首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imaging of Uranus in 2003 with the Keck 10-m telescope reveals banded zonal structure and dozens of discrete cloud features at J and H bands; several features in the northern hemisphere are also detectable at K′. By tracking features over four days, we extend the zonal wind profile well into the northern hemisphere. We report the first measurements of wind velocities at latitudes −13°, +19°, and northward of +43°, the first direct wind measurements near the equator, and the highest wind velocity seen yet on Uranus (+218 m/s). At northern mid-latitudes (+20° to +40°), the winds appear to have accelerated when compared to earlier HST and Keck observations; southern wind speeds (−20° to −43°) have not changed since Voyager measurements in 1986. The equator of Uranus exhibits a subtle wave structure, indicated by diffuse patches roughly every 30° in longitude. The largest discrete cloud features on Uranus show complex structure extending over tens of degrees, reminiscent of activity seen around Neptune's Great Dark Spot during the Voyager encounter with that planet. There is no sign of a northern “polar collar” as is seen in the south, but a number of discrete features seen at the “expected” latitudes may signal the early stages of development of a northern collar.  相似文献   

2.
Hubble Space Telescope (HST) and ground-based observations of Neptune from 1991 to 2000 show that Neptune's northern Great Dark Spots (NGDS) remained remarkably stable in latitude and longitudinal drift rate, in marked contrast to the 1989 southern Great Dark Spot (GDS), which moved continuously equatorward during 1989 and dissipated unseen during 1990. NGDS-32, discovered in October 1994 HST images, (H. B. Hammel et al., 1995, Science268, 1740-1742), stayed at ∼32°N from 1994 through at least 1996, and possibly through 2000. The second northern GDS (NGDS-15), discovered in August 1996 HST images, (L. A. Sromovsky et al. 2001, Icarus146, 459-488), appears to have existed as early as 8 March 1996 and remained near 15°N for the 16 months over which it was observed. NGDS-32 had a very uniform longitudinal drift rate averaging −36.28±0.04°/day from 10 October 1994 to 2 November 1995, and −35.84±0.02°/day from 1 September 1995 through 24 November 1995. A single circulation feature certainly exists during each of the first two periods, though it is not certain that it is the same feature. It is probable, but less certain, that only a single circulation feature was tracked during the 1996-1998 period, during which positions are consistent with a modulated drift rate averaging −35.401±0.001°/day, but with a peak-to-peak modulation of 1.5°/day with an ∼760-day period. If NDS-32 varied its drift rate in accord with the local latitudinal shear in the zonal wind, then all its drift-rate changes might be due to only ∼0.4° of latitudinal motion. The movement of NGDS-15 is also not consistent with a uniform longitudinal drift rate, but the nature of its variation cannot be estimated from the limited set of observations. The relatively stable latitudinal positions of both northern dark spots are not consistent with current numerical model calculations treating them as anticyclonic vortices in a region of uniform potential vorticity gradient (R. P. Lebeau and T. E. Dowling 1998, Icarus132, 239-265). Possible explanations include unresolved latitudinal structure in the zonal wind background or unaccounted-for variations in vertical stability structure.  相似文献   

3.
We present observations of Uranus taken with the near-infrared camera NIRC2 on the 10-m W.M. Keck II telescope, the Wide Field Planetary Camera 2 (WFPC2) and the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) from July 2007 through November 2009. In this paper we focus on a bright southern feature, referred to as the “Berg.” In Sromovsky et al. (Sromovsky, L.A., Fry, P.M., Hammel, H.B., Ahue, A.W., de Pater, I., Rages, K.A., Showalter, M.R., van Dam, M. [2009]. Icarus 203, 265-286), we reported that this feature, which oscillated between latitudes of −32° and −36° for several decades, suddenly started on a northward track in 2005. In this paper we show the complete record of observations of this feature’s track towards the equator, including its demise. After an initially slow linear drift, the feature’s drift rate accelerated at latitudes ∣θ∣ < 25°. By late 2009 the feature, very faint by then, was spotted at a latitude of −5° before disappearing from view. During its northward track, the feature’s morphology changed dramatically, and several small bright unresolved features were occasionally visible poleward of the main “streak.” These small features were sometimes visible at a wavelength of 2.2 μm, indicative that the clouds reached altitudes of ∼0.6 bar. The main part of the Berg, which is generally a long sometimes multipart streak, is estimated to be much deeper in the atmosphere, near 3.5 bars in 2004, but rising to 1.8-2.5 bars in 2007 after it began its northward drift. Through comparisons with Neptune’s Great Dark Spot and simulations of the latter, we discuss why the Berg may be tied to a vortex, an anticyclone deeper in the atmosphere that is visible only through orographic companion clouds.  相似文献   

