首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
I. INTRODUCTIONThe Yellow River is a heavily sediment--laden river. The sediment load of the Yellow River ranks the first in the world while its annual runoff is only of medium size. Toharness the river, it is necessary to build reservoirs for regulating runoff to meet the demands of economic development. Since the founding of PRC in 1949, I S4 large and medium--sized reservoirs have been constructed on the main stem and the tributaries with atotal storage capacity of 84.5 billion m3.…  相似文献   

2.
Retrogressive erosion, a widespread phenomenon of sediment transport in reservoirs, often impacts on both the reservoir capacity and the sedimentation in the downstream river channel. Based on field data from the Sanmenxia Reservoir and the Lower Yellow River over the past decades, three courses of ret-rogressive erosion with distinctive features were analyzed. The results indicate that retrogressive erosion, especially caused by rapid reduction in the water level till the reservoir is empty, often results in the serious siltation of the lower Yellow River and threatens the safety of the flood control in the Lower Yellow River. Unreasonable operation of the reservoir and incoming hyperconcentrated floods accom-panied by retrogressive erosion also aggravate the siltation of the main channel of the river. However, a reasonable operation mode of the reservoir so named"storing the clear (low sediment concentration) water in the non–flood season, and sluicing the muddy(high sediment concentration) water in the flood season" was found, which might mitigate the deposition in both the reservoir and the Lower Yellow River. This operation mode provides important experience for the design and operation of large reser-voirs in other large rivers carrying huge amounts of sediment.  相似文献   

3.
lCOMPOSITIONOFTHE"92.8"FLOODThreerainstormsoccurredfrom7ththrough13,,,August,1992inShaanxiProvince,diStributingfromnorthtosouthinsequence.Therainfallareacoveredtheregionsofintensivesoilerosion,'wheretheaveragerateoferosionis10,000-15',000ton/kmZ'year.Fig.IshowsisohyetsofrainfallintensityinthecatchmentoftheMiddleYellowRiVerdepictingthedistributionoftherainstormsfrom7thto13,,,August,1992(thehydrologicalBureauYRCC,1992).ThecenterofthefirstrainstormwaslocatedattheYikezhaomengPrefec…  相似文献   

4.
The Sanmenxia Project completed in 1960 is a multi-purpose hydro project with emphasis on flood control. After the expounding, serious deposition occurs in the upstream part of the reservoir and the Weihe River. The project has to be rebuilt twice in the period from 1964 to 1978. Thus the discharge capacity is greatly enlarged by excavating two side tunnels on the left bank, converting three penstocks into sluice conduits and reopening & bottom outlets formerly used for di- version. By changing the operational mode from storing water year round to stor- ing clear water during the dry season and sluicing sediment during the flood season, the sediment problem of the reservoir is largely solved and multi-purpose benefits of the project are partially retained. But the heavy sediment load still caused serious abrasion on bottom outlets and turbines, particularly on the inlet gate slot, the service gate slot and the floor. Much effort has been made to clarify the mechanism of the damage and to choose abrasion-resistant material for repair. The repair of the bottom outlets has been going on since 1980. This paper describes the abrasion on the bottom outlets in details and the subsequent repair effected.  相似文献   

5.
Small runoff, large sediment load, and incompatible relationship of flow and sediment load are very important characteristics of the Yellow River. They are also the crux of the most prominent problems of the Yellow River. To solve these problems, the regimes of flow and sediment load have to be improved by increasing water, reducing sediment load, and by using reservoirs to regulate flow and sediment load. The results of experiments for regulating the flow and sediment load in the last three years by the Xiaolangdi Reservoir have indicated that this measure is a realistic and effective way to mitigate the prominent problems in flood control of the Lower Yellow River at present and in the near future. However, the regulation system is still imperfect. It is advisable to speed up the pace of research and construction of the system for regulating flow and sediment load.  相似文献   

6.
The method of multiple regression is used to analyze the influences of flood events from the coarse sediment producing areas on the channel siltation and fluvial process of the lower Yellow River based on the flood events from 1950 to 1985. The results showed that the flood events from the coarse sediment producing areas carry larger amounts of sediment load and coarser particle sizes than from other source areas, which increases deposition in the lower river channel. And there exist good correlations between channel siltation of the lower reaches of the Yellow River and the coming water and sediment of flood events from the coarse sediment producing areas. Through these correlations, the amounts of sediment deposition in the lower river channel could be roughly estimated based on the runoff and sediment load of flood events from the coarse sediment producing areas. The sediment deposition caused the fluvial process. There exists a complex response of channel form change to the coming water and sediment load of flood events from the coarse sediment producing areas. When the sediment concentration is smaller than 200kg/m3, the ratio between wide-depth ratio after flood and wide-depth ratio before flood((B/h)a / (B/h)b) will increase with the increase of the maximum sediment concentration; when the sediment concentration is near 200kg/m3, (B/h)a / (B/h)b reaches the maximum value; and when the sediment concentration reaches the limits of hyperconcentrated flow, (B/h)a / (B/h)b will decrease with the increase of the maximum sediment concentration. Generally, flood events from the coarse sediment producing areas made channel form of the lower Yellow River deeper and narrower, but a large amount of sediment deposition simultaneously occurs. So, the impacts of flood events from the coarse sediment producing areas on the channel of the lower Yellow River are lessened.  相似文献   

