首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We apply a multivariate statistical method to Titan data acquired by different instruments onboard the Cassini spacecraft. We have searched through Cassini/VIMS hyperspectral cubes, selecting those data with convenient viewing geometry and that overlap with Cassini/RADAR scatterometry footprints with a comparable spatial resolution. We look for correlations between the infrared and microwave ranges the two instruments cover. Where found, the normalized backscatter cross-section obtained from the scatterometer measurement, corrected for incidence angle, and the calibrated antenna temperature measured along with the scatterometry echoes, are combined with the infrared reflectances, with estimated errors, to produce an aggregate data set, that we process using a multivariate classification method to identify homogeneous taxonomic units in the multivariate space of the samples.In medium resolution data (from 20 to 100 km/pixel), sampling relatively large portions of the satellite’s surface, we find regional geophysical units matching both the major dark and bright features seen in the optical mosaic. Given the VIMS cubes and RADAR scatterometer passes considered in this work, the largest homogeneous type is associated with the dark equatorial basins, showing similar characteristics as each other on the basis of all the considered parameters.On the other hand, the major bright features seen in these data generally do not show the same characteristics as each other. Xanadu, the largest continental feature, is as bright as the other equatorial bright features, while showing the highest backscattering coefficient of the entire satellite. Tsegihi is very bright at 5 μm but it shows a low backscattering coefficient, so it could have a low roughness on a regional scale and/or a different composition. Another well-defined region, located southwest of Xanadu beyond the Tui Regio, seems to be detached from the surrounding terrains, being bright at 2.69, 2.78 and 5 μm but having a low radar brightness. In this way, other units can be found that show correlations or anti-correlations between the scatterometric response and the spectrophotometric behavior, not evident from the optical remote sensing data.  相似文献   

2.
We have conducted a search for emissivity features in the thermal infrared spectrum of the icy satellites of Saturn, Phoebe, Iapetus, Enceladus, Tethys, and Hyperion, observed by the Composite Infrared Spectrometer (CIRS) on board the Cassini spacecraft. Despite the heterogeneity of the composition of these bodies depicted by Earth-based and Cassini/VIMS observations, the CIRS spectra of all satellites are undistinguishable from black-body spectra, with no detectable emissivity feature. However, several materials, which have been detected on the surface of the same bodies, present emissivity features in the analyzed spectral range. In particular, water ice presents features with sufficient contrast to be detected by CIRS. Here we study the physical causes of the absence of features by simulating the effects of intimate mixtures using models of directional emissivity for optically thick surfaces for different particle sizes and abundances, and porosities. The simulations include a set of materials detected on the Phoebe's surface, like water ice, hydrated silicates, and organics. We find that featureless spectra can be produced in three scenarios: (1) ice particles with large sizes, (2) mixtures of ices dominated by dark contaminants, and (3) small particles with large porosity. Constraints imposed by the NIR spectra of the satellites favors the latter scenario as the more likely explanation to the absence of emissivity features on the icy satellites of Saturn.  相似文献   

3.
We have reanalyzed the high-resolution spectrum of Titan between 2.87 and 3.12 μm observed with NIRSPEC/Keck II on 2001 Nov. 21 in southern summer, using updated CH3D and C2H6 line-by-line models. From new synthetic spectra, we identify all but a few of the previously unidentified significant absorption spectral features in this wavelength range as due to these two species, both of which had been previously detected by Voyager and ground-based observations at other wavelengths. We also derive opacities and reflectivities of haze particles as functions of altitude for the 2.87-2.92 μm wavelength range, where Titan's atmosphere is partially transparent down to the surface. The extinction per unit altitude is observed to increase from 100 km (∼8 mbar) toward lower altitude. The derived total optical depth is approximately 1.1 for the 2.87-2.92 μm range. At wavelengths increasing beyond 2.92 μm the haze layers become much more optically thick, and the surface is rapidly hidden from view. These conclusions apply to equatorial and southern-temperate regions on Titan, excluding polar regions. We also find it unlikely that there is a large enhancement of the tropospheric CH4 mole fraction over the value reported from analysis of the Huygens/GCMS observations.  相似文献   