4.
During the last week of June 2001, a bright apparition of Neptune's South Polar Feature (SPF) at 70°S was observed to develop and decay in less than 30 hours, displaying contrast of ∼2.5 at 619 nm. Assuming that the same SPF was observed on two consecutive rotations of Neptune, the feature moved eastward at 3.2±1.8° hr−1 (130±80 m s−1). The SPF made no obvious appearances during eight other Hubble Space Telescope (HST) observations of Neptune between July 2000 and June 2001, although there was a faint feature at 70°S in one image in October 2000. A prominent SPF was present in near-IR Keck Telescope images in August 2000. Bright SPFs are seen on ∼10% of the HST images of Neptune obtained since 1994, and a fainter SPF is visible on another ∼10%. An SPF bright enough to be visible at HST resolution was present around half the time during the last week of Voyager's approach to Neptune in August 1989, with one prominent brightening, suggesting that the SPF is less visible now than in 1989.  相似文献   

5.
Dynamics, evolution, and structure of Uranus' brightest cloud feature   总被引:1,自引:1,他引:0  
The brightest cloud feature ever observed on Uranus at near-infrared wavelengths was detected on 14 and 15 August 2005, in images obtained with the NIRC2 instrument and adaptive optics (AO) at the 10-m Keck II telescope. The feature has been tracked forward and backward in time, and appears to have existed almost certainly from 5 November 2004 (possibly as early as 11 July 2004) through 29 October 2005. It appears to exhibit two modes of oscillation in latitude and longitude. The slow oscillation period is too long to be completely characterized by the observations; its period is most likely near 448 days, but might be as long as 753 days. The slow oscillation is consistent with the zonal mean wind profile when a superimposed more rapid oscillation is accounted for. The slow oscillation, possibly associated with a Rossby wave, was centered at 30.2° N and had a latitude amplitude of 0.6°–0.7°. Its rapid oscillation had an amplitude of 1.2° in latitude and a likely period near 0.68455 days, which is consistent with an inertial oscillation at the observed latitude. The multi-component structure of the bright features has evolved over time, as has its vertical structure. Its brightness maximum was due to a combination of cloud particles being lofted to higher altitudes, some rising from 400–500 to 300 mb, and by its effective cloud fraction (or equivalent cloud area) increasing by a factor of 5 or more. In the K′ band (2.2 μm) the differential integrated brightness due to this bright complex increased to 13% of the total light reflected by Uranus on 15 August 2005, rising from about 2% a month earlier and declining to 0.7% two months later. It has not been seen in 2006 observations.  相似文献   

6.
L.A. Sromovsky  P.M. Fry 《Icarus》2005,179(2):459-484
Near-infrared adaptive optics imaging of Uranus by the Keck 2 telescope during 2003 and 2004 has revealed numerous discrete cloud features, 70 of which were used to extend the zonal wind profile of Uranus up to 60° N. We confirmed the presence of a north-south asymmetry in the circulation [Karkoschka, E., 1998. Science 280, 570-572], and improved its characterization. We found no clear indication of long term change in wind speed between 1986 and 2004, although results of Hammel et al. [Hammel, H.B., Rages, K., Lockwood, G.W., Karkoschka, E., de Pater, I., 2001. Icarus 153, 229-235] based on 2001 HST and Keck observations average ∼10 m/s less westward than earlier and later results, and 2003 observations by Hammel et al. [Hammel, H.B., de Pater, I., Gibbard, S., Lockwood, G.W., Rages, K., 2005. Icarus 175, 534-545] show increased wind speeds near 45° N, which we do not see in our 2003-2004 observations. We observed a wide range of lifetimes for discrete cloud features: some features evolve within ∼1 h, many have persisted at least one month, and one feature near 34° S (termed S34) seems to have persisted for nearly two decades, a conclusion derived with the help of Voyager 2 and HST observations. S34 oscillates in latitude between 32° S and 36.5° S, with a period of ∼1000 days, which may be a result of a non-barotropic Rossby wave. It also varied its longitudinal drift rate between −20°/day and −31°/day in approximate accord with the latitudinal gradient in the zonal wind profile, exhibiting behavior similar to that of the DS2 feature observed on Neptune [Sromovsky, L.A., Limaye, S.S., Fry, P.M., 1993. Icarus 105, 110-141]. S34 also exhibits a superimposed rapid oscillation with an amplitude of 0.57° in latitude and period of 0.7 days, which is approximately consistent with an inertial oscillation.  相似文献   

