首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The near-infrared reflectance spectra of the martian surface present strong absorption features attributed to hydration water present in the regolith. In order to characterize the relationships between this water and atmospheric vapor and decipher the physical state of water molecules in martian regolith analogs, we designed and built an experimental setup to measure near-IR reflectance spectra under martian atmospheric conditions. Six samples were studied that cover part of the diversity of Mars surface mineralogy: a hydrated ferric oxide (ferrihydrite), two igneous samples (volcanic tuff, and dunite sand), and three potential water rich soil materials (Mg-sulfate, smectite powder and a palagonitic soil, the JSC Mars-1 regolith stimulant). Sorption and desorption isotherms were measured at 243 K for water vapor pressure varying from 10−5 to ∼0.3 mbar (relative humidity: 10−4 to 75%). These measurements reveal a large diversity of behavior among the sample suite in terms of absolute amount of water adsorbed, shape of the isotherm and hysteresis between the adsorption and desorption branches. Simultaneous in situ spectroscopic observations permit a detailed analysis of the spectral signature of adsorbed water and also point to clear differences between the samples. Ferric (oxy)hydroxides like ferrihydrite or other phases present in palagonitic soils are very strong water adsorbent and may play an important role in the current martian water cycle by allowing large exchange of water between dust-covered regions and atmosphere at diurnal and seasonal scales.  相似文献   

2.
A number of mineral species were exposed to martian surface conditions of atmospheric pressure and composition, temperature, and UV light regime, and their evolution was monitored using reflectance spectroscopy. The stabilities for different groups varied widely. Phyllosilicate spectra all showed measurable losses of interlayer H2O, with some structural groups showing more rapid H2O loss than others. Loss of OH from the phyllosilicates is not always accompanied by a change in metal-OH overtone absorption bands. OH-bearing sulfates, such as jarosite and alunite, show no measurable change in spectral properties, suggesting that they should be spectrally detectable on Mars on the basis of diagnostic absorption bands in the 0.4-2.5 μm region. Fe3+- and H2O-bearing sulfates all showed changes in the appearance and/or reduction in depths of hydroxo-bridged Fe3+ absorption bands, particularly at 0.43 μm. The spectral changes were often accompanied by visible color changes, suggesting that subsurface sulfates exposed to the martian surface environment may undergo measurable changes in reflectance spectra and color over short periods of time (days to weeks). Organic-bearing geological materials showed no measurable change in CH related absorption bands, while carbonates and hydroxides also showed no systematic changes in spectral properties. The addition of ultraviolet irradiation did not seem to affect mineral stability or rate of spectral change, with one exception (hexahydrite). In some cases, spectral changes could be related to the formation of specific new phases. The data also suggest that hydrated minerals detected on Mars to date retain their diagnostic spectral properties that allow their unique identification.  相似文献   

3.
Steven W. Ruff 《Icarus》2004,168(1):131-143
Spectral features observed in Mars Global Surveyor Thermal Emission Spectrometer data (∼1670-220 cm−1) of martian surface dust provide clues to its mineralogy. An emissivity peak at ∼1630 cm−1 is consistent with the presence of an H2O-bearing mineral. This spectral feature can be mapped globally and shows a distribution related to the classical bright regions on Mars that are known to be dust covered. An important spectral feature at ∼830 cm−1 present in a newly derived average spectrum of surface dust likely is a transparency feature arising from the fine particulate nature of the dust. Its shape and location are consistent with plagioclase feldspars and also zeolites, which essentially are the hydrous form of feldspar. The generally favored visible/near-infrared spectral analog for martian dust, JSC Mars-1 altered tephra, does not display the ∼830 cm−1 feature. Zeolites commonly form from the interaction of low temperature aqueous fluids and volcanic glass in a variety of geologic settings. The combination of spectral features that are consistent with zeolites and the likelihood that Mars has (or had) geologic conditions necessary to produce them makes a strong case for recognizing zeolite minerals as likely components of the martian regolith.  相似文献   