4.
We present spectra of Saturn's icy satellites Mimas, Enceladus, Tethys, Dione, Rhea, and Hyperion, 1.0-2.5 μm, with data extending to shorter (Mimas and Enceladus) and longer (Rhea and Dione) wavelengths for certain objects. The spectral resolution (R=λλ) of the data shown here is in the range 800-1000, depending on the specific instrument and configuration used; this is higher than the resolution (R=225 at 3 μm) afforded by the Visual-Infrared Mapping Spectrometer on the Cassini spacecraft. All of the spectra are dominated by water ice absorption bands and no other features are clearly identified. Spectra of all of these satellites show the characteristic signature of hexagonal H2O ice at 1.65 μm. We model the leading hemisphere of Rhea in the wavelength range 0.3-3.6 μm with the Hapke and the Shkuratov radiative transfer codes and discuss the relative merits of the two approaches to fitting the spectrum. In calculations with both codes, the only components used are H2O ice, which is the dominant constituent, and a small amount of tholin (Ice Tholin II). Tholin in small quantities (few percent, depending on the mixing mechanism) appears to be an essential component to give the basic red color of the satellite in the region 0.3-1.0 μm. The quantity and mode of mixing of tholin that can produce the intense coloration of Rhea and other icy satellites has bearing on its likely presence in many other icy bodies of the outer Solar System, both of high and low geometric albedos. Using the modeling codes, we also establish detection limits for the ices of CO2 (a few weight percent, depending on particle size and mixing), CH4 (same), and NH4OH (0.5 weight percent) in our globally averaged spectra of Rhea's leading hemisphere. New laboratory spectral data for NH4OH are presented for the purpose of detection on icy bodies. These limits for CO2, CH4, and NH4OH on Rhea are also applicable to the other icy satellites for which spectra are presented here. The reflectance spectrum of Hyperion shows evidence for a broad, unidentified absorption band centered at 1.75 μm.  相似文献   

5.
We present results from 14 nights of observations of Titan in 1996-1998 using near-infrared (centered at 2.1 microns) speckle imaging at the 10-meter W.M. Keck Telescope. The observations have a spatial resolution of 0.06 arcseconds. We detect bright clouds on three days in October 1998, with a brightness about 0.5% of the brightness of Titan. Using a 16-stream radiative transfer model (DISORT) to model the central equatorial longitude of each image, we construct a suite of surface albedo models parameterized by the optical depth of Titan's hydrocarbon haze layer. From this we conclude that Titan's equatorial surface albedo has plausible values in the range of 0-0.20. Titan's minimum haze optical depth cannot be constrained from this modeling, but an upper limit of 0.3 at this wavelength range is found. More accurate determination of Titan's surface albedo and haze optical depth, especially at higher latitudes, will require a model that fully considers the 3-dimensional nature of Titan's atmosphere.  相似文献   

6.
We have analyzed infrared spectra of Titan recorded by the Cassini Composite Infrared Spectrometer (CIRS) to measure the isotopic ratio 12C/13C in each of three chemical species in Titan's stratosphere: CH4, C2H2 and C2H6. This is the first measurement of 12C/13C in any C2 molecule on Titan, and the first measurement of 12CH4/13CH4 (non-deuterated) on Titan by remote sensing. Our spectra cover five widely-spaced latitudes, 65° S to 71° N and we have searched for both latitude variability of 12C/13C within a given species, and also for differences between the 12C/13C in the three gases. For CH4 alone, we find (1-σ), essentially in agreement with the 12CH4/13CH4 measured by the Huygens Gas Chromatograph/Mass Spectrometer instrument (GCMS) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784]: 82.3±1.0, and also with measured values in H13CN and 13CH3D by CIRS at lower precision [Bézard, B., Nixon, C., Kleiner, I., Jennings, D., 2007. Icarus 191, 397-400; Vinatier, S., Bézard, B., Nixon, C., 2007. Icarus 191, 712-721]. For the C2 species, we find in C2H2 and 89.8±7.3 in C2H6, a possible trend of increasingly value with molecular mass, although these values are both compatible with the Huygens GCMS value to within error bars. There are no convincing trends in latitude. Combining all fifteen measurements, we obtain a value of , also compatible with GCMS. Therefore, the evidence is mounting that 12C/13C is some 8% lower on Titan than on the Earth (88.9, inorganic standard), and lower than typical for the outer planets (88±7 [Sada, P.V., McCabe, G.H., Bjoraker, G.L., Jennings, D.E., Reuter, D.C., 1996. Astrophys. J. 472, 903-907]). There is no current model for this enrichment, and we discuss several mechanisms that may be at work.  相似文献   

