首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solubility of calcite in H2O was measured at 6–16 kbar, 500–800 °C, using a piston-cylinder apparatus. The solubility was determined by the weight loss of a single crystal and by direct analysis of the quench fluid. Calcite dissolves congruently in the pressure (P) and temperature (T) range of this study. At 10 kbar, calcite solubility increases with increasing temperature from 0.016±0.005 molal at 500 °C to 0.057±0.022 molal at 750 °C. The experiments reveal evidence for hydrous melting of calcite between 750 and 800 °C. Solubilities show only a slight increase with increasing P over the range investigated. Comparison with work at low P demonstrates that the P dependence of calcite solubility is large between 1 and 6 kbar, increasing at 500 °C from 1.8×10–5 molal at 1 kbar to 6.4×10–3 molal at 6 kbar. The experimental results are described by:
where T is in Kelvin and H2O is the density of pure water in g/cm3. The equation is applicable at 1–20 kbar and 400–800 °C, where calcite and H2O stably coexist. Extrapolated thermodynamic data for indicates that the dominant dissolved carbon species is CO2,aq at all experimental conditions. The results require that equilibrium constant for the reaction:
increases by several orders of magnitude between 1 and 6 kbar, and also rises with isobaric T increase. Published thermodynamic data for aqueous species fail to predict this behavior. The increase in calcite solubility with P and T demonstrates that there is a strong potential for calcite precipitation during cooling and decompression of water-rich metamorphic fluids sourced in the middle to lower crust.Editorial responsibility: T.L. Grove  相似文献   

2.
A method is described for estimating the activity of titania (TiO2) in a magmatic liquid from the compositions of coexisting cubic oxide (spinel) and rhombohedral oxide (ilmenite). These estimates are derived from the thermodynamic models of Ghiorso and Evans (Am J Sci 308:957–1039, 2008; see also Sack and Ghiorso in Contrib Mineral Petrol 106:474–505, 1991a; Am Mineral 76:827-847, 1991b) and may be computed self consistently along with temperature and oxygen fugacity for an assumed pressure. The method is applied to a collection of 729 naturally occurring oxide pairs from rhyolites and dacites. For this suite of oxides, values of titania activity relative to rutile saturation range from 0.3 to 0.9. Genetically related groups of oxide pairs display activity–temperature trends with negative slopes at higher activities (0.6–0.9) or positive slopes at lower activities (0.3–0.7). Thermodynamic analysis supports the assumption of two-oxide, liquid equilibrium for the former group, but suggests that such an interpretation for oxide sequences with positive activity–temperature trends may be problematic. Application of the estimation method to oxide pairs from the Shiveluch Volcano and the Bishop Tuff reveals that the former are consistent with having equilibrated with known matrix glass compositions, whereas the latter pairs are inconsistent with equilibration with pre-eruptive liquids trapped in quartz inclusions.  相似文献   

3.
Uraninite solubility in 0.001–2.0 m HCl solutions was experimentally studied at 500°C, 1000 bar, and hydrogen fugacity corresponding to the Ni/NiO buffer. It was shown that the following U(IV) species dominate in the aqueous solution: U(OH)40, U(OH)2Cl20, and UOH Cl30 Using the results of uraninite solubility measurement, the Gibbs free energies of U(IV) species at 500°C and 1000 bar were calculated (kJ/mol): −9865.55 for UO2(aq), −1374.57 for U(OH)2 Cl20, and −1265.49 for UOH Cl30, and the equilibrium constants of uraninite dissolution in water and aqueous HCl solutions were estimated: UO2(cr) = UO2(aq), pK 0 = 6.64; UO2(cr) + 2HCl0 = U(OH)2 Cl20, pK 2 = 3.56; and UO2(cr) + 3HCl0 = UOHcl30 + H2O, pK 3 = 3.05. The value pK 1 ≈ 5.0 was obtained as a first approximation for the equilibrium UO2(cr) + H2O + HCl0 = U(OH)3Cl0. The constant of the reaction UO2(cr) + 4HCl0 = UCl40 + 2H2O (pK 4 = 7.02) was calculated taking into account the ionization constants of U Cl40 and U(OH)40, obtained by extrapolation from 25 to 500°C at 1000 bar using the BR model. Intense dissolution and redeposition of gold (material of experimental capsules) was observed in our experiments. The analysis and modeling of this phenomenon suggested that the UO2 + x /UO2 redox pair oxidized Au(cr) to Au+(aq), which was then reduced under the influence of stronger reducers.  相似文献   