4.
The goal of this work is to determine the spectroscopic properties of sulfate in martian soil analogs over the wavelength range 0.3 to 25 μm (which is relevant to existing and planned remotely sensed data sets for Mars). Sulfate is an abundant component of martian soil (up to 9% SO3 by weight) and apparently exists as a particulate in the soil but also as a cement. Although previous studies have addressed the spectroscopic identity of sulfates on Mars, none have used laboratory mixtures of materials with sulfates at the abundances measured by landed spacecraft, nor have any works considered the effect of salt-cementation on spectral properties of soil materials. For this work we created mixtures of a palagonitic soil (JSC Mars-1) and sulfates (MgSO4 and CaSO4·2H2O). The effects of cementation were determined and separated from the effects of packing and hydration by measuring the samples as loose powders, packed powders, cemented materials, and disaggregated materials. The results show that the presence of particulate sulfate is best observed in the 4-5 μm region. Soils cemented with sulfate exhibit a pronounced restrahlen band between 8 and 9 μm as well as well-defined absorptions in the 4-5 μm region. Cementation effects are distinct from packing effects and disaggregation of cemented samples rapidly diminishes the strength of the restrahlen bands. The results of this study show that sulfate in loose materials is more detectable in the near infrared (4-5 μm) than in the thermal infrared (8-9 μm). However, cemented materials are easily distinguished from loose mixtures in the thermal infrared because of the high values of their absorption coefficient in this region. Together these results suggest that both wavelength regions are important for determining the spatial extent and physical form of sulfates on the surface of Mars.  相似文献   

5.
Multiple datasets have demonstrated that the crust of Mars is fundamentally basaltic. However, spectral libraries used to interrogate thermal infrared spectra of Martian dark regions through spectral deconvolution have heretofore lacked mafic glasses despite the importance of amorphous phases (or phases with amorphous-like spectral signatures) in Martian mineralogy. To establish the presence and importance of basaltic-to-intermediate glasses in Martian lithologies, we created five such glasses, obtained their thermal infrared spectra and included the spectra in a library used to deconvolve nine regional Thermal Emission Spectrometer spectra from Mars. We employed the nonnegative least squares (NNLS) deconvolution method, which yields deconvolved phase abundances and the uncertainties associated with those abundances. The basaltic-to-intermediate glasses do not appear in the deconvolution solutions, indicating they are not globally or regionally important phases. Because Martian igneous or impact processes are capable of basaltic-to-intermediate glass formation, the lack of such glasses in the deconvolved mineralogies suggests either the glasses did not form in detectable quantities or they (or their signatures) have been removed. The masking or replacement of basaltic-to-intermediate glasses through alteration is supported by the appearance in the deconvolution solutions of amorphous phases (e.g., silica-rich glasses, opal) or phases with amorphous-like spectral signatures (e.g., clays, zeolites) that commonly form through aqueous alteration of mafic glasses. The glasses may still be important to local-scale thermal infrared studies given the basaltic nature of Mars and the variety of local-scale lithologies detected by various missions. The regional mineralogies derived from the NNLS deconvolution analysis divide into five statistically separable groups, which provide insight into regional trends in mineralogy.  相似文献   

