首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Uptake of inorganic carbon and ammonium by the plankton community of three North Carolina estuaries was measured using 14C and 15N isotope methods. At 0% light, C appeared to be lost via respiration, and at increasing light levels uptake of inorganic carbon increased linearly, saturated (mean Ik = 358±30 μEin m−2 s−1), and frequently showed inhibition at the highest light intensities. At 0% light NH4+ uptake was significantly greater than zero and was frequently equivalent to uptake in the light (light independent); at increasing light levels NH4+ uptake saturated (mean Ik = 172±44 μEin m−2 s−1) and frequently indicated strong inhibition. Light-saturated uptake rates of inorganic carbon and NH4+ were a function of chlorophyll a (r2 = 0·7−0·9); average assimilation numbers were 625 nmol CO2 (μg chl. a)−1 h−1 and 12·9 nmol NH4+ (μg chl. a)−1 h−1 and were positively correlated with temperature (r2 = 0·3−0·7). The ratio of dark to light-saturated NH4+ uptake tended to be near 1·0 for large algal populations at low NH4+ concentrations, indicating near light independence of uptake; whereas the ratio was lower for the opposite conditions. These data are interpreted as indicative of nitrogen stress, and it is suggested that uptake of NH4+ deep in the euphotic zone and at night are mechanisms for balancing the C:N of cellular pools. A 24-h study using summed short-term incubations confirmed this; the cumulative C:N of CO2 and NH4+ uptake during the daylight period was 10–20, whereas over the 24-h period the ratio was 6 due to dark NH4+ uptake. Annual carbon and nitrogen primary productivity were respectively estimated as 24 and 4·0 mol m−2 year−1 for the South River estuary, 42 and 7·3 mol m−2 year−1 for the Neuse River estuary, and 9·6 and 1·6 mol m−2 year−1 for the Newport River estuary.  相似文献   

3.
The hydrolysis of silicic acid, Si(OH)4, was studied in a simplified seawater medium (0.6 M Na(Cl)) at 25°C. The measurements were performed as potentiometric titrations (hydrogen electrode) in which OH was generated coulometrically. The total concentration of Si(OH)4, B, and log[H+] were varied within the limits 0.00075 B 0.008 M and 2.5 -log[H+] 11.7, respectively. Within these ranges the formation of SiO(OH)3 and SiO2(OH)22− with formation constants log β−11(Si(OH)4 SiO(OH)3 + H+) = −9.472 ±0.002 and log β−21(Si(OH)4 SiO2(OH)22− + 2H+) = −22.07 ± 0.01 was established. With B > 0.003 M polysilicate complexes are formed, however, with -log[H+] 10.7 their formation does not significantly affect the evaluated formation constants. Data were analyzed with the least squares computer program LETAGROPVRID.  相似文献   

4.
The effect of ionic interactions on the kinetics of disproportionation of HO2, and the oxidation of Fe(II) and Cu(I) has been examined. The interactions of O2 with Mg2+ and Ca2+ ions in seawater increases the lifetime by 3–5 times compared to water. The effect of OH on the oxidation of Fe(II) in water and seawater shows a second degree dependence from 5 to 45°C. The effect of salinity on the oxidation of Fe(II) was found to be independent of temperature, while the effect of temperature was found to be independent of salinity. The energy of activation for the overall rate constant was found to be 7 ± 0.5 kcal mol−1.The effect of pH, temperature, salinity and ionic composition on the oxidation of Cu(I) has also been examined. In NaCl solutions from 0.5 to 6 M, the log k for the oxidation was a linear function of pH (6–8) with a slope of 0.2 ± 0.05. The reaction was strongly dependent on the Cl concentration with variation of from 0.3 to 340 min from 0.5 to 6 M Cl. The rates of oxidation of Cu+ and CuCl0 responsible for these effects are dependent upon ionic strength. The energy of activation for the reaction was 8.5–9.9 kcal mol−1 from 0.5 to 6 M. Studies of the oxidation in various NaX salts (X = I, Br and Cl) give rates in the order Cl > Br > I as expected, due to complex formation of Cu+ with X.  相似文献   