4.
5.
6.
The effect of sulfur on the sorption of gold by carbonaceous matter (CM) was investigated under hydrothermal conditions (200–400°C and 1 kbar) using the autoclave-ampoule method. The model CM was represented by asphaltenes fractionated from the lignite of the Pavlovskoe coal field. The source of gold was the walls of the Au container, which were dissolved in water under the experimental conditions. Sulfur was added as finely ground pyrite (C-S-Fe-O-H-Au system) or elemental sulfur powder (C-S-O-H-Au system). The contents of Au were measured by atomic absorption spectrometry with electrothermal atomization in quenched aqueous solutions (WF), soluble organic fraction (SF), and insoluble residue (kerogen). The lowest Au concentration was detected in the WF, −8.96 < logmAu < −6.32. The Au concentration is higher in the SF (−5.02 < logmAu < −4.34) and increases by more then an order of magnitude in the kerogen, −3.94 < logmAu < −2.33. The IR spectra of the experimental products showed that sulfur was accumulated in the kerogen, whereas no C-S functional groups were observed in the SF. This is the reason for the negligible influence of sulfur in this system on Au concentration in the SF. The maximum Au concentration was detected in the kerogen in the presence of pyrite, which was transformed into pyrrhotite at 400°C. Thus, iron sulfides promote Au uptake by kerogen from ore-bearing hydrothermal fluids.  相似文献   

7.
Phase equilibria in the ternary system H2O-CO2-NaCl were studied at 800 °C and 9 kbar in internally heated gas pressure vessels using a modified synthetic fluid inclusion technique. The low rate of quartz overgrowth along the `b' and `a' axes of quartz crystals was used to avoid fluid inclusion formation during heating, prior to attainment of equilibrium run conditions. The density of CO2 in the synthetic fluid inclusions was calibrated using inclusions in the binary H2O-CO2 system synthesised by the same method and measured on the same heating-freezing stage. In the two-phase field, two types of fluid inclusions with different densities of CO2 were observed. Using mass balance calculations, these inclusions are used to constrain the miscibility gap and the orientation of two-phase tie-lines in the H2O-CO2-NaCl system at 800 °C and 9 kbar. The equation of state of Duan et al. (1995) approximately describes the P-T section of the ternary system up to about 40 wt% of NaCl. At higher NaCl concentrations the measured solubility of CO2 in the brine is much smaller than predicted by the EOS. A “salting out” effect must be added to the equation of state to include coulomb interaction in the model of Anderko and Pitzer (1993) and Pitzer and Jiang (1996). The new experimental data together with published data up to 5 kbar (Shmulovich et al. 1995) encompass practically all subsolidus crustal P-T conditions. A feature of the new experimental results is the large compositional range in the H2O-CO2-NaCl system occupied by the stability fields of halite + CO2-rich fluid ± H2O-NaCl brine. The prediction of halite stability in equilibrium with CO2-rich fluid in deep-crustal rocks is supported by recent petrological and fluid inclusion studies of granulites. Received: 29 June 1998 / Accepted: 17 March 1999  相似文献   

8.
The phase state of fluid in the system H3BO3–NaF–SiO2–H2O was studied at 350–800 °C and 1–2 kbar by the method of synthetic fluid inclusions. The increase in the solubility of quartz and the high reciprocal solubility of H3BO3 and NaF in water fluid at high temperatures are due to the formation of complexes containing B, F, Si, and Na. At 800 °C and 2 kbar, both liquid and gas immiscible phases (viscous silicate-water-salt liquid and three water fluids with different contents of B and F) are dispersed within each other. The Raman spectra of aqueous solutions and viscous liquid show not only a peak of [B(OH)3]0 but also peaks of complexes [B(OH)4], polyborates [B4O5(OH)4]2–, [B3O3(OH)4], and [B5O6(OH)4], and/or fluoroborates [B3F6O3]3–, [BF2(OH)2], [BF3(OH)], and [BF4]. The high viscosity of nonfreezing fluid is due to the polymerization of complexes of polyborates and fluorine-substituted polyborates containing Si and Na. Solutions in fluid inclusions belong to P–Q type complicated by a metastable or stable immiscibility region. Metastable fluid equilibria transform into stable ones owing to the formation of new complexes at 800 ºC and 2 kbar as a result of the interaction of quartz with B-F-containing fluid. At high concentrations of F and B in natural fluids, complexes containing B, F, Si, and alkaline metals and silicate-water-salt dispersed phases might be produced and concentrate many elements, including ore-forming ones. Their transformation into vitreous masses or viscous liquids (gels, jellies) during cooling and the subsequent crystallization of these products at low temperatures (300–400 °C) should lead to the release of fluid enriched in the above elements.  相似文献   