7.
As the 7 December 2007 equinox of Uranus approached, collaboration between ring and atmosphere observers in the summer and fall of 2007 produced a substantial collection of ground-based observations using the 10-m Keck telescope with adaptive optics and space-based observations with the Hubble Space Telescope. Both near-infrared and visible-wavelength imaging and spatially resolved near-infrared spectroscopic observations were obtained. We used observations spanning the period from 7 June 2007 through 9 September 2007 to identify and track cloud features, determine atmospheric motions, characterize cloud morphology and dynamics, and define changes in atmospheric band structure. Atmospheric motions were obtained over a wider range of latitudes than previously was possible, extending to 73°N, and for 28 cloud features we obtained extremely high wind-speed accuracy through extended tracking times. We confirmed the existence of the suspected northern hemisphere prograde jet, locating its peak near 58°N. The new results confirm a small N-S asymmetry in the zonal wind profile, and the lack of any change in the southern hemisphere between 1986 (near solstice) and 2007 (near equinox) suggests that the asymmetry may be permanent rather than seasonally reversing. In the 2007 images, we found two prominent groups of discrete cloud features with very long lifetimes. The one near 30°S has departed from its previous oscillatory motion and started a significant northward drift, accompanied by substantial morphological changes. The complex of features near 30°N remained at a nearly fixed latitude, while exhibiting some characteristics of a dark spot accompanied by bright companion features. Smaller and less stable features were used to track cloud motions at other latitudes, some of which lasted over many planet rotations, though many could not be tracked beyond a single transit. A bright band has developed near 45°N, while the bright band near 45°S has begun to decline, both events in agreement with the idea that the asymmetric band structure of Uranus is a delayed response to solar forcing, but with a surprisingly short delay of only a few years.  相似文献   

8.
The northern mid-latitudes of Uranus produce greater episodes of bright cloud formation than any other region on the planet. Near 30°N, very bright cloud features were observed in 1999, 2004, and 2005, with lifetimes of the order of months. In October 2011, Gemini and HST observations revealed another unusually bright cloud feature near 23°N, which was subsequently identified in July 2011 observations and found to be increasing in brightness. Observations obtained at Keck in November 2011 revealed a second bright spot only 2°N of the first, but with a substantially different drift rate (?9.2°E/day vs ?1.4°E/day), which we later determined would lead to a close approach on 25 December 2011. A Hubble Target of Opportunity proposal was activated to image the results of the interaction. We found that the original bright spot had faded dramatically before the HST observations had begun and the second bright spot was found to be a companion of a new dark spot on Uranus, only the second ever observed. Both spots exhibited variable drift rates during the nearly 5 months of tracking, and both varied in brightness, with BS1 reaching its observed peak on 26 October 2011, and BS2 on 11 November 2011. Altitude measurements based on near-IR imaging in H and Hcont filters showed that the deeper BS2 clouds were located near the methane condensation level (≈1.2 bars), while BS1 was generally ~500 mb above that level (at lower pressures). Large morphological changes in the bright cloud features suggest that they are companion clouds of possibly orographic nature associated with vortex circulations, perhaps similar to companion clouds associated with the Great Dark Spot on Neptune, but in this case at a much smaller size scale, spanning only a few degrees of longitude at their greatest extents.  相似文献   