5.
Suspended particle dynamics were investigated in the Ogeechee River Estuary during neap tide in July 1996. Samples were operationally separated into ‘ truly suspended ’ (settling velocity <0·006 cm s−1) and ‘ settleable ’ (settling velocity >0·006 cm s−1) fractions over the course of a tidal cycle to determine whether these two fractions were comprised of particles with differing biological and chemical characteristics. Total suspended sediment, organic carbon and nitrogen, chlorophyll a and phaeopigment concentrations were measured in each fraction, as well as rates of bacterial hydrolytic enzyme activity [β-1,4-glucosidase (βGase) and β-xylosidase (βXase)]. The majority of the suspended sediment (by weight) was in the truly suspended fraction; all measured parameters were largely associated with this fraction as well. When compared to the settleable material, the truly suspended material was significantly higher in % POC (5·7±0·6 vs. 3·9±1·8), % chlorophyll (0·07±0·02 vs. 0·03±0·01), % phaeopigment (0·030±0·006 vs. 0·018±0·012), and weight-specific maximal uptake rates (Vmaxper mg suspended sediment) of both enzymes (1·8±0·4 vs. 0·7± 0·2 nmol mg−1 h−1βGase and 1·1±0·3vs . 0·3±0·2 nmol mg−1 h−1βXase), providing clear evidence for a qualitative distinction between the two fractions. These results are interpreted to mean that the more organic-rich, biologically active material associated with the suspended fraction is likely to have a different fate in this Estuary, as ‘ truly suspended ’ sediments will be readily transported whereas ‘ settleable ’ sediments will settle and be resuspended with each tide. These types of qualitative differences should be incorporated into models of particle dynamics in estuaries.  相似文献   

6.
The pK1* and pK2* for the dissociation of carbonic acid in seawater have been determined from 0 to 45°C and S = 5 to 45. The values of pK1* have been determined from emf measurements for the cell:
Pt](1 − X)H2 + XCO2|NaHCO3, CO2 in synthetic seawater|AgC1; Ag
where X is the mole fraction of CO2 in the gas. The values of pK2* have been determined from emf measurements on the cell:
Pt, H2(g, 1 atm)|Na2CO3, NaHCO3 in synthethic seawater|AgC1; Ag
The results have been fitted to the equations:
lnK*1 = 2.83655 − 2307.1266/T − 1.5529413 lnT + (−0.20760841 − 4.0484/T)S0.5 + 0.08468345S − 0.00654208S1
InK*2 = −9.226508 − 3351.6106/T− 0.2005743 lnT + (−0.106901773 − 23.9722/T)S0.5 + 0.1130822S − 0.00846934S1.5
where T is the temperature in K, S is the salinity, and the standard deviations of the fits are σ = 0.0048 in lnK1* and σ = 0.0070 in lnK2*.Our new results are in good agreement at S = 35 (±0.002 in pK1*and ±0.005 in pK2*) from 0 to 45°C with the earlier results of Goyet and Poisson (1989). Since our measurements are more precise than the earlier measurements due to the use of the Pt, H2|AgCl, Ag electrode system, we feel that our equations should be used to calculate the components of the carbonate system in seawater.  相似文献   

7.
Transient tracer data (tritium, CFC11 and CFC12) from the southern, central and northwestern Weddell Sea collected during Polarstern cruises ANT III-3, ANT V-2/3/4 and during Andenes cruise NARE 85 are presented and discussed in the context of hydrographic observations. A kinematic, time-dependent, multi-box model is used to estimate mean residence times and formation rates of several water masses observed in the Weddell Sea.Ice Shelf Water is marked by higher tritium and lower CFC concentrations compared to surface waters. The tracer signature of Ice Shelf Water can only be explained by assuming that its source water mass, Western Shelf Water, has characteristics different from those of surface waters. Using the transient nature of tritium and the CFCs, the mean residence time of Western Shelf Water on the shelf is estimated to be approximately 5 years. Ice Shelf Water is renewed on a time scale of about 14 years from Western Shelf Water by interaction of this water mass with glacial ice underneath the Filchner-Ronne Ice shelf. The Ice Shelf Water signature can be traced across the sill of the Filchner Depression and down the continental slope of the southern Weddell Sea. On the continental slope, new Weddell Sea Bottom Water is formed by entrainment of Weddell Deep Water and Weddell Sea Deep Water into the Ice Shelf Water plume. In the northwestern Weddell Sea, new Weddell Sea Bottom Water is observed in two narrow, deep boundary currents flowing along the base of the continental slope. Classically defined Weddell Sea Bottom Water (θ ≤ −0.7°C) and Weddell Sea Deep Water (−0.7°C ≤ θ ≤ 0°C) are ventilated from the deeper of these boundary currents by lateral spreading and mixing. Model-based estimates yield a total formation rate of 3.5Sv for new Weddell Sea Bottom Water (θ = −1.0°C) and a formation rate of at least 11Sv for Antarctic Bottom Water (θ = −0.5°C).  相似文献   