6.
Diverse phyllosilicate deposits discovered previously in the Nili Fossae region with near infrared reflectance data are a window into the complex history of aqueous alteration on Mars. In this work, we used thermal infrared data from the Thermal Emission Spectrometer (TES) in combination with near infrared data from the Observatoire pour la Minéralogie, l’Eau, les Glaces, et l’Activité (OMEGA) to better constrain the mineralogy and geologic origin of these deposits. We developed a TES spectral index for identification of clay minerals, which correctly identifies the phyllosilicates in the Nili Fossae area and points to several other interesting deposits in the Syrtis Major region. However, detailed inspection of the TES spectral features of Nili Fossae phyllosilicates shows a feature at low wavenumbers (350-550 cm−1) that is not an exact match to any specific Fe3+-, Al-, or Mg-rich phyllosilicate phase. Instead, the feature is more similar to basaltic glass and may indicate that the phyllosilicates in this region are: (1) rich in Fe2+ (based on similarity to trends seen in laboratory data of clay minerals), (2) poorly crystalline/extremely disordered, and/or (3) present within a matrix of actual basalt glass. This feature is similar to spectral features seen in altered rocks in the Columbia Hills region of Gusev Crater by previous authors. By calibrating measured spectral index values against mathematical spectral mixtures of typical martian dark surfaces and known abundances of alteration minerals, we are able to estimate an enrichment in abundance of alteration minerals in the altered surfaces. Many dark, Noachian deposits in the Nili Fossae area are enriched phyllosilicates by 20-30% (±10-15%) relative to dark, volcanic surfaces in the same region. The distribution and abundance of these phases indicates that alteration in the region was pervasive, but did not completely erase the original mineralogy of what was likely an Fe-rich basalt protolith. As a group, the Nili Fossae phyllosilicate deposits are fundamentally different from those found in the Mawrth Vallis region. Nili Fossae deposits have strong thermal infrared features related to admixed pyroxene, plagioclase, and occasionally olivine, whereas the Mawrth Vallis deposits contain no mafic minerals. Comparison of TES and OMEGA data also illustrates some more general differences between the datasets, including the impact of physical character of the martian surface on detectability of minerals in each spectral range.  相似文献   

7.
We have developed an artificial neural net detector for use on board Mars rovers that correctly identifies calcite under Mars analogue dust (JSC Mars-1 regolith simulant) layers up to ∼100 μm thickness and 80% aerial coverage. Both the detector output and the band depth of the ∼2300 nm CO=3 absorption are linearly related to the surface area of exposed calcite. This detector provides a means for rapid and robust automated recognition of calcite on Mars in areas of active aeolian erosion.  相似文献   

8.
Dynamical transport of gases within the martian regolith controls many climatic processes, and is particularly important in the deposition and/or mobilization of shallow ground ice, as well as exchange of other volatiles between the martian regolith and atmosphere. A variety of theoretical studies have addressed issues related to ground ice dynamics on Mars and in the terrestrial analog environment of the Antarctic Dry Valleys. These theoretical studies have drawn on a limited set of empirical measurements to constrain the structural parameters controlling gas diffusion and flow in soils. Here, we investigate five groups of Mars-analog soils: glass spheres, JSC Mars-1, aeolian dune sand, Antarctic Dry Valley soils, and arctic loess. We present laboratory measurements of the structural properties most relevant to gas transport in these soils: porosity, tortuosity, permeability, bulk and intrinsic densities, grain-size distribution, pore-size distribution and BET surface area. Our results bear directly both on the appropriateness of assumptions made in theoretical studies and on current outstanding issues in the study of shallow ground ice on Mars and in the Dry Valleys. Specifically, we find that (1) measured values of tortuosity are lower than values commonly assumed for Mars by a factor of two to three; (2) diffusive loss of ground ice on Mars can likely proceed up to four times faster than predicted by theoretical studies; (3) soil permeabilities are sufficiently high that flushing of the soil column by bulk flow of atmospheric gases may further speed loss or deposition of shallow ground ice; (4) the pore volume in some Mars-analog soils is sufficiently high to explain high volumetric ice abundances inferred from Mars Odyssey Gamma Ray Spectrometer data as simple pore ice; and (5) measured properties of soils collected in Beacon Valley, Antarctica agree well with assumptions made in theoretical studies and are consistent with rapid loss of ground ice in the current climate.  相似文献   

9.
Abstract— The Nakhla meteorite, commonly accepted to have originated from Mars, is a cumulus clinopyroxenite with ~10 vol% of Fe‐rich olivine. Almost all olivine grains in Nakhla contain dark lamellar inclusions (less than 2–3 μm wide). High‐resolution scanning and transmission electron microscopy revealed that the inclusions are complex intergrowths of augite and magnetite. Such a symplectic intergrowth of augite and magnetite in olivine was known in some terrestrial rocks, lunar rocks, and a few meteorites. The inclusion in Nakhla olivine is the first symplectite found in a martian rock. Apparently, the presence of Fe3+ in olivine under an oxidizing condition on Mars caused symplectic exsolution at high temperature (>900 °C) during cooling.  相似文献   