7.
Fluvial features on Titan and drainage basins on Earth are remarkably similar despite differences in gravity and surface composition. We determined network bifurcation (Rb) ratios for five Titan and three terrestrial analog basins. Tectonically-modified Earth basins have Rb values greater than the expected range (3.0-5.0) for dendritic networks; comparisons with Rb values determined for Titan basins, in conjunction with similarities in network patterns, suggest that portions of Titan’s north polar region are modified by tectonic forces. Sufficient elevation data existed to calculate bed slope and potential fluvial sediment transport rates in at least one Titan basin, indicating that 75 mm water ice grains (observed at the Huygens landing site) should be readily entrained given sufficient flow depths of liquid hydrocarbons. Volumetric sediment transport estimates suggest that ∼6700-10,000 Titan years (∼2.0-3.0 × 105 Earth years) are required to erode this basin to its minimum relief (assuming constant 1 m and 1.5 m flows); these lowering rates increase to ∼27,000-41,000 Titan years (∼8.0-12.0 × 105 Earth years) when flows in the north polar region are restricted to summer months.  相似文献   

8.
We report the detection of H13CN and HC15N in mid-infrared spectra recorded by the Composite Infrared Spectrometer (CIRS) aboard Cassini, along with the determination of the 12C/13C and 14N/15N isotopic ratios. We analyzed two sets of limb spectra recorded near 13-15° S (Tb flyby) and 83° N (T4 flyby) at 0.5 cm−1 resolution. The spectral range 1210-1310 cm−1 was used to retrieve the temperature profile in the range 145-490 km at 13° S and 165-300 km at 83° N. These two temperature profiles were then incorporated in the atmospheric model to retrieve the abundance profile of H12C14N, H13CN and HC15N from their bands at 713, 706 and 711 cm−1, respectively. The HCN abundance profile was retrieved in the range 90-460 km at 15° S and 165-305 km at 83° N. There is no evidence for vertical variations of the isotopic ratios. Constraining the isotopic abundance profiles to be proportional to the HCN one, we find at 15° S, and at 83° N, two values that are statistically consistent. A combination of these results yields a 12C/13C value equal to 75±12. This global result, as well as the 15° S one, envelop the value in Titan's methane (82.3±1) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784] measured at 10° S and is slightly lower than the terrestrial inorganic standard value (89). The 14N/15N isotopic ratio is found equal to at 15° S and at 83° N. Combining the two values yields 14N/15N = 56 ± 8, which corresponds to an enrichment in 15N of about 4.9 compared with the terrestrial ratio. These results agree with the values obtained from previous ground-based millimeter observations [Hidayat, T., Marten, A., Bézard, B., Gautier, D., Owen, T., Matthews, H.E., Paubert, G., 1997. Icarus 126, 170-182; Marten, A., Hidayat, T., Biraud, Y., Moreno, R., 2002. Icarus 158, 532-544]. The 15N/14N ratio found in HCN is ∼3 times higher than in N2 [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784], which implies a large fractionation process in the HCN photochemistry.  相似文献   