7.
Based on long-term measurements at three gauging stations, Toudaoguai, Fugu and Hequ, and one meteorological station, this article discusses the features of discharge (Q) and sediment concentration (Cs) of a river reach of the Yellow River with a reservoir located in the Loess Plateau. The impacts of the local sub-watershed between Toudaoguai and Fugu gauging stations on sediment budget to the Yellow River have been analyzed. In addition, the deposition processes in the Tianqiao Reservoir have been investigated. Results show over 80% of the precipitation that falls in the local subwatershed is unable to contribute to the Yellow River runoff process. It is found that the annualmaximum sediment concentration is usually less than 30 kg/m^3 during flood seasons at Toudaoguai Gauging Station, but the sediment concentration varies dramatically at Fugu Gauging Station. About 35% of the sediment eroded in the sub-watersheds between Toudaoguai and Fugu gauging stationswas produced from the Huangfuchuan sub-watershed which has a drainage area accounting only for 10% of the drainage area between Toudaoguai and Fugu gauging stations. The Tianqiao Reservoir generally has deposition during the summer flood season, and scouring during the non-flood season.On average, over 85% of deposited sediment in the reservoir occurs in the 12 km long lower reservoir reach. The volume of annual deposition in the reservoir mainly depends on the volume of water from the local region between Hequ and Fugu gauging stations.  相似文献   

8.
IINTRODUCTIONStreamflowformostriversintheworldcanberegardedasasolid-liquidtwo-phaseflow.Theexistenceofsuspendedsedimenthassomeinfluenceonthestreamflow'sphysicalandmechanicalproperties,whichinturnaffectsthestreamflow'ssedimentcarryingbehaviors(ChienandWan,1983;Chien,1989).Forriverswithrelativelylowsuspendedsedimefltconcentrations,theabove-mentionedeffectisnegligible.However,withtheincreasesinsuspendedsedimentconcentration,thiseffectbecomesincreasinglysignificant;thesediment-carryingbehavi…  相似文献   

9.
IINTRODUCTIONTheYellowRiverisfamousforitsttemendousamountofsedimenttransport.Basedonastatisticaldataanalysis,along-timeaverageannualof1.6billiontonsofsedimententerstheLowerYellowRiver,inwhich400milliontonsaredepositedintherivercharmel.Thesedimentdepositioncausesavapidriseofthebedelevation.Withahistoricalevollltionoftheriverchanges,aso-called"suspendedriver"graduallyformed.UPtonow,thegroundleveloftheareaolltsidetheriverleveesismuchlowerthanthewaterlevelintheriver.Thissituationbringsanex…  相似文献   

10.
I.INTRODUCTIONTwo-dimensionalnumericalmodelisaPOwerfoltoolforengineersandriVermanagerstopredictfloodhydxaulics,identifyareasofinundation,anddesignoptionsforfloodcontrollingstructures.SomespecialproblemswithheavilysedimentladenflowriVershouldbecarefullyconsideredforthenumericalmodeldesigning;1.theplaneformofariVerisusuallybraidedanditsmainchannelshiftsoften.Themainchannelandbarreplaceeachotherseveraltimesinonefloodevent.Atagivenlocationthewaterdepthmaychangefromover10meterstoseveralcenhm…  相似文献   

11.
IINTRODUCTIONTheYellowRiverisfamousforitsheaVysedimentloadandcompledpluvialprocessesobviousadvanceshavebeenmadeinthetwo-dimensionalsedimentmathematicalmodel.Amongtile1llodelscreatedbeforethemechanismofsedimenttransportandrelatedphysicalparametel's,suchassedimentvelocity,sedimentcan'yingcapacityandriverfi.ictionetc.arenotyetundel.stoodvery\veil.Thesynchronousobserveddataoftheflowwithsediment,especiallyathyperconcentration,arenotenougllforthemodelcalibration.Thereforethedevelopmentoftwo-di…  相似文献   

12.
Due to the temporal decoupling of water and sediment sources in a large river basin, a flood from a sediment source area with high suspended sediment concentration (SSC) may be diluted by flow from a major runoff source area with low SSC. In this paper, this dilution effect is considered for 145 flood events from the Yellow River, China. Two indices (β1 and β2) describing the dilution effect are proposed, based on water and sediment from the clear water source area and the coarse sediment producing area. Regression equations between channel sedimentation (Sdep) and β1 and β2 are established based on flood events and annual data, respectively. The results show that dilution reduces channel sedimentation in the lower reaches by 34?1% and that this is related to a reduced frequency of hyperconcentrated flows in the lower reaches. The Longyangxia Reservoir for hydro‐electric generation has stored huge quantities of clear runoff from the upper Yellow River during high‐flow season since 1985, greatly reducing the dilution of the hyperconcentrated floods and therefore enhancing sedimentation in the lower reaches. For the purpose of reducing sedimentation, changing the operational mode of the Longyangxia Reservoir to restore the dilution effect is suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
1 INTRODUCTION Flood of the Yellow River occurred frequently in history. The natures of large impact and heavy losses have made the flood of the Yellow River being in the front rank among major rivers in China. Statistics shows that during the period 602 AC to 1938 BC, embankment of the Lower Yellow River had been breached 1590 times and the channel had changed its course for 26 times among which 6 times were major ones. Thus, flood of the Yellow River has endangered economic cons…  相似文献   