10.
Abstract— Reflectance spectra of spinels and chromites have been studied as a function of composition. These two groups of minerals are spectrally distinct, which relates largely to differences in the types of major cations present. Both exhibit a number of absorption features in the 0.3–26 μm region that show systematic variations with composition and can be used to quantify or constrain certain compositional parameters, such as cation abundances, and site occupancies. For spinels, the best correlations exist between Fe2+ content and wavelength positions of the 0.46, 0.93, 2.8, Restrahelen, 12.3, 16.2, and 17.5 μm absorption features, Al and Fe3+ content with the wavelength position of the 0.93 μm absorption feature, and Cr content from the depth of the absorption band near 0.55 μm. For chromites, the best correlations exist between Cr content and wavelength positions of the 0.49, 0.59, 2, 17.5, and 23 μm absorption features, Fe2+ and Mg contents with the wavelength position of the 1.3 μm absorption feature, and Al content with the wavelength position of the 2 μm absorption feature. At shorter wavelengths, spinels and chromites are most readily distinguished by the wavelength position of the absorption band in the 2 μm region (<2.1 μm for spinels, >2.1 μm for chromite), while at longer wavelengths, spectral differences are more pronounced. The importance of being able to derive compositional information for spinels and chromites from spectral analysis stems from the relationship between composition and petrogenetic conditions (pressure, temperature, oxygen fugacity) and the widespread presence of spinels and chromites in the inner solar system. When coupled with the ability to derive compositional information for mafic silicates from spectral analysis, this opens up the possibility of deriving petrogenetic information for remote spinel‐ and chromite‐bearing targets from analysis of their reflectance spectra.  相似文献   

11.
The time variations of spectral properties of dark martian surface features are investigated using the OMEGA near-IR dataset. The analyzed period covers two Mars years, spanning from early 2004 to early 2008 (includes the 2007 global dust event). Radiative transfer modeling indicates that the apparent albedo variations of low to mid-latitude dark regions are consistent with those produced by the varying optical depth of atmospheric dust as measured simultaneously from the ground by the Mars Exploration Rovers. We observe only a few significant albedo changes that can be attributed to surface phenomena. They are small-scaled and located at the boundaries between bright and dark regions. We then investigate the variations of the mean particle size of aerosols using the evolution of the observed dark region spectra between 1 and 2.5 μm. Overall, we find that the observed changes in the spectral slope are consistent with a mean particle size of aerosols varying with time between 1 and 2 μm. Observations with different solar zenith angles make it possible to characterize the aerosol layer at different altitudes, revealing a decrease of the particle size of aerosols as altitude increases.  相似文献   

12.
Spectrophotometric observations of 145 Adeona, 704 Interamnia, 779 Nina, and 1474 Beira—asteroids of close primitive types—allowed us to detect similar mineralogical absorption bands in their reflectance spectra centered in the range 0.35 to 0.92 μm; the bands are at 0.38, 0.44, and 0.67–0.71 μm. On the same asteroids, the spectral signs of simultaneous sublimation activity were found for the first time. Namely, there are maxima at ~0.35–0.60 μm in the reflectance spectra of Adeona, Interamnia, and Nina and at ~0.55–075 μm in the spectra of Beira. We connect this activity with small heliocentric distances of the asteroids and, consequently, with a high insolation at their surfaces. Examination of the samples of probable analogues allowed us to identify Fe3+ and Fe2+ in the material of these asteroids through the mentioned absorption bands. For analogues, we took powdered samples of carbonaceous chondrites Orgueil (CI), Mighei (CM2), Murchison (CM2), and Boriskino (CM2), as well as hydrosilicates of the serpentine group. Laboratory spectral reflectance study of the samples of low-iron Mg serpentines (<2 wt % FeO) showed that the equivalent width of the absorption band centered at 0.44–0.46 μm strongly correlates with the content of Fe3+ in octahedral and tetrahedral coordinations. Our conclusion is that this absorption band can be used as a qualitative indicator of Fe3+ in the surface matter of asteroids and other solid celestial bodies. The comparison of the listed analog samples and the asteroids by parameters of the spectral features suggests that the silicate component of the asteroids' surface material is a mixture of hydrated and oxidized compounds, including oxides and hydroxides of bivalent and trivalent iron and carbonaceous-chondritic material. At the same time, the sublimation activity of Adeona, Interamnia, Nina, and Beira at high surface temperatures points to a substantial content of water ice in their material. This contradicts the previously existing notions on the C-type and similar asteroids as bodies containing water only in the bound state. Moreover, since the sublimation process simultaneously occurs in four primitive-type bodies at small heliocentric distances, we may suppose that this phenomenon is common for the main-belt asteroids.  相似文献   

