首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is a study of the population of B and Be stars in the young, relatively poor, diffuse stellar clusters NGC 6871 and NGC 6913. High resolution spectra are used to study the Hα line of eleven stars in order to detect emission. Emission profiles were found for three stars in the cluster NGC 6871; one of these is a known WR-star and the Be-star BD +35°3956 demonstrates the transition from the B to the Be phase. Spectra of seven of the B stars revealed no traces of emission in the Hα line. During the time of our observations, the Be star V1322 Cyg in the cluster NGC 6913 had a strong emission Hα line profile with substantial variability in intensity and equivalent width. Moderate resolution spectra of seven stars in the cluster NGC 6871 over wavelengths of 4420-4960 ? and ten stars in the cluster NGC 6913 over wavelengths of 4050-5100 ? are used to classify the series of B and Be stars spectrally and to estimate their T eff and log g. It was found that three of the stars are not members of the clusters NGC 6871 or NGC 6913. Translated from Astrofizika, Vol. 52, No. 2, pp. 257–274 (May 2009).  相似文献   

2.
3.
UBVRI CCD photometry in a wide field around two young open clusters, NGC 663 and 654, has been carried out. Hα and polarimetric observations for the cluster NGC 654 have also been obtained. We use the photometric data to construct colour–colour and colour–magnitude diagrams, from which we can investigate the reddening, age, mass and evolutionary states of the stellar contents of the these clusters. The reddening across the cluster regions is found to be variable. There is evidence for anomalous reddening law in both clusters; however, more infrared and polarimetric data are needed to conclude about the reddening law. Both clusters are situated at about a distance of 2.4 kpc. Star formation in both clusters is found to be a continuous process. In the case of NGC 663, star formation seems to have taken place sequentially, in the sense that formation of low-mass stars precedes the formation of most massive stars. Whereas, in the case of NGC 654, formation of low-mass stars did not cease after the formation of most massive stars in the cluster.  相似文献   

4.
5.
We investigate the evolutionary effect of dynamical mass segregation in young stellar clusters. Dynamical mass segregation acts on a time-scale of order the relaxation time of a cluster. Although some degree of mass segregation occurs earlier, the position of massive stars in rich young clusters generally reflects the cluster's initial conditions. In particular, the positions of the massive stars in the Trapezium cluster in Orion cannot be due to dynamical mass segregation, but indicate that they formed in, or near, the centre of the cluster. Implications of this for cluster formation and for the formation of high-mass stars are discussed.  相似文献   

6.
7.
Conventional planet formation models via coagulation of planetesimals require timescales in the range of several 10 or even 100 Myr in the outer regions of a protoplanetary disk. But according to observational data, the lifetime of a protoplanetary disk is limited to about 6 Myr. Therefore the existence of Uranus and Neptune poses a problem. Planet formation via gravitational instability may be a solution for this discrepancy. We present a parameter study of the possibility of gravitationally triggered disk instability. Using a restricted N‐body model which allows for a survey of an extended parameter space, we show that a passing dwarf star with a mass between 0.1 and 1 M can probably induce gravitational instabilities in the pre‐planetary solar disk for prograde passages with minimum separations below 80‐170 AU. Inclined and retrograde encounters lead to similar results but require slightly closer passages. Such encounter distances are quite likely in young moderately massive star clusters. The induced gravitational instabilities may lead to enhanced planetesimal formation in the outer regions of the protoplanetary disk, and could therefore be relevant for the formation of Uranus and Neptune. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We derive astrophysical and structural parameters of the poorly studied open clusters NGC 6866, NGC 7062, and NGC 2360 based on filtered 2MASS (J, J ? H) diagrams, and stellar radial density profiles. The field star decontamination technique is utilised for selecting high-probability cluster members. The E(B ? V) reddening values of the three clusters derived from 2MASS JHKs agree with those inferred from UBV and uvby ? β photometries. We find that the core mass function slopes are flatter than the halo’s for the three clusters. The large core and cluster radii of NGC 6866 and NGC 2360 indicate an expanded core, which may suggest the presence of stellar mass black-holes. NGC 2360 is located in the third quadrant (? = 229°.80), where Giant Molecular Clouds are scarce that, together with its relatively large mass (~1800 m), might explain its longevity (~1.8 Gyr) in the Galaxy.  相似文献   

