首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impact-generated dust clouds around airless bodies have been observed or suggested to be present throughout the solar system, including around the Martian, Galilean and Saturnian satellites. Simulations have assessed Pluto and Charon as sources of a possible dust cloud or torus and found that such a cloud would be dominated by Charon-produced ejecta and would have an optical depth of τ≈10−11. These simulations were conducted before the discovery of two additional, small satellites of Pluto, Nix and Hydra. These small moons may yield impact-generated dust in excess of their larger counterparts due to their lower escape velocities, despite their smaller cross sections. In this paper, we extend a previous model of the Pluto–Charon dust cloud to include Nix and Hydra, both as sinks for Pluto- and Charon-generated dust and as sources of impact-generated dust. We find that Nix- and Hydra-generated dust grains outlive Pluto and Charon dust grains significantly and are the dominant contributors of dust in the Pluto–Charon system. Furthermore, we estimate the net geometric optical depth of grains between 0.1 and to be on the order of 10−7.  相似文献   

2.
We suggest that Pluto and Charon are immersed in a tenuous dust cloud. The cloud consists of ejecta from Pluto and—especially—Charon, released from their surfaces by impacts of micrometeoroids originating from Edgeworth-Kuiper belt objects. The motion of the ejected grains is dominated by the gravity of Pluto and Charon, which determines a pear-shape of the densest part of the cloud. While the production rates of escaping particles from both sides are comparable, the lifetimes of the Charon particles inside the Hill sphere of Pluto-Charon with respect to the Sun are much longer than of the Pluto ejecta, so that the cloud is composed predominantly of Charon grains. The dust cloud is dense enough to be detected with an in situ dust detector onboard a future space mission to Pluto. The cloud's maximum optical depth of τ≈3×10−11 is, however, too low to allow remote sensing observations.  相似文献   

3.
C.B Olkin  L.H Wasserman  O.G Franz 《Icarus》2003,164(1):254-259
The mass ratio of Charon to Pluto is a basic parameter describing the binary system and is necessary for determining the individual masses and densities of these two bodies. Previous measurements of the mass ratio have been made, but the solutions differ significantly (Null et al., 1993; Young et al., 1994; Null and Owen, 1996; Foust et al., 1997; Tholen and Buie, 1997). We present the first observations of Pluto and Charon with a well-calibrated astrometric instrument—the fine guidance sensors on the Hubble Space Telescope. We observed the motion of Pluto and Charon about the system barycenter over 4.4 days (69% of an orbital period) and determined the mass ratio to be 0.122±0.008 which implies a density of 1.8 to 2.1 g cm−3 for Pluto and 1.6 to 1.8 g cm−3 for Charon. The resulting rock-mass fractions for Pluto and Charon are higher than expected for bodies formed in the outer solar nebula, possibly indicating significant postaccretion loss of volatiles.  相似文献   

4.
We present new photometric and spectroscopic observations of the Pluto–Charon system carried out at the VLT-ESO (Chile) with two 8-m telescopes equipped with the FORS2, ISAAC and SINFONI instruments. The spectra were obtained in the 0.6–2.45 μm range with a spectral resolution from 300 to 1500. The SINFONI data were obtained using adaptive optics, allowing a complete separation of the two bodies. We derive both objects’ magnitudes in the near infrared and convert them into albedo values. These first near infrared photometric data allow to adjust the different parts of Pluto’s spectrum, provided by the three instruments. We run spectral models in order to give chemical and physical constraints on the surface of Pluto and Charon. We discuss the dilution properties of the methane ice and its implications on Pluto’s surface. The heterogeneities of the pure and diluted methane ice on Pluto’s surface is also investigated. The high signal-to-noise level of the data and our analyses may support the presence of ethane ice on the surface of Pluto, which is one of the main products of the methane irradiation and photolysis. The analyses of the spectra of Charon suggest that the water ice is almost completely in its crystalline form and that the ammonia compound is hydrated on the surface of this satellite.  相似文献   

