共查询到19条相似文献,搜索用时 62 毫秒
1.
陀螺随机误差是影响惯性导航系统精度的主要因素。在经验模态分解(EMD)和阈值降噪的基础上,提出一种基于集合经验模态分解(EEMD)的区间阈值的陀螺信号降噪方法。该方法利用EEMD方法将陀螺信号分解多个本征模态函数(IMF)分量和1个残余分量,基于信号和IMF分量的概率密度函数的2范数距离方法剔除纯噪声IMF分量,利用改进的区间阈值降噪方法实现信号的降噪。仿真和实测试验表明,该方法不仅能有效抑制EMD中的模态混叠问题,而且能有效削弱陀螺的随机误差,从而提高惯性导航系统的精度和可靠性。 相似文献
2.
3.
4.
经验模式分解联合独立分量分析降噪研究 总被引:1,自引:0,他引:1
针对高精度GPS变形监测的噪音成分以及多路径效应的剔除,提出了一种新的经验模式分解联合独立分量分析的滤波降噪法。采用模态相关准则进行信号层与噪音层的判定,有效地解决了低信噪比情况下信号层与噪音层分界点的判定,实现了噪音最大化的去除以及有用信息的最大化保留;基于经验模式分解的独立分量分析滤波降噪法,采用更为简单科学的数学判定方法,避免了人为的经验判定方法,实现了信号层与噪音层的自适应判定以及降噪效果更佳。实验结果表明:所用算法不仅能够有效地去除噪音成分,而且能够很好地保留大部分有用信息,研究结果对高精度GPS变形监测的去噪以及多路径效应的剔除研究具有一定意义。 相似文献
5.
在全波形激光雷达信号从发射到接收的过程中,针对受传播介质、扫测距离、物体性质等因素影响产生噪声的问题,本文提出了一种基于经验模态分解、排序熵和小波阈值的降噪改进方法。首先对波形信号进行经验模态分解或本征模态函数(IMF),计算各本征模态函数排序熵的值;然后应用该值计算小波阈值,并构造新的小波阈值函数,再对相应本征模态函数进行小波阈值降噪;最后将结果重新加和,得到降噪后的波形,从而提高不同噪声信号的降噪方法的自适应性。基于数值仿真和实测数据试验,将本文方法与其他降噪方法进行了对比,基于信噪比、波形相关性、均方根误差、平滑度计算归一化指标和综合指标对本文方法进行了评估,归一化信噪比提高10%~20%,其余指标改善5%~40%。因此,本文方法对不同噪声含量的回波信号均有较好的降噪效果,可以解决全波形激光雷达接收波形中存在的噪声问题。 相似文献
6.
7.
8.
针对GNSS坐标时间序列中有用信号与噪声难以准确分离这一问题,本文提出加权小波Z变换(weighted wavelet Z-transform, WWZ)和集合经验模态分解(ensemble empirical mode decomposition,EEMD)的降噪方法.通过对西北地区70个陆态网络连续站垂向坐标时间序列的降噪处理,分别采用均方根误差(root mean squared error,RMSE)、信噪比(signal to noise ratio,SNR)、闪烁噪声(flicker noise,FN)振幅及速度不确定度为评价指标,验证了本文方法的降噪效果在一定程度上优于小波降噪和EEMD降噪.结果显示:WWZ-EEMD相比小波降噪和EEMD降噪,降噪后信号序列RMSE分别降低了0.331 mm、 0.757 mm,SNR分别提高了1.911 dB、3.635 dB;FN振幅及速度不确定度均有明显改善,验证了本文降噪方法的有效性. 相似文献
9.
为了准确提取桥梁GNSS监测数据中的有效变形特征,本文充分发挥自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, CEEMDAN)与小波变换(Wavelet Transform, WT)在信号降噪中的优势,将二者结合进行桥梁GNSS监测数据降噪。首先通过CEEMDAN方法将原始监测数据分解为若干个本征模态函数(Intrinsic Mode Function, IMF),并通过相关系数识别出有效IMF分量,包含噪声的IMF分量以及无效IMF分量;其次使用WT软阈值降噪方法对包含噪声的IMF分量进一步降噪;最后重构降噪后IMF分量与有效IMF分量。通过仿真实验数据与苏通大桥实测GNSS数据对本文方法的有效性与优越性进行检验,结果表明,本文方法具有良好的降噪效果,能够有效提取桥梁的真实变形信息。 相似文献
10.
基于手机传感器的行人航位推算(PDR)作为一种不依赖外部信息和硬件就可以自主定位导航的方法,在室内环境下试图去普及应用。老年人与年轻人在步频与步幅上有很大差异,常用的年轻人步态降噪方法并不适用于老年人,大大降低PDR的定位精度。针对该问题,本文以手机内加速度传感器信号为数据依据,以检测老年人步数为研究目标,采用卡尔曼滤波、巴特沃斯低通滤波、集合经验模态分解等方法,确定老年人的步数。通过对比分析,确定基于集合经验模态分解的降噪方法,对老年的检步精度达到98%以上,较采用卡尔曼滤波与巴特沃斯低通滤波的方法提高了19.4%。 相似文献
11.
12.
13.
14.
对高层、超高层建筑物进行实时,高精度的变形监测对提前预防安全隐患,保证人民生命财产安全具有重要意义.建筑物变形作为一种典型的随机性和微弱性过程,噪声等误差的存在会影响从中提取有用的变形信息.针对该问题,提出一种改进粒子群(ParticleSwarmOptimization,PSO)算法优化支持向量机(SupportVe... 相似文献
15.
针对遥感影像噪声通常由光学噪声和电噪声组成的特点,提出了一种基于压缩感知的混合去噪模型。该模型结合了压缩感知原理和自适应中值滤波算法,分别在小波域与空间域对影像进行去噪。实验结果证明了混合模型在有效抑制影像中噪声的同时,可以保持较高的信噪比和归一化方差,有较高的图像的纹理和边缘信息保持能力。 相似文献
16.
17.
提出了一种结合规则划分和M-H(Metropolis-Hastings)算法的SAR图像分割方法。首先,利用规则划分将图像域划分成子块,并假设每个子块内像素服从同一独立的Gamma分布;根据贝叶斯定理,构建基于子块的图像分割模型;然后,利用M-H算法模拟该分割模型,实现SAR图像分割及模型参数估计。在M-H算法中,设计了改变参数矢量、改变标号场及分裂或合并子块三个移动操作。为了验证提出的分割方法,分别对真实及模拟SAR图像进行分割实验。定性及定量评价结果表明了本文方法的可行性及有效性。 相似文献
18.
建立了总体变分自适应图像去噪模型,并给出了其非线性各向异性扩散方程的数值解法。该方法采用高斯滤波器对噪声图像进行预处理,并利用图像每个像素的梯度信息,使其扩散方程在沿边缘方向上具有较大的扩散系数,而在垂直边缘的方向上具有较小的扩散系数。因此,总体变分自适应图像去噪方法不但能抑制噪声,还能很好地保持图像的边缘和纹理特征。图像去噪仿真实验表明,该方法的降噪效果明显优于总体变分去噪方法和中值滤波、维纳滤波等传统方法。 相似文献
19.
本文采用方差-协方差分量估计分析GPS残差时间序列噪声特性。介绍了该方法如何运用于GPS时间序列分析,详细的推导了函数模型,建立了数据处理流程。对比传统的极大似然估计,该方法可以定量计算各噪声分量的大小,并且具有计算速度快,数学模型严谨等优点。 相似文献