be appropriate. Instead, a single-phase model seems able to reproduce properly the spectra collected in annuli from the central region. The measured single-phase temperature profiles indicate a steep positive gradient in the central  100–200 kpc  and the gas density shows a flat profile in the central few 10s of kpc. Given this observational evidence, we estimate the contribution to the projected-on-the-sky rings from the cluster emissivity as function of the shell volume fraction sampled. We show that the observed projected X-ray emission mimics the multi-phase status of the plasma even though the input distribution is single-phase. This geometrical projection affects (i) analyses of data where insufficient spatial resolution is accessible, (ii) the central bin when its dimension is comparable to the extension of any flatness in the central gas density profile.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号