9.
The Cassini spacecraft has revealed landforms on the surface of Titan suggested to be viscous cryovolcanic flows and possibly eruptive domes. In order to relate those surface features to the processes and chemistries that produced them, it is necessary to construct flow models, which rely on characterization of the rheological properties of the eruptants. This paper describes our initial exploratory attempts to understand the rheological characteristics of cryogenic slurries, using a 40% methanol-water mixture, as a precursor to more detailed experiments. We have devised a new automated cryogenic rotational viscometer system to more fully characterize cryovolcanic slurry rheologies. A series of measurements were performed, varying first temperature, and then strain rate, which revealed development of yield stress-like behaviors, shear-rate dependence, and thixotropic behavior, even at relatively low crystal fractions, not previously reported. At fixed shear rate our data are fit well by the Andrade equation, with the activation energy modified by a solid volume fraction. At fixed temperature, depending on shearing history, a Cross model could describe our data over a wide shear rate range. A Bingham plastic model appears to be a good constitutive model for the data measured at high shear rates when the shear was global. The yield stress like behavior implies that levee formation on cryolava flows is more likely than would be inferred from the previous studies, and may provide a partial explanation for features interpreted as steep-sided volcanic constructs on Titan.  相似文献   

10.
The surface of Titan has been revealed by Cassini observations in the infrared and radar wavelength ranges as well as locally by the Huygens lander instruments. Sand seas, recently discovered lakes, distinct landscapes and dendritic erosion patterns indicate dynamic surface processes. This study focus on erosional and depositional features that can be used to constrain the amount of liquids involved in the erosional process as well as on the compositional characteristics of depositional areas. Fluvial erosion channels on Titan as identified at the Huygens landing site and in RADAR and Visible and Infrared Mapping Spectrometer (VIMS) observations have been compared to analogous channel widths on Earth yielding average discharges of up to 1600 m3/s for short recurrence intervals that are sufficient to move centimeter-sized sediment and significantly higher discharges for long intervals. With respect to the associated drainage areas, this roughly translates to 1-150 cm/day runoff production rates with 10 years recurrence intervals and by assuming precipitation this implies 0.6-60 mm/h rainfall rates. Thus the observed surface erosion fits with the methane convective storm models as well as with the rates needed to transport sediment. During Cassini's T20 fly-by, the VIMS observed an extremely eroded area at 30° W, 7° S with resolutions of up to 500 m/pixel that extends over thousands of square kilometers. The spectral characteristics of this area change systematically, reflecting continuous compositional and/or particle size variations indicative of transported sediment settling out while flow capacities cease. To account for the estimated runoff production and widespread alluvial deposits of fine-grained material, release of area-dependent large fluid volumes are required. Only frequent storms with heavy rainfall or cryovolcanic induced melting can explain these erosional features.  相似文献   

11.
Observations of the Composite InfraRed Spectrometer (CIRS) during the entire nominal Cassini mission (2004-2008) provide us with an accurate global view of composition and temperature in the middle atmosphere of Titan (between 100 and 500 km). We investigated limb spectra acquired at resolution at nine different latitudes between 56°S and 80°N, with a better sampling in the northern hemisphere where molecular abundances and temperature present strong latitudinal variations. From this limb data acquired between February 2005 and May 2008, we retrieved the vertical mixing ratio profiles of C2H2, C2H4, C2H6, C3H8, CH3C2H, C4H2, C6H6, HCN, HC3N and CO2. We present here for the first time, the latitudinal variations of the C2H6, C3H8, CO2, C2H4 and C6H6 vertical mixing ratios profiles. Some molecules, such as C2H6 or C3H8 present little variations above their condensation level. The other molecules (except CO2) show a significant enhancement of their mixing ratios poleward of 50°N. C2H4 is the only molecule whose mixing ratio decreases with height at latitudes below 46°N. Regions depleted in C2H2, HCN and C4H2 are observed around 400 km (0.01 mbar) and 55°N. We also inferred a region enriched in CO2 located between 30 and 40°N in the 2-0.7 mbar pressure range. At 80°N, almost all molecules studied here present a local minimum of their mixing ratio profiles near 300 km (∼0.07 mbar), which is in contradiction with Global Circulation Models that predict constant-with-height vertical profiles due to subsidence at the north pole.  相似文献   