14.
Strategies for managing reservoir sedimentation   总被引:2,自引:1,他引:1  
Sediment deposition in reservoirs has caused the loss of 66% of the reservoir capacity in China. The main sedimentation control strategies are: 1) storing the clear water and releasing the turbid water; 2) releasing turbidity currents; 3) Draw-down flushing and empty flushing; and 4) dredging, The paper summarizes these strategies with examples. Sediment transport in many Chinese rivers occurs mostly during the 2-4 month flood season, that is, 80-90% of the annual sediment load is transported with 50-60% of the annual runoff. By storing the clear water after the flood season and releasing the turbid water during the flood season, less sediment deposits in the reservoir while the reservoir is still able to store enough water for power generation in the low flow season. The Three Gorges and Sanmenxia reservoirs apply this strategy and control sedimentation effectively. Turbidity currents have become the main sedimentation control strategy for the Xiaolangdi Reservoir. Empty flushing involves reservoir draw-down to temporarily establish riverine flow along the impound reach, flushing the eroded sediment through the outlets. Case studies with the Hengshan Reservoir and Zhuwo Reservoir are presented. Jet dredgers have been used to agitate the reservoir deposit so that the deposit is released from the reservoir with currents. The sediment releasing efficiency is 30-100% for storing the clear and releasing the turbid; 6-40 % for turbidity current; and 2,400-5,500% for empty flushing. Empty flushing causes high ecological stress on the ecosystem to the downstream reaches. Storing the clear and releasing the turbid is the best strategy to control reservoir sedimentation while achieving hydro-power benefit and maintain ecological stability.  相似文献   

15.
1INTRODUCTIONTheBrahmaputraRiveroriginatesfromtheJimayanzhongglacieratthenorthfootoftheHimalayaMountainsinSouthTibet,China.I...  相似文献   

16.
LINTRODUCTIONThetributariesofmiddleYellowRiverarefamousintheworldforthehighestsuspendedsedimentconcentrationandsedimentyield.Forexample,atWenjiachuanstationofKuyeheRiverthemeasuredhighestsuspendedconcentrationis1700kg/m',andthemeanannualsedimentyieldis25000t/(kln'.a).Theformationofhyperconcentratedflowsandtheirinfluenceonerosionprocessesareofgreatimportancenotonlyfromatheoreticalpointofviewbutalsoforpracticalpurposes.Therefore,scientistsfromChinaandallovertheworldhavedrawntheirintensio…  相似文献   

17.
1. INTRODUCTIONThe Yellow River is a heavily sediment--laden river. Floods at Hyperconcentrationso f sediment (hereinafter simply referred to as hyperconcentrated flood) frequently occurring in the main river and its tributaries possess different characteristics of sedimenttransport. Sometimes they cause severe deposition whereas at other times they are capable of carrying substantial amount of sediment over long distances. The study on the lawof sediment transport is of significance to …  相似文献   

18.
1INTRODUCTIONTheHaiheRiverBasinislocatedinNorthChinawithareaof262.6km2.Itisaquicklydevelopedareawithmanyimportantcitiesandindustrialhubs,includingBeding,Tianjin,Tangshan,Cangzhou,DezhouandHuanghua.Theareawatchedfastprogressesinurbanizationinthepastdecades,andhumanactivitieshaveresultedingreatinfluencesontheenvironment,riverhydrologyandsedimentbudget.Theareaisprojectedtobemoreprosperouswithmoreoilandgasfields,chemicalindustrybases,anddenserrailwaysandexpresshighwaysinthenextcent'Ury.T…  相似文献   

19.
Estuarine environments are influenced by both river flows and oceanic tidal movement of water, sediment, and nutrients, often forming ecosystems that are rich in resources and biodiversity. The Yellow River once carried the world’s largest sediment load, but artificial structures have transformed its hydrodynamic processes. An annual Water-Sediment Regulation Scheme(WSRS) was introduced to flush accumulated sediment from the Xiaolangdi Reservoir, which provides flood control and water storage.Ho...  相似文献   

20.
RANGE SURVEY OF DEPOSITION IN THE LOWER YELLOW RIVER   总被引:3,自引:0,他引:3  
1 GENERAL DESCRIPTION The Yellow River, running out of the gorges below the Sanmenxia (SMX) and Xiaolangdi (XLD) reservoirs, flows through the vast North China alluvial plain, and finally empties into the Bohai Sea (Fig. 1). The upper part of the Lower Yellow River (LYR), nearly 400 km in length, is confined by levees along both banks. The river wanders with a shallow main channel and broad flood plains. The lower part has a relatively narrow and deep main channel and less b…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号