13.
We present results of laboratory near-infrared reflectance studies of a set of calcic pyroxenes with comparable calcium contents (Wo45-50) but variable iron content and oxidation states. This new dataset complements earlier published data (Cloutis and Gaffey, 1991, J. Geophys. Res. 96, 22809-28826, and references therein). In particular, our new spectra extend the scarce available spectral data on chemically analyzed Fe-rich high-Ca clinopyroxenes. We attempted to interpret the spectral behavior of our samples in terms of chemistry and coordination site occupancies. Tentatively, we conclude that Fe-rich calcic pyroxenes have very low contents of Fe2+ in the M2 sites and belong to the spectral type A lacking the 2-μm band. This may be due to high Ca and Mn contents in these pyroxenes. Fe-poor high-Ca pyroxenes are more spectrally variable. In general, they tend to belong to the spectral type B with two major bands near 1 and 2 μm, unless the samples have high Fe3+/Fe2+ ratios or are rich in Mn and Ca. Some of them (including unusual meteorite Angra dos Reis) are of type B despite very high Ca contents. We applied the Modified Gaussian Model (MGM) to characterize three major Fe2+ absorption bands in the 1-μm region of the spectra of Ca-rich pyroxenes. Only the band due to Fe2+ in the M1 coordination site near 1.15 μm may be potentially useful to estimate the Fe content in calcic pyroxenes on remotely-sensed surfaces of Solar System bodies. The spectral variability of basaltic meteorites (angrites) that are rich in calcic pyroxenes is also discussed. The presence of spectral type A calcic pyroxenes in these meteorites complicates unambiguous identification of olivine in asteroid spectra.  相似文献   