12.
This report arises from an ongoing program to monitor Neptune’s largest moon Triton spectroscopically in the 0.8 to 2.4 μm range using IRTF/SpeX. Our objective is to search for changes on Triton’s surface as witnessed by changes in the infrared absorption bands of its surface ices N2,CH4,H2O, CO, and CO2. We have recorded infrared spectra of Triton on 53 nights over the ten apparitions from 2000 to 2009. The data generally confirm our previously reported diurnal spectral variations of the ice absorption bands (Grundy and Young, 2004). Nitrogen ice shows a large amplitude variation, with much stronger absorption on Triton’s Neptune-facing hemisphere. We present evidence for seasonal evolution of Triton’s N2 ice: the 2.15 μm absorption band appears to be diminishing, especially on the Neptune-facing hemisphere. Although it is mostly dissolved in N2 ice, Triton’s CH4 ice shows a very different longitudinal variation from the N2 ice, challenging assumptions of how the two ices behave. Unlike Triton’s CH4 ice, the CO ice does exhibit longitudinal variation very similar to the N2 ice, implying that CO and N2 condense and sublimate together, maintaining a consistent mixing ratio. Absorptions by H2O and CO2 ices show negligible variation as Triton rotates, implying very uniform and/or high latitude spatial distributions for those two non-volatile ices.  相似文献   

13.
We model the chemical evolution of Titan, wherein primordial NH3 reacts with sulfate-rich brines leached from the silicate core during its hydration. The resulting differentiated body consists of a serpentinite core overlain by a high-pressure ice VI mantle, a liquid layer of aqueous ammonium sulfate, and a heterogeneous shell of methane clathrate, low-pressure ice Ih and solid ammonium sulfate. Cooling of the subsurface ocean results in underplating of the outer shell with ice Ih; this gravitationally unstable system can produce compositional plumes as ice Ih ascends buoyantly. Ice plumes may aid in advection of melt pockets through the shell and, in combination with surface topography, provide the necessary hydraulic pressure gradients to drive such melts to the surface. Moreover, contact between the magma and wall rock (methane clathrate) will allow some methane to dissolve in the magma, as well as eroding fragments of wall rock that can be transported as xenoliths. Upon rising to the clathrate decomposition depth (∼2 MPa, or 1700 m), the entrained xenoliths will break down to ice + methane gas, powering highly explosive eruptions with lava fountains up to several kilometers high. Hence we predict that Titan is being resurfaced by cryoclastic ash consisting of ice and ammonium sulfate (or its tetrahydrate), providing an abundance of sedimentary grains, a potential source of bedload for fluvial transport and erosion, and of sand-sized material for aeolian transport and dune-building. The infrared reflectance spectrum of ammonium sulfate makes it a plausible candidate for the 5 μm-bright material on Titan's surface.  相似文献   

14.
We have analyzed the continuum emission of limb spectra acquired by the Cassini/CIRS infrared spectrometer in order to derive information on haze extinction in the 3–0.02 mbar range (∼150–350 km). We focused on the 600–1420 cm−1 spectral range and studied nine different limb observations acquired during the Cassini nominal mission at 55°S, 20°S, 5°N, 30°N, 40°N, 45°N, 55°N, 70°N and 80°N. By means of an inversion algorithm solving the radiative transfer equation, we derived the vertical profiles of haze extinction coefficients from 17 spectral ranges of 20-cm−1 wide at each of the nine latitudes. At a given latitude, all extinction vertical profiles retrieved from various spectral intervals between 600 and 1120 cm−1 display similar vertical slopes implying similar spectral characteristics of the material at all altitudes. We calculated a mean vertical extinction profile for each latitude and derived the ratio of the haze scale height (Hhaze) to the pressure scale height (Hgas) as a function of altitude. We inferred Hhaze/Hgas values varying from 0.8 to 2.4. The aerosol scale height varies with altitude and also with latitude. Overall, the haze extinction does not show strong latitudinal variations but, at 1 mbar, an increase by a factor of 1.5 is observed at the north pole compared to high southern latitudes. The vertical optical depths at 0.5 and 1.7 mbar increase from 55°S to 5°N, remain constant between 5°N and 30°N and display little variation at higher latitudes, except the presence of a slight local maximum at 45°N. The spectral dependence of the haze vertical optical depth is uniform with latitude and displays three main spectral features centered at 630 cm−1, 745 cm−1 and 1390 cm−1, the latter showing a wide tail extending down to ∼1000 cm−1. From 600 to 750 cm−1, the optical depth increases by a factor of 3 in contrast with the absorbance of laboratory tholins, which is generally constant. We derived the mass mixing ratio profiles of haze at the nine latitudes. Below the 0.4-mbar level all mass mixing ratio profiles increase with height. Above this pressure level, the profiles at 40°N, 45°N, 55°N, at the edge of the polar vortex, display a decrease-with-height whereas the other profiles increase. The global increase with height of the haze mass mixing ratio suggest a source at high altitudes and a sink at low altitudes. An enrichment of haze is observed at 0.1 mbar around the equator, which could be due to a more efficient photochemistry because of the strongest insolation there or an accumulation of haze due to a balance between sedimentation and upward vertical drag.  相似文献   