8.
Midsummer (1 August) population estimates of about 2 million O-group plaice (Pleuronectes platessa L.) were derived for sandy bays around the Firth of Forth in 1979–1980. This is an order of magnitude less than similar estimates made for the Clyde Sea Area in 1973–1974. Autumn population estimates of 0·4–1·0 million fish were comparable to estimates by the Ministry of Agriculture, Fisheries and Food for the area between the Scottish border and Flamborough Head (2·3 million for 1970 and 1973) which represented 4·8% (1973) to 5·3% (1970) of the total number of O-group fish on the English east coast.Largo Bay was the most important nursery area holding 25% of the total population. It is particularly well situated to receive newly metamorphosed plaice carried in water currents along the north side of the Forth from the spawning ground off Fife Ness. Plaice in the Forth are mainly distributed on fine to medium sandy beaches (186–480 μm), the mean number per haul in midsummer (D) being correlated with the median diameter (m.d. in μm) of the low water sediments by the equation: D=−45·7666+0·2327 m.d. (n=11,r=0·68,P<0·02 but>0·01).The shallow inshore water in sandy bays in the outer Firth was well mixed and more marine than estuarine (27·7–35·0‰). The correlation coefficient between fish density and water temperature was low, while that with salinity (S‰) was: D=6·1618+0·2238S (n=23,r=0·62,P<0·005).Regression analysis demonstrated that the relationship between the instantaneous mortality rate (Z) and the initial population density (Dp) was: Z×100=0·7480+0·0546dp (n=12,r=0·87,P<0·001).The mean mortality rate for the O-group plaice in the Forth nursery areas was 53% month−1.  相似文献   

9.
The water under the main thermocline in the Japan Sea is a single water mass referred to as the Japan Sea Proper Water. It can be defined as having temperature below 2.0°C, salinity above 34.00%, and dissolved oxygen below 7.0 ml 1−1. In the north most of the water above the potential temperature 0.1°C depth (about 800–1000 m) is a mode water, with σθ of 27.32 to 27.34 kg m−3. North of 40°N it has high oxygen (more than 6.00 ml 1−1) with a distinct discontinuity (oxygen-cline) at the bottom of the mode water. The most probable region for the formation of the water is the area north of 41°N between 132° and 134°E. The deeper water probably is formed in the norther area of 43°N, and directly fills the main part of the Japan Basin north of 41°N and east of 134°E.  相似文献   

10.
Analyses of the concentration product (Ca2+) × (CO32−) in the pore waters of marine sediments have been used to estimate the apparent solubility products of sedimentary calcite (KSPc) and aragonite (KSPa) in seawater. Regression of the data gives the relation In KPSPc = 1.94 × 10−3 δP − 14.59 The 2°C, 1 atm value of KSPc is, then, 4.61 × 10−7 mol2 l−2. The pressure coefficient yields a at 2°C of −43.8 cm3 atm−1. A single station where aragonite is present in the sediments gives a value of KSPa = 9.2 × 10−7 (4°C, 81 atm). The calcite data are very similar to those determined experimentally by Ingle et al. (1973) for KSPc at 2°C and 1 atm. The calculated is also indistinguishable from the experimental results of Ingle (1975) if is assumed to be independent of pressure.  相似文献   

11.
12.
We proposed an empirical equation of sea surface dimethylsulfide (DMS, nM) using sea surface temperature (SST, K), sea surface nitrate (SSN, μM) and latitude (L, °N) to reconstruct the sea surface flux of DMS over the North Pacific between 25°N and 55°N: ln DMS = 0.06346 · SST  0.1210 · SSN  14.11 · cos(L)  6.278 (R2 = 0.63, p < 0.0001). Applying our algorithm to climatological hydrographic data in the North Pacific, we reconstructed the climatological distributions of DMS and its flux between 25 °N and 55 °N. DMS generally increased eastward and northward, and DMS in the northeastern region became to 2–5 times as large as that in the southwestern region. DMS in the later half of the year was 2–4 times as large as that in the first half of the year. Moreover, applying our algorithm to hydrographic time series datasets in the western North Pacific from 1971 to 2000, we found that DMS in the last three decades has shown linear increasing trends of 0.03 ± 0.01 nM year− 1 in the subpolar region, and 0.01 ± 0.001 nM year− 1 in the subtropical region, indicating that the annual flux of DMS from sea to air has increased by 1.9–4.8 μmol m− 2 year− 1. The linear increase was consistent with the annual rate of increase of 1% of the climatological averaged flux in the western North Pacific in the last three decades.  相似文献   