5.
6.
W.M. GrundyM.W. Buie 《Icarus》2002,157(1):128-138
We present four new near-infrared spectra of Pluto, measured separately from its satellite Charon during four HST/NICMOS observations in 1998, timed to sample four evenly spaced longitudes on Pluto. Being free of contamination by telluric absorptions or by Charon light, the new data are particularly valuable for studies of Pluto's continuum absorption. Previous studies of the major volatile species indicate the existence of at least three distinct terrains on Pluto's surface: N2-rich, CH4-rich, and volatile-depleted. The new data provide evidence that each of these three terrains has distinct near-infrared continuum absorption features. CH4-rich regions appear to show reddish continuum absorption through the near-infrared spectral range. N2-rich regions have very little continuum absorption. Visually dark, volatile-depleted regions exhibit intermediate continuum albedos with a bluish continuum slope. By analogy with Triton, we expected that careful spectral modeling would reveal strong evidence for the existence of H2O ice on Pluto's surface, but we found only very weak evidence for its existence in the volatile-depleted regions. These data require H2O ice to play a much less prominent role on Pluto's surface than it does on Triton's.  相似文献   

7.
The Pluto-Charon system has complex photometric variations on all time scales; due to rotational modulations of dark markings across the surface, the changing orientation of the system as viewed from Earth, occultations and eclipses between Pluto and Charon, as well as the sublimation and condensation of frosts on the surface. The earliest useable light curve for Pluto is from 1953 to 1955 when Pluto was 35 AU from the Sun. Earlier data on Pluto has the potential to reveal properties of the surface at a greater heliocentric distance with nearly identical illumination and viewing geometry. We are reporting on a new accurate photographic light curve of Pluto for 1933-1934 when the heliocentric distance was 40 AU. We used 43 B-band and V-band images of Pluto on 32 plates taken on 15 nights from 19 March 1933 to 10 March 1934. Most of these plates were taken with the Mount Wilson 60″ and 100″ telescopes, but 7 of the plates (now at the Harvard College Observatory) were taken with the 12″ and 16″ Metcalf doublets at Oak Ridge. The plates were measured with an iris diaphragm photometer, which has an average one-sigma photometric error on these plates of 0.08 mag as measured by the repeatability of constant comparison stars. The modern B and V magnitudes for the comparison stars were measured with the Lowell Observatory Hall 1.1-m telescope. The magnitudes in the plate's photographic system were converted to the Johnson B- and V-system after correction with color terms, even though they are small in size. We find that the average B-band mean opposition magnitude of Pluto in 1933-1934 was 15.73±0.01, and we see a roughly sinusoidal modulation on the rotational period (6.38 days) with a peak-to-peak amplitude of 0.11±0.03 mag. With this, we show that Pluto darkened by 5% from 1933-1934 to 1953-1955. This darkening from 1933-1934 to 1953-1955 cannot be due to changing viewing geometry (as both epochs had identical sub-Earth latitudes), so our observations must record a real albedo change over the southern hemisphere. The later darkening trend from 1954 to the 1980's has been explained by changing viewing geometry (as more of the darker northern hemisphere comes into view). Thus, we now have strong evidence for albedo changes on the surface of Pluto, and these are most easily explained by the systematic sublimation of frosts from the sunward pole that led to a drop in the mean surface albedo.  相似文献   

8.
From differential tracking techniques, required for appulse observations of KBOs with Laser Guide Star Adaptive Optics (LGSAO), to developing methods for collecting spectra at the precise moment of a predicted impact, each Solar System observation conducted on a large telescope presents a unique set of challenges. We present operational details and some key science results from our science program, adaptive optics observations of main belt asteroids and near earth objects; as well as the technical and operational details of several Keck Solar System observations conducted by other teams: the impact of Shoemaker-Levy 9 on Jupiter, volcanoes on Io, the Deep Impact mission to Comet 9P/Tempel 1, and recent observations of Pluto’s moons Nix and Hydra. For each of these observations, we draw from our Keck experience to predict what challenges may lie ahead when similar observations are conducted on next generation telescopes.  相似文献   

9.
The comparison of masses and sizes of the Neptunian satellites and of Pluto and Charon to the secondaries of the planetary, Jovian, Saturnian and Uranian systems support the hypotheses, first, that an initial Neptune's satellite system may have been disrupted, second, that Triton may have been the system perturber and, third, that Pluto (or a parent body of Pluto and Charon) was initially a giant satellite of Neptune. Based on recent theoretical works on perturbed proto-planetary nebula and noting the similarity of some characteristics of Neptune and Uranus, a theoretical mean distance ratio of primeval gaseous rings around Neptune is tentatively deduced to be about 1.475, close to the value of the Uranian system. An exponential distance relation gives possible ranges of distances at which small satellites and/or ring structures could be found by Voyager 2, close to Neptune.  相似文献   