14.
E.A. Cloutis  P. Hudon  T. Hiroi 《Icarus》2011,216(1):309-346
We have examined the spectral reflectance properties and available modal mineralogies of 39 CM carbonaceous chondrites to determine their range of spectral variability and to diagnose their spectral features. We have also reviewed the published literature on CM mineralogy and subclassification, surveyed the published spectral literature and added new measurements of CM chondrites and relevant end members and mineral mixtures, and measured 11 parameters and searched pair-wise for correlations between all quantities. CM spectra are characterized by overall slopes that can range from modestly blue-sloped to red-sloped, with brighter spectra being generally more red-sloped. Spectral slopes, as measured by the 2.4:0.56 μm and 2.4 μm:visible region peak reflectance ratios, range from 0.90 to 2.32, and 0.81 to 2.24, respectively, with values <1 indicating blue-sloped spectra. Matrix-enriched CM spectra can be even more blue-sloped than bulk samples, with ratios as low as 0.85. There is no apparent correlation between spectral slope and grain size for CM chondrite spectra - both fine-grained powders and chips can exhibit blue-sloped spectra. Maximum reflectance across the 0.3-2.5 μm interval ranges from 2.9% to 20.0%, and from 2.8% to 14.0% at 0.56 μm. Matrix-enriched CM spectra can be darker than bulk samples, with maximum reflectance as low as 2.1%. CM spectra exhibit nearly ubiquitous absorption bands near 0.7, 0.9, and 1.1 μm, with depths up to 12%, and, less commonly, absorption bands in other wavelength regions (e.g., 0.4-0.5, 0.65, 2.2 μm). The depths of the 0.7, 0.9, and 1.1 μm absorption features vary largely in tandem, suggesting a single cause, specifically serpentine-group phyllosilicates. The generally high Fe content, high phyllosilicate abundance relative to mafic silicates, and dual Fe valence state in CM phyllosilicates, all suggest that the phyllosilicates will exhibit strong absorption bands in the 0.7 μm region (due to Fe3+-Fe2+ charge transfers), and the 0.9-1.2 μm region (due to Fe2+ crystal field transitions), and generally dominate over mafic silicates. CM petrologic subtypes exhibit a positive correlation between degree of aqueous alteration and depth of the 0.7 μm absorption band. This is consistent with the decrease in fine-grained opaques that accompanies aqueous alteration. There is no consistent relationship between degree of aqueous alteration and evidence for a 0.65 μm region saponite-group phyllosilicate absorption band. Spectra of different subsamples of a single CM can show large variations in absolute reflectance and overall slope. This is probably due to petrologic variations that likely exist within a single CM chondrite, as duplicate spectra for a single subsample show much less spectral variability. When the full suite of available CM spectra is considered, few clear spectral-compositional trends emerge. This indicates that multiple compositional and physical factors affect absolute reflectance, absorption band depths, and absorption band wavelength positions. Asteroids with reflectance spectra that exhibit absorption features consistent with CM spectra (i.e., absorption bands near 0.7 and 0.9 μm) include members from multiple taxonomic groups. This suggests that on CM parent bodies, aqueous alteration resulted in the consistent production of serpentine-group phyllosilicates, however resulting absolute reflectances and spectral shapes seen in CM reflectance spectra are highly variable, accounting for the presence of phyllosilicate features in reflectance spectra of asteroids across diverse taxonomic groups.  相似文献   

15.
The origin and nature of the early atmosphere of Mars is still debated. The discovery of sulfate deposits on the surface, coupled with the evidence that there are not large abundances of carbonates detectable on Mars in the optically accessible part of the regolith, leaves open different paleoclimatic evolutionary pathways. Even if carbonates are responsible for the feature observed by TES and Mini-TES at 6.76 μm, alternative hypotheses suggest that it could be due to the presence of Hydrated Iron Sulfates (HIS). Carbonates can be discerned from HIS by investigating the spectral region in which a strong overtone carbonate band is present. The Planetary Fourier Spectrometer on board the Mars Express spacecraft has acquired several thousand martian spectra in the range 1.2-45 μm since January 2004, most of which show a weak absorption feature between 3.8 and 4 μm. A similar feature was observed previously from the Earth, but its origin could not be straightforwardly ascribed to surface materials, and specifically to carbonates. Here we show the surficial nature of this band that can be ascribed to carbonate mixed with the martian soil materials. The materials that best reproduce the detected feature are Mg-rich carbonates (huntite [CaMg3(CO3)4] and/or magnesite [MgCO3]). The presence of carbonates is demonstrated in both bright and dark martian regions. An evaluation of the likeliest abundance gives an upper limit of ∼10 wt%. The widespread distribution of carbonates supports scenarios that suggest carbonate formation occurred not by precipitation in a water-rich environment but by weathering processes.  相似文献   

16.
We present an application of a multivariate analyses technique on data returned by the Planetary Fourier Spectrometer (PFS) instrument on board the ESA’s Mars Express (MEX) spacecraft in order to separate the atmospheric contribution from the observed radiation. We observe that Thermal/Far Infrared spectra returned from Mars, covering almost a whole martian year, can be represented by a linear model using a limited set of end-member spectra. We identify the end-members as the suspended mineral dust and water ice clouds, but no surface signature was found. We improve previous studies performed with data from the Thermal Emission Spectrometer (TES) thanks to the higher spectral resolution of PFS. This allows for distinguishing narrow gaseous bands present in the martian atmosphere. Furthermore, the comparison of results from PFS and TES with data collected in 1971 by the Mariner 9 Infrared Interferometer Spectrometer (IRIS) shows an atmospheric dust component with similar spectral behavior. This might indicate homogeneity of the dust source regions over a time period of more than 30 years.  相似文献   