13.
Macroalgae biomass and concentrations of nitrogen, phosphorus and chlorophyll a were determined weekly or biweekly in water and sediments, during the spring-summer of 1985 in a hypertrophic area of the lagoon of Venice. Remarkable biomass production (up to 286 g m−2 day−1, wet weight), was interrupted during three periods of anoxia, when macroalgal decomposition (rate: up to 1000 g m−2 day−1) released extraordinary amounts of nutrients. Depending on the macroalgae distribution in the water column, the nutrients released in water varied from 3·3 to 19·1 μg-at litre−1 for total inorganic nitrogen and from 1·8 to 2·7 μg-at litre−1 for reactive phosphorus. Most nutrients, however, accumulated in the surficial sediment (up to 0·640 and to 3·06 mg g−1 for P and N respectively) redoubling the amounts already stored under aerobic conditions, Phytoplankton, systematically below 5 mg m−3 as Chl. a, sharply increased up to 100 mg m−3 only after the release of nutrients in water by anaerobic macroalgal decomposition. During the algal growth periods, the N:P atomic ratio in water decreased to 0·7, suggesting that nitrogen is a growth-limiting factor. This ratio for surficial sediment was between 6·6 and 13·1, similar to that of macroalgae (8·6–12·0).  相似文献   

14.
Surface water samples were collected in the north Atlantic Ocean in July–August 1983. Their apparent complexation capacity for copper (CCCu) was determined on board, using differential pulse anodic stripping voltammetry under clean room conditions. Measurements were carried out by direct titrations as well as after equilibration of copper spikes. CCCu and conditional stability constants (K′) were calculated, by means of three different methods, which are compared.On the basis of salinity, temperature, silicate and phosphate concentrations the following surface waters could be distinguished: North Atlantic Drift (I), East Greenland Current (II), Labrador Current (III) and Gulf Stream waters (IV, V). CCCu and K′ were found to differ between these waters. The range of values for CCCu and their mean values given in parentheses, as calculated from van den Berg plots for waters I–IV are: I, 53–65 (59); II, 47–66 (55); III, 37–53 (45); IV, 20–42 (33) nM Cu. The range and mean values for log K′ are: I, 8.23–8.33 (8.28); II, 7.89–8.11 (7.98); III, 8.40–8.41 (8.41); IV, 7.90–8.21 (8.06).Information on complexation kinetics extracted from the titration curve revealed that kf is area-specific. The complexation rate constant in the northern part (Area I) is about two times larger than that in the southern area IV, (3.6 ± 0.3) and (2.2 ± 0.2) × 104s−1M−1 Cu, respectively.Preliminary results for deep water samples suggest smaller but still existent CCCu and higher K′ than those found for surface waters.  相似文献   

15.
Wind-driven cyclonic eddies are hypothesized to relieve nutrient stress and enhance primary production by the upward displacement of nutrient-rich deep waters into the euphotic zone. In this study, we measured nitrate (NO3), particulate carbon (PC), particulate nitrogen (PN), their stable isotope compositions (δ15N-NO3, δ13C-PC and δ15N-PN, respectively), and dissolved organic nitrogen (DON) within Cyclone Opal, a mature wind-driven eddy generated in the lee of the Hawaiian Islands. Sampling occurred in March 2005 as part of the multi-disciplinary E-Flux study, approximately 4–6 weeks after eddy formation. Integrated NO3 concentrations above 110 m were 4.8 times greater inside the eddy (85.8±6.4 mmol N m−2) compared to the surrounding water column (17.8±7.8 mmol N m−2). Using N-isotope derived estimates of NO3 assimilation, we estimated that 213±59 mmol m−2 of NO3 was initially injected into the upper 110 m Cyclone Opal formation, implying that NO3 was assimilated at a rate of 3.75±0.5 mmol N m−2 d−1. This injected NO3 supported 68±19% and 66±9% of the phytoplankton N demand and export production, respectively. N isotope data suggest that 32±6% of the initial NO3 remained unassimilated. Self-shading, inefficiency in the transfer of N from dissolved to particulate export, or depletion of a specific nutrient other than N may have led to a lack of complete NO3 assimilation. Using a salt budget approach, we estimate that dissolved organic nitrogen (DON) concentrations increased from eddy formation (3.8±0.4 mmol N m−2) to the time of sampling (4.0±0.09 mmol N m−2), implying that DON accumulated at rate of 0.83±1.3 mmol N m−2 d−1, and accounted for 22±15% of the injected NO3. Interestingly, no significant increase in suspended PN and PC, or export production was observed inside Cyclone Opal relative to the surrounding water column. A simple N budget shows that if 22±15% of the injected NO3 was shunted into the DON pool, and 32±6% is unassimilated, then 46±16% of the injected NO3 remains undocumented. Alternative loss processes within the eddy include lateral exchange of injected NO3 along isopycnal surfaces, remineralization of PN at depth, as well as microzooplankton grazing. A 9-day time series within Cyclone Opal revealed a temporal depletion in δ15N-PN, implying a rapid change in the N source. A change in NO3 assimilation, or a shift from NO3 fueled growth to assimilation of a 15N-deplete N source, may be responsible for such observations.  相似文献   