10.
Images of Pluto which were obtained with a charge-coupled device (CCD) detector show an elongation caused by its satellite, Charon. Analysis of these images separates the planet and satellite components, and yields a Pluto/Charon brightness ratio of 5.5.  相似文献   

11.
We present a detailed survey of the dynamical structure of the phase space around the new moons of the Pluto–Charon system. The spatial elliptic restricted three-body problem was used as model and stability maps were created by chaos indicators. The orbital elements of the moons are in the stable domain on the semimajor axis, eccentricity and inclination spaces. The structures related to the 4:1 and 6:1 mean motion resonances are clearly visible on the maps. They do not contain the positions of the moons, confirming previous studies. We showed the possibility that Nix might be in the 4:1 resonance if its argument of pericentre or longitude of node falls in a certain range. The results strongly suggest that Hydra is not in the 6:1 resonance for arbitrary values of the argument of pericentre or longitude of node.  相似文献   

12.
We develop a physical model for the evolution of regoliths on small bodies and apply it to the asteroids and meteorite parent bodies. The model considers global deposition of that fraction of cratering ejecta that is not lost to space. It follows the build up of regolith on a typical region, removed from the larger craters which are the source of most regolith blankets. Later in the evolution, larger craters saturate the surface and are incorporated into the typical region; their net ejection of materials to space causes the elevation of the typical region to decrease and once-buried regolith becomes susceptible to ejection or gardening. The model is applied to cases of both strong, cohesive bodies and to bodies of weak, unconsolidated materials. Evolution of regolith depths and gardening rates are followed until a sufficiently large impact occurs that fractures the entire asteroid. (Larger asteroids are not dispersed, however, and evolve mergaregoliths from multiple generations of surficial regoliths mixed into their interiors.) We find that large, strong asteroids generate surficial regoliths of a few kilometers depth while strong asteroids smaller than 10-km diameter generate negligible regoliths. Our model does not treat large, weak asteroids, because their cratering ejecta fail to surround such bodies; regolith evolution is probably similar to that of the Moon. Small, weak asteroids of 1- to 10-km diameter generate centimeter- to meter-scale regoliths. In all cases studied, blanketing rates exceed excavation rates, so asteroid regoliths are rarely, if ever, gardened and should be very immature measured by lunar standards. They should exhibit many of the characteristics of the brecciated, gas-rich meteorites; intact foreign clasts, relatively low-exposure durations to galactic and solar cosmic rays low solar gas contents, minimal evidence for vitrification and agglutinate formation, etc. Both large, strong asteroids and small, weak ones provide regolith environments compatible with those inferred for the parent bodies of brecciated meteorites. But from volumetric calculations, we conclude that most brecciated meteorites formed on the surfaces of, and were recycled through the interiors of, parent bodies at least several tens of kilometers in diameter. The implications of our regolith model are consistent with properties inferred for asteroid regoliths from a variety of astronomical measurements of asteroids, although such data do not constrain regolith properties nearly as strongly as meteoritical evidence Our picture of substantial asteroidal regoliths produced predominantly by blanketing differs from earlier hypotheses that asteroidal regoliths might be thin or absent and that short surface exposure of asteroidal materials is due chiefly to erosion rather than blanketing.  相似文献   

13.
This paper explores the possibility that the progenitors of the small satellites of Pluto got captured in the Pluto?CCharon system from the massive heliocentric planetesimal disk in which Pluto was originally embedded into. We find that, if the dynamical excitation of the disk is small, temporary capture in the Pluto?CCharon system can occur with non- negligible probability, due to the dynamical perturbations exerted by the binary nature of the Pluto?CCharon pair. However, the captured objects remain on very elliptic orbits and the typical capture time is only ~ 100?years. In order to explain the origin of the small satellites of Pluto, we conjecture that some of these objects got disrupted during their Pluto-bound phase by a collision with a planetesimal of the disk. This could have generated a debris disk, which damped under internal collisional evolution, until turning itself into an accretional disk that could form small satellites on circular orbits, co-planar with Charon. Unfortunately, we find that objects large enough to carry a sufficient amount of mass to generate the small satellites of Pluto have collisional lifetimes orders of magnitude longer than the capture time. Thus, this scenario cannot explain the origin of the small satellites of Pluto, which remains elusive.  相似文献   