15.
Conor Laver  Imke de Pater 《Icarus》2009,201(1):172-181
We present ground based observations of Io taken with a high spatial resolution imaging spectrometer on 1 and 2 June 2006. We mapped the 1.98 and 2.12 μm absorptions of SO2 frost, across Io's surface. We analyze these data with surface reflectance modeling using the Hapke method to determine the general frost distribution. This analysis also determined a lower limit of 700 μm on the grain size for the areas of strongest absorption. We incorporate our findings of a predominantly equatorial distribution of SO2 frost, with the maps of Carlson et al. [Carlson, R.W., Smythe, W.D., Lopes-Gautier, R.M.C., Davies, A.G., Kamp, L.W., Mosher, J.A., Soderblom, L.A., Leader, F.E., Mehlman, R., Clark, R.N., Fanale, F.P., 1997. Geophys. Res. Lett. 24, 2479-2482], McEwen [McEwen, A.S., 1988. Icarus 73, 385-426] and Douté et al. [Douté, S., Schmitt, B., Lopes-Gautier, R., Carlson, R., Soderblom, L., Shirley, J., and The Galileo NIMS Team, 2001. Icarus 149, 107-132] to produce a self consistent explanation of the global distribution of SO2. We propose that the differences between the above maps is attributable, in part, to the different bands that were studied by the investigators.  相似文献   

16.
We present 0.8-2.4 μm spectral observations of uranian satellites, obtained at IRTF/SpeX on 17 nights during 2001-2005. The spectra reveal for the first time the presence of CO2 ice on the surfaces of Umbriel and Titania, by means of 3 narrow absorption bands near 2 μm. Several additional, weaker CO2 ice absorptions have also been detected. No CO2 absorption is seen in Oberon spectra, and the strengths of the CO2 ice bands decline with planetocentric distance from Ariel through Titania. We use the CO2 absorptions to map the longitudinal distribution of CO2 ice on Ariel, Umbriel, and Titania, showing that it is most abundant on their trailing hemispheres. We also examine H2O ice absorptions in the spectra, finding deeper H2O bands on the leading hemispheres of Ariel, Umbriel, and Titania, but the opposite pattern on Oberon. Potential mechanisms to produce the observed longitudinal and planetocentric distributions of the two ices are considered.  相似文献   

17.
Ryuji Morishima  Heikki Salo 《Icarus》2009,201(2):634-654
We present our new model for the thermal infrared emission of Saturn's rings based on a multilayer approximation. In our model, (1) the equation of classical radiative transfer is solved directly for both visible and infrared light, (2) the vertical heterogeneity of spin frequencies of ring particles is taken into account, and (3) the heat transport due to particles motion in the vertical and azimuthal directions is taken into account. We adopt a bimodal size distribution, in which rapidly spinning small particles (whose spin periods are shorter than the thermal relaxation time) with large orbital inclinations have spherically symmetric temperatures, whereas non-spinning large particles (conventionally called slow rotators) with small orbital inclinations are heated up only on their illuminated sides. The most important physical parameters, which control ring temperatures, are the albedo in visible light, the fraction of fast rotators (ffast) in the optical depth, and the thermal inertia. In the present paper, we apply the model to Earth-based observations. Our model can well reproduce the observed temperature for all the main rings (A, B, and C rings), although we cannot determine exact values of the physical parameters due to degeneracy among them. Nevertheless, the range of the estimated albedo is limited to 0-0.52±0.05, 0.55±0.07-0.74±0.03, and 0.51±0.07-0.74±0.06 for the C, B, and A rings, respectively. These lower and upper limits are obtained assuming all ring particles to be either fast and slow rotators, respectively. For the C ring, at least some fraction of slow rotators is necessary (ffast?0.9) in order for the fitted albedo to be positive. For the A and B rings, non-zero fraction of fast rotators (ffast?0.1-0.2) is favorable, since the increase of the brightness temperature with increasing solar elevation angle is enhanced with some fraction of fast rotators.  相似文献   