16.
The decomposition of cultured marine phytoplankton (Skeletonema costatum) and natural estuarine seston from Narragansett Bay, RI, was studied at two temperatures (8°C and 18°C) in bottles containing sterile bay-water (30‰) and in bay-water with micro-organisms small enough to pass through a glass fibre filter (nominally < 1μ). About 50% of the particulate organic nitrogen (PON) and particulate phosphorus (PP) was immediately released to the water in dissolved organic forms from both types of organic matter. Comparison of changes in the dissolved organic nitrogen (DON) fraction in the sterile and non-sterile systems indicated that nearly all of the DON initially released was subsequently remineralized. Ammonification proceeded only in non-sterile bay-water. 20–25% of the PP was converted to dissolved inorganic-P (DIP) fraction after only 7 h in both sterile and non-sterile bay-water. Following autolytic releases of DON, DOP and DIP the initial rates of N and P remineralization were temperature dependent: Q10 values for PON and PP decay during first phase of microbially mediated decomposition ranged from 1·3 to 6·4. Rates of remineralization then slowed so that about equal amounts of nutrients were remineralized (45–50% of the N and 57–60% of the P in the phytoplankton and 60–63% of the N and 36–60% of the P in the natural seston) after 30 days storage at either temperature. During 30 days of decomposition in non-sterile seawater the N/P ratios in the dissolved inorganic fractions converged on the ratios of total-N/total-P initially present in the bottles. Kinetic analysis of the decay of total organic-N (TON) and total organic-P (TOP) in the non-sterile systems and analysis of similar sets found in the literature showed that the initial stages of the decomposition of N and P from planktonic POM in vitro could be modelled as the sequential decay, at first-order rates, of two particulate fractions. The first, more labile, fraction comprised about 60% of the particulate N and P. First-order rate constants (−k, base e) for decomposition during the 1st and 2nd phases were 0·02 to 0·2 day−1 and 0·003 to 0·02 day−1, respectively. The decay rates are far too slow to account for the ‘rapid in situ recycling’ of nutrients needed to support phytoplankton production when other means of nutrient resupply (by advection, fixation, rainfall, etc.) are very low.  相似文献   

17.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   

18.
We conducted full-depth hydrographic observations in the southwestern region of the Northwest Pacific Basin in September 2004 and November 2005. Deep-circulation currents crossed the observation line between the East Mariana Ridge and the Shatsky Rise, carrying Lower Circumpolar Deep Water westward in the lower deep layer (θ<1.2 °C) and Upper Circumpolar Deep Water (UCDW) and North Pacific Deep Water (NPDW) eastward in the upper deep layer (1.3–2.2 °C). In the lower deep layer at depths greater than approximately 3500 m, the eastern branch current of the deep circulation was located south of the Shatsky Rise at 30°24′–30°59′N with volume transport of 3.9 Sv (1 Sv=106 m3 s−1) in 2004 and at 30°06′–31°15′N with 1.6 Sv in 2005. The western branch current of the deep circulation was located north of the Ogasawara Plateau at 26°27′–27°03′N with almost 2.1 Sv in 2004 and at 26°27′–26°45′N with 2.7 Sv in 2005. Integrating past and present results, volume transport southwest of the Shatsky Rise is concluded to be a little less than 4 Sv for the eastern branch current and a little more than 2 Sv for the western branch current. In the upper deep layer at depths of approximately 2000–3500 m, UCDW and NPDW, characterized by high and low dissolved oxygen, respectively, were carried eastward at the observation line by the return flow of the deep circulation composing meridional overturning circulation. UCDW was confined between the East Mariana Ridge and the Ogasawara Plateau (22°03′–25°33′N) in 2004, whereas it extended to 26°45′N north of the Ogasawara Plateau in 2005. NPDW existed over the foot and slope of the Shatsky Rise from 29°48′N in 2004 and 30°06′N in 2005 to at least 32°30′N at the top of the Shatsky Rise. Volume transport of UCDW was estimated to be 4.6 Sv in 2004, whereas that of NPDW was 1.4 Sv in 2004 and 2.6 Sv in 2005, although the values for NPDW may be slightly underestimated, because they do not include the component north of the top of the Shatsky Rise. Volume transport of UCDW and NPDW southwest of the Shatsky Rise is concluded to be approximately 5 and 3 Sv, respectively. The pathways of UCDW and NPDW are new findings and suggest a correction for the past view of the deep circulation in the Pacific Ocean.  相似文献   