9.
Transmission electron microscopy (TEM) has been used to investigate deformation microstructures of synthetic stishovite specimens deformed at 14 GPa, 1,300°C. Geometrical characteristics of numerous dislocations have been characterized by dislocation contrast and stereographic analyses in order to identify the easy slip systems of stishovite. TEM data allowed us to characterize the following slip systems: 〈100〉{001}, 〈100〉{010}, 〈100〉{021}, [001]{100}, [001]{110}, [001]{210} and Observation of sub-grain boundaries and scalloped edge dislocations suggest that climb has been activated in the specimens.  相似文献   

10.
The character of solubility of 61 metamorphic and metasomatic minerals in an aqueous fluid was analyzed as a function of temperature, pressure, and fluid acidity by means of computer simulation of mineralfluid equilibria. Depending on the behavior of minerals in solutions of varying acidity, six main types of solubility diagrams were distinguished. The solubility of the majority of minerals is controlled mainly by fluid acidity rather than by P–T conditions. The analysis of model results provided insight into the mobility of chemical elements composing the minerals. The highest mobility in solutions of any acidity was established for Si, K, and Na. Ca and Mg are mobile in acidic solutions and inert in neutral and alkaline solutions. Fe(II) and Mn(II) are mobile in acidic and alkaline solutions but inert in neutral solutions. Fe(III) is mobile only in strongly acidic solutions and practically immobile in solutions of other compositions, which suggests that ferrous iron species must prevail in solutions. Al is mobile in alkaline and ultra-acidic solutions but inert in neutral and slightly acidic solutions. Correspondingly, a change in acidity must lead to the migration of some component into the solution and precipitation of other components. These conclusions are in agreement with the sequences of element mobility deduced from the experimental investigation of metasomatism. Most metamorphic fluids must be rich in silica and alkalis, which may result in the appearance of aggressive silica-alkali fluids responsible for regional metasomatism and granitization. In general, the solubility of Fe-, Mg-, Mn-, and Ca-bearing minerals in alkaline solutions is low compared with acidic solutions. Therefore, only acidic initial solutions could produce fluids enriched in these elements at the expense of leaching from metamorphic rocks during fluid migration. Fluids enriched mainly in Fe could initially be both acidic and alkaline.  相似文献   

11.
Uraninite solubility in HF solutions (0.0001–0.5 m) was experimentally studied at 500°C, 1000 bar, and hydrogen fugacity corresponding to the Ni/NiO buffer. It was shown that the predominant U(IV) species in aqueous solution are U(OH)40, U(OH)3F0, and U(OH)2 F20. Using the results of uraninite solubility measurement, the Gibbs free energies of the uranium (IV) species were calculated at 500°C and 1000 bar (kJ/mol): −986.55 for UO2(aq), −1712.42 for U(OH)3F0, −1755.53 for U(OH)2F20, and the equilibrium constants of the uraninite solubility in water and HF solutions were estimated: UO2(κ) = UO2(aq), which is similar to UO2(cr) + 2H2O = U(OH)40, pK0 = 6.64; UO2(cr) + HF0 + H2O = U(OH)3F0, K1 = 0.0513; UO2(cr) + 2HF0 = U(OH)2F20K2 = 7.00 × 10−4. Approximate values K3 = 5.75 × 10−3 and K4 = 6.7 × 10−2 were obtained for equilibria UO2(cr) + 4HF0 =UF40 + 2H2O and UO2(cr) + 4HF = UF40 + 2H2O. Maximum observed in the uranium concentration curve as a function of HF concentration can be explained by the decrease (to < 1) of activity coefficient ratio of HF0 to U(OH)3F0 with increasing HF concentrations.  相似文献   

12.
Geology of Ore Deposits - Experimental studies were carried out on the solubility of uranium, niobium, and tantalum in acidic melts of Li–F granites and predominantly fluoride fluids at...  相似文献   