17.
The Thermal Emission Spectrometer (TES) has observed a high-silica material in the dark regions of Mars that is spectrally similar to obsidian glass and may have a volcanic origin. An alternate interpretation is that the spectrally amorphous material consists of clay minerals or some other secondary material, formed by chemical alteration of surface rocks. The regions where this material is observed (e.g., Acidalia Planitia) have relatively high spectral contrast, suggesting that the high-silica material exists as coarse particulates, indurated soils or cements, within rocks, or as indurated coatings on rock surfaces. The geologic interpretation of this spectral result has major implications for understanding magmatic evolution and weathering processes on Mars. One of the complications in interpreting spectral observations of glasses and clay minerals is that both are structurally and compositionally complex. In this study, we perform a detailed spectroscopic analysis of indurated smectite clay minerals and relate their thermal emission spectral features to structural and crystal chemical properties. We examine the spectral similarities and differences between smectite clay minerals and obsidian glass from a structural-chemical perspective, and make further mineralogical interpretations from previous TES results. The results suggest that neither smectite clays nor any clay mineral with similar structural and chemical properties can adequately explain TES observations of high-silica materials in some martian dark regions. If the spectrally amorphous materials observed by TES do represent an alteration product, then these materials are likely to be poorly crystalline aluminosilicates. While all clay minerals have Si/O ratios ?0.4, the position of the emissivity minimum at Mars suggests a Si/O ratio of 0.4-0.5. The spectral observation could be explained by the existence of a silica-rich alteration product, such as Al- or Fe-bearing opal, an intimate physical mixture of relatively pure silica and other aluminosilicates (such as clay minerals or clay precursors), or certain zeolites. The chemical alteration of basaltic rocks on Mars to phyllosilicate-poor, silica-rich alteration products provides a geologically reasonable and consistent explanation for the global TES surface mineralogical results.  相似文献   

18.
High-resolution (0.34 nm) reflectance spectra of a suite of terrestrial ortho- and clinopyroxenes were characterized in the 506-nm region. This region exhibits absorption bands attributed to spin-forbidden transitions in Fe2+ located in the M2, and possibly M1, crystallographic site(s). The most intense absorption bands (up to 3.8% deep in <45 μm fractions) are present in low Ca-content orthopyroxene spectra. This region exhibits two (spectral Group I) or more (spectral Group II) absorption bands in the 500-515 nm interval. Group I spectra are associated with the lowest Ca-content samples. For orthopyroxenes, the number of constituent absorption bands and band depths vary as a function of Ca content; increasing Ca content results the appearance of more than two absorption bands and a general reduction in band depths, offsetting an expected increase in band depth with increasing Fe2+ content; band depths may also be reduced due to the long wavelength wing of ultraviolet region Fe-O charge transfer absorptions. Band depths and shapes in this region are also a function of grain size, with the strongest bands appearing for larger grain sizes - in the 90-250 μm range. The number and position of constituent absorption bands can be used to constrain factors such as cooling rates, as expressed in the formation of Guinier-Preston zones versus coarser-grained augite exsolution lamellae. Band depths in the spectra of fine-grained (<45 μm) clinopyroxenes do not exceed 1% and are generally lowest for spectral type A clinopyroxenes, where most of the Fe2+ is present in the M1 crystallographic site. The appearance of the 506 nm band in the spectra of pyroxene-bearing asteroids can be used to constrain pyroxene composition and structure. The results of this study suggest that detailed analysis of absorption features in the 506 nm region is a powerful tool for determining the composition and structure of pyroxenes. The spectral resolution of the VIR-MS spectrometer aboard the Dawn spacecraft - which will examine Asteroid 4 Vesta, a body possessing surficial pyroxenes - will be sufficient to provide some constraints on pyroxene composition.  相似文献   