9.
The first charge-coupled device   UBV ( RI )C  photometric study in the area of the doubtful open cluster NGC 2129 is presented. Photometry of a field offset 15 arcmin northwards is also provided, to probe the Galactic disc population towards the cluster. Using star counts, proper motions from the UCAC2 catalogue, colour–magnitude and colour–colour diagrams, we demonstrate that NGC 2129 is a young open cluster. The cluster radius is 2.5 arcmin, and across this region we find evidence of significant differential reddening, although the reddening law seems to be normal towards its direction. Updated estimates of the cluster fundamental parameters are provided. The mean reddening is found to be   E ( B − V ) = 0.80 ± 0.08  and the distance modulus is  ( m − M )0= 11.70 ± 0.30  . Hence, NGC 2129 is located at 2.2 ± 0.2 kpc from the Sun inside the Local spiral arm. The age derived from 37 photometrically selected members is estimated to be approximately 10 Myr. These stars are used to provide new estimates of the cluster absolute proper-motion components.  相似文献   

10.
Open clusters become a powerful astrophysics laboratory once the essential problem of stellar membership has been solved. In this paper different methods to compute membership probabilities using kinematical variables, mainly proper motions, are presented.Presented at the 2nd UN/ESA Workshop, held in Bogotá, Colombia, 9–13 November, 1992.  相似文献   

11.
We present a brief status report on our ongoing extensive and detailed Walraven photometric observations of the young stellar cluster NGC 2244 in the Rosette Nebula. The observational and reduction procedure is described together with the first results on membership, extinction and detection of pre-Main-Sequence stars.Based on observations collected at the European Southern Observatory (ESO) and at the Observatoire de Haute Provence (OHP, CNRS).Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

12.
13.
Stellar population models are a very useful tool to derive the stellar cluster age and luminosity mass from its integrated light. Evolutionary synthesis models depend on the stellar evolutionary tracks and the stellar libraries used to predict the spectral energy distribution of the stellar populations. In this review, I briefly comment on the new models that have incorporated the new evolutionary tracks with rotation and new computations for the evolutionary tracks of the TP-AGB. A more extended summary is also given of the current status of the most recent high-resolution stellar libraries at optical wavelengths and their implementation in evolutionary synthesis models. A comparison of the results obtained fitting the optical spectra of LMC and SMC stellar clusters with different high spectral resolution evolutionary synthesis models is also presented.  相似文献   

14.
We present the results of a long-term high-resolution spectroscopy campaign on the O-type stars in NGC 6231. We revise the spectral classification and multiplicity of these objects and we constrain the fundamental properties of the O-star population. Almost three quarters of the O-type stars in the cluster are members of a binary system. The minimum binary fraction is 0.63, with half the O-type binaries having an orbital period of the order of a few days. The eccentricities of all the short-period binaries are revised downward, and henceforth match a normal period–eccentricity distribution. The mass ratio distribution shows a large preference for O + OB binaries, ruling out the possibility that, in NGC 6231, the companion of an O-type star is randomly drawn from a standard initial mass function. Obtained from a complete and homogeneous population of O-type stars, our conclusions provide interesting observational constraints to be confronted with the formation and early evolution theories of O-stars.  相似文献   

15.
CCD time-series photometric observations are presented for the stars in the fields of the open clusters NGC7209, NGC1582 and Dolidze 18 in Johnson V, together with some photometric observations in R, and B. The results reveal 14 variable stars in the three clusters in total, among which 13 are newly-discovered variables. With color–magnitude diagrams and color–color diagram, memberships of the variable stars are estimated. With the derived light curves, scales of time and amplitude of variability of these variable stars are obtained. Together with the spectral types due to the estimation of color temperatures, possible types of the variable stars are preliminarily discussed.  相似文献   

16.
17.
18.
19.
We report the present day mass functions (PDMFs) of 4 young open clusters over a mass range from 30 Jupiter masses to 3M_ . Three of these clusters have been chosen to have a similar age of ∼100 Myr. Their PDMFs are remarkably similar and are comparable to the field mass function. This suggests little impact of initial conditions (stellar density, metallicity) on the mass distribution and raises some issues concerning the currently debated star and brown dwarf formation theories. The fourth cluster is older (600 Myr) which allow us to investigate the effect of the cluster dynamical evolution on the shape of the mass function. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号