13.
The hydrolysis of the Pd2+ ion in HClO4 solutions was examined at 25–70°C, and the thermodynamic constants of equilibrium K (1)0 and K (2)0were determined for the reactions Pd2+ + H2O = PdOH+ + H+ and Pd2+ + 2H2O = Pd(OH)20 + 2H+, respectively. The values of log K (1)0 = −1.66 ± 0.5 (25°C) and −0.65 ± 0.25 (50°C) and log K (2)0 = −4.34 ± 0.3 (25°C) and −3.80 ± 0.3 (50°C) were derived using the solubility technique at 0.95 confidence level. The values of log K (1)0 = −1.9 ± 0.6 (25°C), −1.0 ± 0.4 (50°C), and −0.5 ± 0.3 (70°C) were obtained by spectrophotometric techniques. The palladium ion is significantly hydrolyzed at elevated temperatures (50–70°C) even in strongly acidic solutions (pH 1–1.5), and its hydrolysis is enhanced with increasing temperature.  相似文献   

14.
The behavior of Pt was studied in the Pt-Fe-S-Cl-H2O, Pt-Fe(Ni)-As-S-Cl-H2O, and Pt-Ni-As-Cl-H2O systems. Kinetic experiments showed that the addition of As and S to the system changes the character of Pt complexing and results in a decrease in the bulk Pt content in the solutions. The intermediate complexes that formed during this process disproportionated to produce cooperite and sperrylite. Under the experimental P-T i conditions, the hydrothermal mobility of Pt was mainly provided by its hydrosulfide complexes with a definite participation of chloride complexes. The presence of Ni in the system lowers the redox potential and Pt solubility and prevents the formation of Pt phases, while Ni sulfides and arsenides crystallize copiously. The behavior of Pt and Au in hydrothermal systems and mechanisms of hydrothermal formation of noble metal minerals were considered.  相似文献   

15.
The phase state of fluid in the H2O-NaF-Na2SO4 system in the presence of silicates (quartz and albite) was experimentally explored using the method of synthetic fluid inclusions in quartz at 700°C and pressures of 1 and 2 kbar. Parallel experiments were conducted under identical conditions with either two silicates (quartz and albite) or quartz only. The presence of albite affects heterogeneous fluid equilibria both at different pressures and at different solution compositions. This indicates high solubilities of silicates in a saltwater fluid containing NaF and Na2SO4. The absence of inclusions homogenizing to a gas phase in the experimental products provides compelling evidence that liquid-liquid rather than liquid-vapor equilibria are characteristic of the H2O-SiO2-NaF-Na2SO4 and H2O-SiO2-NaF-Na2SO4-NaAlSi3O2 systems in the heterogeneous region. It can be concluded that critical equilibria in saturated solutions can exist in these systems. In addition, it was shown that the phase diagrams of these systems are complicated by the formation of immiscible liquids in the presence of vapor. This allowed us to conclude that there are two critical curves describing equilibria with two different salts. Fluids containing two salts (NaF and Na2SO4) are similar to fluids containing only one of these salts: (a) two liquids are in equilibrium under the parameters of the upper heterogeneous region, (b) each of them can in turn undergo unmixing at decreasing temperature and pressure, and (c) owing to chemical interaction between silicate and fluid components, a glassy phase can be formed and trapped in inclusions.  相似文献   

16.
We have experimentally studied the behavior of oxygen isotope composition in silicate melts with a wide range of network-forming cations. Isotopic equilibration of the Di-An eutectic melts modified by addition of Si, Al, Ti, and Fe was carried out in a vertical tube furnace within a temperature range from 1400 to 1570°C. It was established that the value 10 3Lnα between silicic and basic melts at 1400 and 1450°C systematically increases with increase of SiO2 content, reaching ≈1‰ at 20% melt silica enrichment. The effect of the Fe2O3, TiO2, and Al2O3 contents was studied at 1500°C. An increase in Fe2O3 from 5 to 20 wt % causes a 0.4‰ increase of δ18O. An increase in Ti and Al contents results in the non-linear behavior of δ18O, which decreases in the region of the highest TiO2 (28.4%) and Al2O3 (29.3 %) contents. In the region of moderate Fe2O3, TiO2, and Al2O3 contents, the values of δ18O show monotonous linear dependence on the oxide contents. Methods of estimations of oxygen isotope fractionation coefficients at T > 1400°C in the studied range of network-forming oxides are considered on the basis of experimental data. The calculation of fractionation coefficients with the use of I18O index showed that experimental values with increase of SiO2 content deviate from calculated values by 0.3‰ for basic melts and 0.5–0.6‰ in the region of silicic melts. Similar pattern is observed during approximation of a melt by normative mineral composition. The calculation with the Garlick index leads to the systematic underestimation (on average, by 0.3‰) of 103Lnα as compared to the experimental data. The NBO/T ratio appeared the best parameter to describe 103Lnα in the melt-melt system, including the region of high-Fe melts. Analysis of experimental data leads us to conclude that the degree of polymerization of the melts in the studied temperature-composition region is the most important factor affecting the oxygen-isotope fractionation in the melt-melt system. Empirical index similar to the Garlick index was proposed to take into account oxygen associated with T-cations: $$I^m = (C_{Si} + aC_{Al} + bC_{Ti} + cC_{Fe^{3 + } } )/\Sigma C_i ,$$ where a, b, and c constants are empirically established coefficients: 0.75, 0. 70, and 1.75, respectively.  相似文献   