9.
K.A. Rages  H.B. Hammel 《Icarus》2004,172(2):548-554
Analysis of Hubble Space Telescope images of Uranus taken between 1994 and 2002 shows evidence for temporal changes in zonal brightness patterns in the south polar region. Between 1994 and 2002, a relatively bright ring developed near 70° S. The pole itself, which was the brightest area of the southern hemisphere in 1994, has become relatively dark. The polar collar at 45° S has also become brighter relative to the rest of the southern polar region. Comparison of images through different filters suggests that the change is occurring at pressures of 2-4 bars in the atmosphere. A change at this depth is consistent with radio measurements which indicate seasonal variability in Uranus' deep atmosphere. Disk-integrated photometry at visible wavelengths also exhibits variability on seasonal (∼?decades) timescales. The observed changes are not predicted by existing dynamical models of Uranus' atmosphere.  相似文献   

10.
We analyzed a unique, three-dimensional data set of Uranus acquired with the STIS Hubble spectrograph on August 19, 2002. The data covered a full afternoon hemisphere at 0.1 arc-sec spatial resolution between 300 and 1000 nm wavelength at 1 nm resolution. Navigation was accurate to 0.002 arc-sec and 0.02 nm. We tested our calibration with WFPC2 images of Uranus and found good agreement. We constrained the vertical aerosol structure with radiative transfer calculations. The standard types of models for Uranus with condensation cloud layers did not fit our data as well as models with an extended haze layer. The dark albedo of Uranus at near-infrared methane windows could be explained by methane absorption alone using conservatively scattering aerosols. Ultraviolet absorption from small aerosols in the stratosphere was strongest at high southern latitudes. The uppermost troposphere was almost clear, but showed a remarkable narrow spike of opacity centered on the equator to 0.2° accuracy. This feature may have been related to influx from ring material. At lower altitudes, the feature was centered at 1-2° latitude, suggesting an equatorial circulation toward the north. Below the 1.2 bar level, the aerosol opacity increased some 100 fold. A comparison of methane and hydrogen absorptions contradicted the standard interpretation of methane band images, which assumes that the methane mixing ratio is independent of latitude and attributes reflectivity variations to variations in the aerosol opacity. The opposite was true for the main contrast between brighter high latitudes and darker low latitudes, probing the 1-3 bar region. The methane mixing ratio varied between 0.014 and 0.032 from high to low southern latitudes, while the aerosol opacity varied only moderately with latitude, except for an enhancement at −45° latitude and a decrease north of the equator. The latitudinal variation of methane had a similar shape as that of ammonia probed by microwave observations at deeper levels. The variability of methane challenges our understanding of Uranus and requires reconsideration of previous investigations based on a faulty assumption. Below the 2 bar level, the haze was thinning somewhat. Our global radiative transfer models with 1° latitude sampling fit the observed reflectivities to 2% rms. The observed spectra of two discrete clouds could be modeled by using the background model of the appropriate latitude and adding small amounts of additional opacity at levels near 1.2 bar (southern cloud) and levels as high as 0.1 bar (northern cloud). These clouds may have been methane condensation clouds of low optical depth (∼0.2).  相似文献   

11.
The region in Jupiter’s atmosphere with the highest density of anticyclonic spot-like vortices is the region known as the South South Temperate Zone (SSTZ), which is located between the eastward jet at ≈−42.9° latitude and the westward jet at ≈−39.2° latitude. We present a characterization of the spots found in this region based on ground-based and Hubble Space Telescope observations from the years 1993 to 2007. Mergers have been reported between spots in this region, similar to those observed for the White Ovals in the latitudinal domain immediately equatorward (northward). We use a multilayer model to perform numerical simulations that capture the details of a well-observed merger event involving multiple interacting vortices. We find that the vertical stratification has an important effect in the outcome of the interaction between spots. In particular it can play a determining role on whether or not a cyclone embedded between two approaching anticyclones can inhibit their merging. From our simulations we conclude that the background static stability of the atmosphere in the SSTZ is better characterized by an average value of .  相似文献   