14.
Photometric observations of Pluto in the BVR filter system were obtained in 1999 and in 1990-1993, and observations in the 0.89-μm methane absorption band were obtained in 2000. Our 1999 observations yield lightcurve amplitudes of 0.30 ± 0.01, 0.26 ± 0.01, and 0.21 ± 0.02 and geometric albedos of 0.44 ± 0.04, 0.52 ± 0.03, and 0.58 ± 0.02 in the B, V, and R filters, respectively. The low-albedo hemisphere of Pluto is slightly redder than the higher albedo hemisphere. A comparison of our results and those from previous epochs shows that the lightcurve of Pluto changes substantially through time. We developed a model that fully accounts for changes in the lightcurve caused by changes in the viewing geometry between the Earth, Pluto, and the Sun. We find that the observed changes in the amplitude of Pluto’s lightcurve can be explained by viewing geometry rather than by volatile transport. We also discovered a measurable decrease since 1992 of ∼0.03 magnitudes in the amplitude of Pluto’s lightcurve, as the model predicts. Pluto’s geometric albedo does not appear to be currently increasing, as our model predicts, although given the uncertainties in both the model and the measurements of geometric albedo, this result is not firm evidence for volatile transport. The maximum of methane-absorption lightcurve occurs near the minimum of the BVR lightcurves. This result suggests that methane is more abundant in the brightest regions of Pluto. Pluto’s phase coefficient exhibits a color dependence, ranging from 0.037 ± 0.01 in the B filter to 0.032 ± 0.01 in the R filter. Pluto’s phase curve is most like those of the bright, recently resurfaced satellites Triton and Europa. Although Pluto shows no strong evidence for volatile transport now (unlike Triton), it is important to continue to observe Pluto as it moves away from perihelion.  相似文献   

15.
Steven Soter  Alan Harris 《Icarus》1977,30(1):192-199
The shape of a close planetary satellite is distorted from a self-gravitating sphere into a triaxial ellipsoid maintained by tidal and centrifugal forces. Using the family of Roche ellipsoids calculated by Chandrasekhar, it should be possible in some cases to determine the density of an inner satellite by an accurate measurement of its shape alone. The equilibrium figure of Phobos is expected to be the most extreme of any satellite. The shape of Phobos as observed by Mariner 9 approaches but appears not to be a Roche ellipsoid, although the uncertainties of measurement remain too large to exclude the possibility. In any case, Phobos is so small that even the low mechanical strength of an impact-compressed regolith is sufficient to maintain substantial departures from the equipotential figure. If larger close satellites, particularly Amalthea, are found to be Roche ellipsoids, their densities can be estimated immediately from the data presented.Asteroids of size comparable to Phobos and Deimos appear to have more irregular shapes than the Martian satellites. This may reflect the absence of a deep regolith on those asteroids due to the low effective escape velocity for impact ejecta. For Phobos and Deimos, on the other hand, ejecta will tend to remain in orbit about Mars until swept up again by the satellite, contributing to a deeper equilibrium layer of debris.  相似文献   

16.
Three resonances, the 3:2 exterior mean motion resonance with Neptune, Kozai resonance and 1:1 super resonance, are known to govern concurrently the stability of the motion of Pluto. We explore numerically the resonance zones in which the three resonance coexist. There might exist plutinos with relatively large masses in these zones. Considering that Pluto's perturbation is important to the long-term evolution of plutinos, the resonance zone is mainly explored in the mirror region of Pluto, which is a mirror image of the region around Pluto with respect to the invariant plane of the solar system. We find six resonance zones in the mirror region. The orbit elements at the centers of the six zones and the corresponding heliocentric distances, longitudes and latitudes on July 1, 2003 have been computed and listed for the reference of observation.  相似文献   