17.
We present new partition coefficients for various trace elements including Cl between olivine, pyroxenes, amphibole and coexisting chlorine-bearing aqueous fluid in a series of high-pressure experiments at 2 GPa between 900 and 1,300 °C in natural and synthetic systems. Diamond aggregates were added to the experimental capsule set-up in order to separate the fluid from the solid residue and enable in situ analysis of the quenched solute by LA–ICP–MS. The chlorine and fluorine contents in mantle minerals were measured by electron microprobe, and the nature of OH defects was investigated by infrared spectroscopy. Furthermore, a fluorine-rich olivine from one selected sample was investigated by TEM. Results reveal average Cl concentrations in olivine and pyroxenes around 20 ppm and up to 900 ppm F in olivine, making olivine an important repository of halogens in the mantle. Chlorine is always incompatible with Cl partition coefficients D Cl olivine/fluid varying between 10?5 and 10?3, whereas D Cl orthopyroxene/fluid and D Cl clinopyroxene/fluid are ~10?4 and D Cl amphibole/fluid is ~5 × 10?3. Furthermore, partitioning results for incompatible trace element show that compatibilities of trace elements are generally ordered as D amph/fluid ≈ D cpx/fluid > D opx/fluid > D ol/fluid but that D mineral/fluid for Li and P is very similar for all observed silicate phases. Infrared spectra of olivine synthesized in a F-free Ti-bearing system show absorption bands at 3,525 and ~3,570 cm?1. In F ± TiO2-bearing systems, additional absorption bands appear at ~3,535, ~3,595, 3,640 and 3,670 cm?1. Absorption bands at ~3,530 and ~3,570 cm?1, previously assigned to humite-like point defects, profit from low synthesis temperatures and the presence of F. The presence of planar defects could not be proved by TEM investigations, but dislocations in the olivine lattice were observed and are suggested to be an important site for halogen incorporation in olivine.  相似文献   

18.
19.
The contents and speciation of nitrogen, carbon, and hydrogen were determined in basalt–basaltic andesite melts in equilibrium with liquid Fe alloys at 1.5 Gpa, 1400°C, and oxygen fugacity (fO2) 1.4–1.9 log units below that of the Fe–FeO buffer (ΔlogfO2(IW) =–1.4 …–1.9). Experiments were carried out on a piston- cylinder type apparatus using welded Pt capsules in the presence of excess С (graphite). Starting mixture consisted of natural ferrobasaltic glass and silicon nitride (Si3N4) as nitrogen source in the system. Experimental quench products representing glasses with spherical inclusions of iron alloy were analyzed using electron microprobe, Raman, and IR spectroscopy. With increase of Si3N4 in the starting mixture and, respectively, decrease of fO2, silicate melt forming during experiments became depleted in FeO and enriched in SiO2. It was established that the nitrogen content in the glasses increases from 0.13 to 0.44 wt % with decrease of ΔlogfO2(IW) from–1.4 to–1.9, whereas C content in the first approximation remains constant within 1.18–1.13 wt %, while the total water content (ОН + Н2О) determined by IR spectroscopy decreases from 4.91 to 1.20 wt %. The N (0.13–0.48 wt %) and C (0.75–2.26 wt %) contents determined in the Fe alloy show no clear correlation with fO2. The IR and Raman spectroscopic study of the glasses indicates the formation of molecules and complexes with bonds N–H (NH3, NH2 ?, NH2 +, NH4 +), Н–О (Н2О, OH), С–Н (СН4) as well as N2 and Н2 molecules in silicate melts. IR spectra also reveal the presence of complexes with С=О, С–N bonds and СО2 molecules. Obtained data are compared with results of previous studies on the solubility and speciation of N, С, and Н in the model FeO–Na2O–SiO2–Al2O3 melts in equilibrium with liquid iron alloys at 1.5 GPa (1400°C) and 4 GPa (1550°C) (Kadik et al., 2011, 2015).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号