12.
Keck near-infrared images of Neptune from UT 26 July 2007 show that the cloud feature typically observed within a few degrees of Neptune’s south pole had split into a pair of bright spots. A careful determination of disk center places the cloud centers at −89.07 ± 0.06° and −87.84 ± 0.06° planetocentric latitude. If modeled as optically thick, perfectly reflecting layers, we find the pair of features to be constrained to the troposphere, at pressures greater than 0.4 bar. By UT 28 July 2007, images with comparable resolution reveal only a single feature near the south pole. The changing morphology of these circumpolar clouds suggests they may form in a region of strong convection surrounding a neptunian south polar vortex.  相似文献   

13.
Measurements of the vertical and latitudinal variations of temperature and C2H2 and C2H6 abundances in the stratosphere of Saturn can be used as stringent constraints on seasonal climate models, photochemical models, and dynamics. The summertime photochemical loss timescale for C2H6 in Saturn's middle and lower stratosphere (∼40-10,000 years, depending on altitude and latitude) is much greater than the atmospheric transport timescale; ethane observations may therefore be used to trace stratospheric dynamics. The shorter chemical lifetime for C2H2 (∼1-7 years depending on altitude and latitude) makes the acetylene abundance less sensitive to transport effects and more sensitive to insolation and seasonal effects. To obtain information on the temperature and hydrocarbon abundance distributions in Saturn's stratosphere, high-resolution spectral observations were obtained on September 13-14, 2002 UT at NASA's IRTF using the mid-infrared TEXES grating spectrograph. At the time of the observations, Saturn was at a LS≈270°, corresponding to Saturn's southern summer solstice. The observed spectra exhibit a strong increase in the strength of methane emission at 1230 cm−1 with increasing southern latitude. Line-by-line radiative transfer calculations indicate that a temperature increase in the stratosphere of ≈10 K from the equator to the south pole between 10 and 0.01 mbar is implied. Similar observations of acetylene and ethane were also recorded. We find the 1.16 mbar mixing ratio of C2H2 at −1° and −83° planetocentric latitude to be and , respectively. The C2H2 mixing ratio at 0.12 mbar is found to be at −1° planetocentric latitude and at −83° planetocentric latitude. The 2.3 mbar mixing ratio of C2H6 inferred from the data is and at −1° and −83° planetocentric latitude, respectively. Further observations, creating a time baseline, will be required to completely resolve the question of how much the latitudinal variations of C2H2 and C2H6 are affected by seasonal forcing and/or stratospheric circulation.  相似文献   

14.
On 4 July 2004 UT, we detected one of Uranus' southern hemispheric cloud features at K′ (2.12 μm); this is the first such detection in half a decade of adaptive optics imaging of Uranus at the Keck 10-m telescope. When we observed again on 8 July UT the feature's bright core had faded. By 9 July UT it was not seen at K′ and barely detectable at H. The detection and subsequent disappearance of the feature indicates rapid dynamical processes in the localized vertical aerosol structure.  相似文献   

15.
We present results of infrared observations of Neptune from the 10-m W. M. Keck I Telescope, using both high-resolution (0.04 arcsecond) broadband speckle imaging and conventional imaging with narrowband filters (0.6 arcsec resolution). The speckle data enable us to track the size and shape of infrared-bright features (“storms”) as they move across the disk and to determine rotation periods for latitudes −30 and −45°. The narrowband data are input to a model that allows us to make estimates of Neptune's stratospheric haze abundance and the size of storm features. We find a haze column density of ∼106 cm−2 for a haze layer located in the stratosphere, and a lower limit of 107 cm−2 and an upper limit of 109 cm−2 for a layer of 0.2 μm particles in the troposphere. We also calculate a lower limit of 7×106 km2 for the size of a “storm” feature observed on 13 October 1997.  相似文献   