17.
Man Hoi Lee  S.J. Peale 《Icarus》2006,184(2):573-583
Two small satellites of Pluto, S/2005 P1 (hereafter P1) and S/2005 P2 (hereafter P2), have recently been discovered outside the orbit of Charon, and their orbits are nearly circular and nearly coplanar with that of Charon. Because the mass ratio of Charon-Pluto is ∼0.1, the orbits of P2 and P1 are significantly non-Keplerian even if P2 and P1 have negligible masses. We present an analytic theory, with P2 and P1 treated as test particles, which shows that the motion can be represented by the superposition of the circular motion of a guiding center, the forced oscillations due to the non-axisymmetric components of the potential rotating at the mean motion of Pluto-Charon, the epicyclic motion, and the vertical motion. The analytic theory shows that the azimuthal periods of P2 and P1 are shorter than the Keplerian orbital periods, and this deviation from Kepler's third law is already detected in the unperturbed Keplerian fit of Buie and coworkers. In this analytic theory, the periapse and ascending node of each of the small satellites precess at nearly equal rates in opposite directions. From direct numerical orbit integrations, we show the increasing influence of the proximity of P2 and P1 to the 3:2 mean-motion commensurability on their orbital motion as their masses increase within the ranges allowed by the albedo uncertainties. If the geometric albedos of P2 and P1 are high and of order of that of Charon, the masses of P2 and P1 are sufficiently low that their orbits are well described by the analytic theory. The variation in the orbital radius of P2 due to the forced oscillations is comparable in magnitude to that due to the best-fit Keplerian eccentricity, and there is at present no evidence that P2 has any significant epicyclic eccentricity. However, the orbit of P1 has a significant epicyclic eccentricity, and the prograde precession of its longitude of periapse with a period of 5300 days should be easily detectable. If the albedos of P2 and P1 are as low as that of comets, the large inferred masses induce significant short-term variations in the epicyclic eccentricities and/or periapse longitudes on the 400-500-day timescales due to the proximity to the 3:2 commensurability. In fact, for the maximum inferred masses, P2 and P1 may be in the 3:2 mean-motion resonance, with the resonance variable involving the periapse longitude of P1 librating. Observations that sample the orbits of P2 and P1 well on the 400-500-day timescales should provide strong constraints on the masses of P2 and P1 in the near future.  相似文献   

18.
After a short presentation of the Pluto-Charon system and the history of its mass determinations some first reasons are presented that support the existence of a ring of billions of small satellites about Pluto up to tenths of millions of kilometers.The stability, the shape and the dimensions of such an heavy ring are discussed.Finally a general review of advantages and drawbacks of this ring theory is presented as well as the possibilities of detection of the eventual Pluto's ring.  相似文献   

19.
We report speckle interferometric observations of Pluto and its moon (1978 P1) Charon obtained on 5 June 1980 with a single 1.8-m mirror of the Multiple Mirror Telescope. Our observations yield a separation of 0″.31 (±0″.05) between Pluto and Charon at position angle 285° (±7°) for JD 2444395.75. This result and other direct observations indicate an adjustment of +4.0 hr to the orbital epoch of R. S. Harrington and J. W. Christy [Astron.J.86, 442–443 (1981)]. Our observation, which represents the first resolution of the system near minimum separation, also suggests that the inclination of the orbit to the plane of the sky should be increased by 3°; this will delay the onset of the predicted eclipsee season by one apparition to 1984 or 1985. Our data are consistent with Pluto diameter 0″.14 (±0″.02) = 3000 (±400) km and Charon diameter 0″..05 (±0″.03) = 1100 (±600) km.  相似文献   

20.
The primary poles for (243) Ida and (134340) Pluto and its satellite (134340) Pluto : I Charon were redefined in the IAU Working Group on Cartographic Coordinates and Rotational Elements (WGCCRE) 2006 report (Seidelmann et al. in Celest Mech Dyn Astr 98:155, 2007), and 2009 report (Archinal et al. in Celest Mech Dyn Astr 109:101, 2011), respectively, to be consistent with the primary poles of similar Solar System bodies. However, the WGCCRE failed to take into account the effect of the redefinition of the poles on the values of the rotation angle W at J2000.0. The revised relationships in Table 3 of Archinal et al. 2011) are $$\begin{array}{llll} W & = & 274^{\circ}.05 +1864^{\circ}.6280070\, d\;{\rm for\; (243)\,Ida} \\ W & = & 302^{\circ} .695 + 56^{\circ} .3625225\, d\;{\rm for\; (134340)\,Pluto,\; and}\\ W & = & 122^{\circ} .695 + 56^{\circ} .3625225\, d\;{\rm for\; (134340)\,Pluto : I \,Charon}\end{array}$$ where d is the time in TDB days from J2000.0 (JD2451545.0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号