19.
Despite recent efforts from space exploration to sound the martian subsurface with RADAR, the structure of the martian subsurface is still unknown. Major geologic contacts or discontinuities inside the martian crust have not been revealed. Another way to analyze the subsurface is to study rocks that have been exhumed from depth by impact processes. The last martian mission, MRO (Mars Reconnaissance Orbiter), put forth a great deal of effort in targeting the central peaks of impact craters with both of its high resolution instruments: CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) and HiRISE (High Resolution Science Experiment). We analyzed the composition with CRISM and the physical characteristics on HiRISE of the rocks exhumed from depth from 31 impact craters in the vicinity of Valles Marineris. Our analyses revealed the presence at depth of two kinds of material: massive light-toned rocks and intact layers. Exhumed light-toned massive rocks are enriched in low calcium pyroxenes and olivine. Hydrated phases such as smectites and putative serpentine are present and may provide evidence of hydrothermal processes. Some of the rocks may represent portions of the volatile-rich, pre-Noachian martian primitive crust. In the second class of central peaks, exhumed layers are deformed, folded, and fractured. Visible-near infrared (VNIR) spectra suggest that they are composed of a mixture of olivine and high calcium pyroxene associated with hydrated phases. These layers may represent a Noachian volcanic accumulation of up to 18 km due to Tharsis activity. The spatial distribution, as well as the in-depth distribution between the two groups of rocks exhumed, are not random and reveal a major geologic discontinuity below the Tharsis lava plateau. The contact may be vertical over several kilometers depth suggesting the pre-existence of a steep basin (early giant impact or subsidence basin) or sagduction processes.  相似文献   

20.
Ultraviolet spectral reflectance properties (200-400 nm) of a large number of minerals known or presumed to exist on the surfaces of Mars, the Moon, and asteroids, and in many meteorites, were investigated. Ultraviolet reflectance spectra (200-400 nm) of these minerals range from slightly blue-sloped (reflectance decreasing toward longer wavelengths) to strongly red-sloped (reflectance increasing toward longer wavelengths). Most exhibit one or two absorption features that are attributable to FeO charge transfers involving Fe3+ or Fe2+. The UV region is a very sensitive indicator of the presence of even trace amounts (<0.01 wt%) of Fe3+ and Fe2+. The major Fe3+O absorption band occurs at shorter wavelengths (∼210-230 nm), and is more intense than the major Fe2+O absorption band (∼250-270 nm). Ti-bearing minerals, such as ilmenite, rutile and anatase exhibit UV absorption bands attributable to Ti4+O charge transfers. While the positions of metal-O charge transfer bands sometimes differ for different minerals, the variation is often not diagnostic enough to permit unique mineral identification. However, iron oxides and oxyhydroxides can generally be distinguished from Fe-bearing silicates in the 200-400 nm region on the basis of absorption band positions. Within a given mineral group (e.g., low-calcium pyroxene, olivine, plagioclase feldspar), changes in Fe2+ or Fe3+ abundance do not appear to result in a measurable change in absorption band minima positions. Absorption band positions can vary as a function of grain size, however, and this variation is likely due to band saturation effects. The intensity of metal-O charge transfers means that some minerals will exhibit saturated UV absorption bands even for fine-grained (<45 μm) powders. In cases where absorption bands are not saturated (e.g., Fe2+O bands in some plagioclase feldspars and pyroxenes), changes in Fe2+ content do not appear to cause variations in band position. In other minerals (e.g., olivine), changes in band positions are correlated with compositional and/or grain size variations, but this is likely due to increasing band saturation rather than compositional variations. Overall, we find that the UV spectral region is sensitive to different mineral properties than longer wavelength regions, and thus offers the potential to provide complementary capabilities and unique opportunities for planetary remote sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号