16.
We show that the peak velocity of Jupiter’s visible-cloud-level zonal winds near 24°N (planetographic) increased from 2000 to 2008. This increase was the only change in the zonal velocity from 2000 to 2008 for latitudes between ±70° that was statistically significant and not obviously associated with visible weather. We present the first automated retrieval of fast (∼130 m s−1) zonal velocities at 8°N planetographic latitude, and show that some previous retrievals incorrectly found slower zonal winds because the eastward drift of the dark projections (associated with 5-μm hot spots) “fooled” the retrieval algorithms.We determined the zonal velocity in 2000 from Cassini images from NASA’s Planetary Data System using a global method similar to previous longitude-shifting correlation methods used by others, and a new local method based on the longitudinal average of the two-dimensional velocity field. We obtained global velocities from images acquired in May 2008 with the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). Longer-term variability of the zonal winds is based on comparisons with published velocities based on 1979 Voyager 2 and 1995-1998 HST images. Fluctuations in the zonal wind speeds on the order of 10 m s−1 on timescales ranging from weeks to months were found in the 1979 Voyager 2 and the 1995-1998 HST velocities. In data separated by 10 h, we find that the east-west velocity uncertainty due to longitudinal fluctuations are nearly 10 m s−1, so velocity fluctuations of 10 m s−1 may occur on timescales that are even smaller than 10 h. Fluctuations across such a wide range of timescales limit the accuracy of zonal wind measurements. The concept of an average zonal velocity may be ill-posed, and defining a “temporal mean” zonal velocity as the average of several zonal velocity fields spanning months or years may not be physically meaningful.At 8°N, we use our global method to find peak zonal velocities of ∼110 m s−1 in 2000 and ∼130 m s−1 in 2008. Zonal velocities from 2000 Cassini data produced by our local and global methods agree everywhere, except in the vicinity of 8°N. There, the local algorithm shows that the east-west velocity has large variations in longitude; vast regions exceed ∼140 m s−1. Our global algorithm, and all of the velocity-extraction algorithms used in previously-published studies, found the east-west drift velocities of the visible dark projections, rather than the true zonal velocity at the visible-cloud level. Therefore, the apparent increase in zonal winds between 2000 and 2008 at 8°N is not a true change in zonal velocity.At 7.3°N, the Galileo probe found zonal velocities of 170 m s−1 at the 3-bar level. If the true zonal velocity at the visible-cloud level at this latitude is ∼140 m s−1 rather than ∼105 m s−1, then the vertical zonal wind shear is much less than the currently accepted value.  相似文献   

17.
We present a study of the equatorial region of Jupiter, between latitudes ∼15°S and ∼15°N, based on Cassini ISS images obtained during the Jupiter flyby at the end of 2000, and HST images acquired in May and July 2008. We examine the structure of the zonal wind profile and report the detection of significant longitudinal variations in the intensity of the 6°N eastward jet, up to 60 m s−1 in Cassini and HST observations. These longitudinal variations are, in the HST case, associated with different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images show that at most there is only a small height difference, no larger than ∼0.5-1 scale heights, between the slow (∼100 m s−1) and fast (∼150 m s−1) moving features. This suggests that speed variability at 6°N is not dominated by vertical wind shears but instead we propose that Rossby wave activity is the responsible for the zonal variability. Removing this variability, we find that Jupiter’s equatorial jet is actually symmetric relative to equator with two peaks of ∼140-150 m s−1 located at latitudes 6°N and 6°S and at a similar pressure level. We also study the local dynamics of particular equatorial features such as several dark projections associated with 5 μm hot spots and a large, long-lived feature called the White Spot (WS) located at 6°S. Convergent flow at the dark projections appears to be a characteristic which depends on the particular morphology and has only been detected in some cases. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow.  相似文献   

18.
Yuan Lian  Adam P. Showman 《Icarus》2010,207(1):373-393
Three-dimensional numerical simulations show that large-scale latent heating resulting from condensation of water vapor can produce multiple zonal jets similar to those on the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune). For plausible water abundances (3-5 times solar on Jupiter/Saturn and 30 times solar on Uranus/Neptune), our simulations produce ∼20 zonal jets for Jupiter and Saturn and 3 zonal jets on Uranus and Neptune, similar to the number of jets observed on these planets. Moreover, these Jupiter/Saturn cases produce equatorial superrotation whereas the Uranus/Neptune cases produce equatorial subrotation, consistent with the observed equatorial-jet direction on these planets. Sensitivity tests show that water abundance, planetary rotation rate, and planetary radius are all controlling factors, with water playing the most important role; modest water abundances, large planetary radii, and fast rotation rates favor equatorial superrotation, whereas large water abundances favor equatorial subrotation regardless of the planetary radius and rotation rate. Given the larger radii, faster rotation rates, and probable lower water abundances of Jupiter and Saturn relative to Uranus and Neptune, our simulations therefore provide a possible mechanism for the existence of equatorial superrotation on Jupiter and Saturn and the lack of superrotation on Uranus and Neptune. Nevertheless, Saturn poses a possible difficulty, as our simulations were unable to explain the unusually high speed (∼) of that planet’s superrotating jet. The zonal jets in our simulations exhibit modest violations of the barotropic and Charney-Stern stability criteria. Overall, our simulations, while idealized, support the idea that latent heating plays an important role in generating the jets on the giant planets.  相似文献   