19.
Axenic cultures of the microalgae species, Dunaliella tertiolecta and Phaeodactylum tricornutum were grown at arsenic (As) concentrations typically found in uncontaminated marine environments ( 2 µg L− 1) under different phosphorus concentrations. D. tertiolecta accumulated higher arsenic concentrations (mean: 13.7 ± 0.7 µg g− 1 dry mass) than P. tricornutum (mean: 1.9 ± 0.2 µg g−1 dry mass). Media phosphorus concentrations (0.6–3 mg/L) had little influence on microalgae growth rates or arsenic accumulation. Arsenic was present as lipid bound (29–38%; 4.2–9.5%), water-soluble (20–29%; 26–34%) and residue bound (41–45%; 57–69%) arsenic species in D. tertiolecta and P. tricornutum respectively. Hydrolysed lipids contained mostly glycerol arsenoribose (OH- ribose), dimethylarsinate (DMA) and inorganic arsenic (As(V)) moieties. Water-soluble species of microalgae were very different. D. tertiolecta contained inorganic arsenic (54–86%) with variable amounts of DMA (7.4–20%), arsenoriboses (5–25%) and traces of methylarsonate (MA) ( 1%). P. tricornutum contained mostly DMA (32–56%) and phosphate arsenoribose (PO4-ribose, 23–49%) and small amounts of OH-ribose (3.8–6.5%) and As(V) (9–16%). Both microalgae contained an unknown cationic arsenic species. The residue fractions of both microalgae contained predominately inorganic arsenic (99–100%). These results show that at natural seawater arsenic concentrations, both algae take up substantial amounts of inorganic arsenic that is complexed with structural elements or sequestered in vacuoles as stable complexes. A significant portion is also incorporated into lipids. Arsenic is metabolised to simple methylated species and arsenoriboses.  相似文献   

20.
Brood sizes of 1259 adult female Euphausia pacifica and Thysanoessa spinifera were measured during 48 h incubations (10 °C, ±0.5 °C) on 27 oceanographic cruises between July 1999 and September 2004. The data set includes measurements from several stations off Newport, Oregon (Newport Hydrographic line, 44°39′N) made over a 5-year period and measurements from 14 more extensive cruises at stations representative of continental shelf, slope, and oceanic waters off Oregon and California, USA. E. pacifica had similar brood sizes at inshore (<200 m) and offshore (>200 m) stations with an average of 151 and 139 eggs brood−1 fem−1, respectively. T. spinifera brood sizes were considerably higher at inshore stations—particularly at Heceta Bank (44°N) and south of Cape Blanco (42°50′N)—than at offshore stations, 155 and 107 eggs brood−1 fem−1, respectively. Average brood sizes of E. pacifica increased during the study period, from 125 (in 2000) to 171 eggs brood−1 fem−1 (in 2003). Average percentage of carbon weight invested in spawning (reproductive effort) was higher in E. pacifica (14%) than in T. spinifera (6%), because both species have similar brood size but T. spinifera females are larger than E. pacifica females and produce smaller eggs. Reproductive effort for both species was higher during summer 2002, probably associated with anomalous cool subarctic waters and high chl-a concentration observed during that summer. Brood sizes and chl-a values remained relatively high in 2003–2004 compared to the 1999–2001 period. Geographical and temporal variability in brood sizes for both species were significantly correlated with in situ measurements of chl-a concentration but not with sea surface temperature. No gravid females were collected during late autumn and winter cruises, thus the spawning season along the Oregon coast appears to extend from March through September for both species. However, T. spinifera usually starts reproductive activity earlier in the spring (March) than E. pacifica. Both species had their highest brood sizes in summer during the period of most intense upwelling, which is associated with an increase in regional phytoplankton standing stock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号