18.
The atmospheres of Mars and Titan are loaded with aerosols that impact remote sensing observations of their surface. Here we present the algorithm and the first applications of a radiative transfer model in spherical geometry designed for planetary data analysis. We first describe a fast Monte-Carlo code that takes advantage of symmetries and geometric redundancies. We then apply this model to observations of the surface of Mars and Titan at the terminator as acquired by OMEGA/Mars Express and VIMS/Cassini. These observations are used to probe the vertical distribution of aerosols down to the surface. On Mars, we find the scale height of dust particles to vary between 6 km and 12 km depending on season. Temporal variations in the vertical size distribution of aerosols are also highlighted. On Titan, an aerosols scale height of 80 ± 10 km is inferred, and the total optical depth is found to decrease with wavelength as a power-law with an exponent of −2.0 ± 0.4 from a value of 2.3 ± 0.5 at 1.08 μm. Once the aerosols properties have been constrained, the model is used to retrieve surface reflectance properties at high solar zenith angles and just after sunset.  相似文献   

19.
We have found that 0.8 MeV proton irradiation of crystalline H2O-ice results in temperature dependent amorphization. The H2O-ice's phase was determined using the near infrared spectrum from 1.0 μm (10,000 cm−1) to 2.5 μm (4000 cm−1). In crystalline H2O-ice, the 1.65-μm (6061 cm−1) band is strong while it is nearly absent in the amorphous spectrum [Schmitt, B., Quirico, E., Trotta, F., Grundy, W.M., 1998. In: Schmitt, B., de Bergh, C., Festou, M. (Eds.), Solar System Ices. Kluwer Academic, Norwell, MA, 1998, pp. 199-240]. In this experiment, at low temperatures (9, 25, and 40 K), irradiation of crystalline H2O-ice produced the amorphous H2O-ice's spectrum. However, at 50 K, some crystalline absorptions persisted after irradiation and at 70 and 100 K the crystalline spectrum showed only slight changes after irradiation. Our results agree with previous H2O-ice irradiation studies examining the crystalline peaks near 44 and 62 μm by Moore and Hudson [Moore, M.H., Hudson, R.L., 1992. Astrophys. J. 401, 353-360] and near 3.07 μm by Strazzulla et al. [Strazzulla, G., Baratta, G.A., Leto, G., Foti, G., 1992. Europhys. Lett. 18, 517-522] and by Leto and Baratta [Leto, G., Baratta, G.A., 2003. Astron. Astrophys. 397, 7-13]. We present a method of measuring band areas to quantify the phase and radiation dose of icy Solar System surfaces.  相似文献   

20.
Detailed near-infrared spectral observations of Asteroid 1459 Magnya reveal an asteroid that is primarily composed of pyroxene and plagioclase feldspar, confirming earlier suggestions that Magnya has a basaltic composition. The average Magnya spectrum for March 23, 2002 has a Band I center of 0.926 μm and a Band II center of 1.938 μm. Observations over  hours show little variation in band center positions. The feldspar-to-pyroxene ratio is ∼0.6 on Magnya's surface. Comparing Magnya with the spectral parameters from 4 Vesta shows discordant pyroxene chemistries; Magnya's pyroxenes contain ∼10 mol% less Fs than Vesta's pyroxenes. This suggests that Magnya originated from a parent body other than 4 Vesta and that its progenitor formed in a more chemically reduced region of the solar nebula within the asteroid belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号