19.
New measurements of the dynamical properties of the long-lived Saturn's anticyclonic vortex known as “Brown Spot” (BS), discovered during the Voyager 1 and 2 flybys in 1980-1981 at latitude 43.1° N, and model simulations using the EPIC code, have allowed us to constrain the vertical wind shear and static stability in Saturn's atmosphere (vertically from pressure levels from 10 mbar to 10 bars) at this latitude. BS dynamical parameters from Voyager images include its size as derived from cloud albedo gradient (6100 km East-West times 4300 km North-South), mean tangential velocity ( at 2400 km from center) and mean vorticity (4.0±1.5×10−5 s−1), lifetime >1 year, drift velocity relative to Voyager's System III rotation rate, mean meridional atmospheric wind profile at cloud level at its latitude and interactions with nearby vortices (pair orbiting and merging). An extensive set of numerical experiments have been performed to try to reproduce this single vortex properties and its observed mergers with smaller anticyclones by varying the vertical structure of the zonal wind and adjusting the static stability of the lower stratosphere and upper troposphere. Within the context of the EPIC model atmosphere, our simulations indicate that BS's drift velocity, longevity and merging behavior are very sensitive to these two atmospheric properties. The best results at the BS latitude occur for static stability conditions that use a Brunt-Väisäla frequency constant in the upper troposphere (from 0.5 to 10 bar) above 3.2×10−3 s−1 and suggest that the wind speed slightly decays below the visible cloud deck from ∼0.5 to 10 bar at a rate per scale height. Changing the vortex latitude within the band domain introduces latitude oscillations in the vortex but not a significant meridional migration. Simulated mergers always showed orbiting movements with a typical merging time of about three days, very close to the time-span observed in the interaction of real vortices. Although these results are not unique in view of the unknowns of Saturn's deep atmosphere, they serve to constrain realistically its structure for ongoing Cassini observations.  相似文献   

20.
Erich Karkoschka 《Icarus》2011,215(2):759-773
The analysis of all suitable images taken of Neptune with the Wide Field Planetary Camera 2 on the Hubble Space Telescope between 1994 and 2008 revealed the following results. The activity of discrete cloud features located near Neptune’s tropopause remained roughly constant within each year but changed significantly on the time scale of ∼5 years. Discrete clouds covered 1% of the disk on average, but more than 2% in 2002. The other ∼99% of the disk probed Neptune’s hazes at lower altitudes. At red and near-infrared wavelengths, two dark bands around −70° and 10° latitude were perfectly steady and originated in the upper two scale heights of the troposphere, either by decreased haze opacity or by an increased methane relative humidity. At blue wavelengths, a dark band between −60° and −30° latitude was most obvious during the early years, caused by dark aerosols below the 3-bar level with single scattering albedos reduced by ∼0.04, and this contrast was constant between 410 and 630 nm wavelength. The dark band decayed exponentially with a time constant of 5 ± 1 years, which can be explained by settling of the dark aerosols at a rate of 1 bar pressure difference per year. The other latitudes brightened with the same time constant but lower amplitudes. The only exception was a darkening event in the 15-30° latitude region between 1994 and 1996, which coincides with two dark spots observed in the same region during the same time period, the only dark spots seen since Voyager. The dark aerosols had a similar latitudinal distribution as the discrete clouds near the tropopause, although both were separated by four scale heights. Photometric analysis revealed a phase coefficient of 0.0028 ± 0.0010 mag/deg for the 0-2° phase-angle range observable from Earth. Neptune’s sub-Earth latitude varied by less than 3° throughout the observation period providing a data set with almost constant viewing geometry. The trends observed up to 2008 continued into 2010 based on images taken with the Wide Field Camera 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号