首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We map the subsurface structure of Planum Boreum using sounding data from the Shallow Radar (SHARAD) instrument onboard the Mars Reconnaissance Orbiter. Radar coverage throughout the 1,000,000-km2 area reveals widespread reflections from basal and internal interfaces of the north polar layered deposits (NPLD). A dome-shaped zone of diffuse reflectivity up to 12 μs (∼1-km thick) underlies two-thirds of the NPLD, predominantly in the main lobe but also extending into the Gemina Lingula lobe across Chasma Boreale. We equate this zone with a basal unit identified in image data as Amazonian sand-rich layered deposits [Byrne, S., Murray, B.C., 2002. J. Geophys. Res. 107, 5044, 12 pp. doi:10.1029/2001JE001615; Fishbaugh, K.E., Head, J.W., 2005. Icarus 174, 444-474; Tanaka, K.L., Rodriguez, J.A.P., Skinner, J.A., Bourke, M.C., Fortezzo, C.M., Herkenhoff, K.E., Kolb, E.J., Okubo, C.H., 2008. Icarus 196, 318-358]. Elsewhere, the NPLD base is remarkably flat-lying and co-planar with the exposed surface of the surrounding Vastitas Borealis materials. Within the NPLD, we delineate and map four units based on the radar-layer packets of Phillips et al. [Phillips, R.J., and 26 colleagues, 2008. Science 320, 1182-1185] that extend throughout the deposits and a fifth unit confined to eastern Gemina Lingula. We estimate the volume of each internal unit and of the entire NPLD stack (821,000 km3), exclusive of the basal unit. Correlation of these units to models of insolation cycles and polar deposition [Laskar, J., Levrard, B., Mustard, J.F., 2002. Nature 419, 375-377; Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772] is consistent with the 4.2-Ma age of the oldest preserved NPLD obtained by Levrard et al. [Levrard, B., Forget, F., Montmessin, F., Laskar, J., 2007. J. Geophys. Res. 112, E06012, 18 pp. doi:10.1029/2006JE002772]. We suggest a dominant layering mechanism of dust-content variation during accumulation rather than one of lag production during periods of sublimation.  相似文献   

3.
Shallow Radar (SHARAD) on board NASA’s Mars Reconnaissance Orbiter has successfully detected tens of reflectors in the subsurface of the north polar layered deposits (NPLD) of Mars. Radar reflections are hypothesized to originate from the same material interfaces that result in visible layering. As a first step towards verifying this assumption, this study uses signal analyses and geometric comparisons to quantitatively examine the relationship between reflectors and visible layers exposed in an NPLD outcrop. To understand subsurface structures and reflector geometry, reflector surfaces have been gridded in three dimensions, taking into account the influence of surface slopes to obtain accurate subsurface geometries. These geometries reveal reflector dips that are consistent with optical layer slopes. Distance–elevation profiling of subsurface reflectors and visible layer boundaries reveals that reflectors and layers demonstrate similar topography, verifying that reflectors represent paleosurfaces of the deposit. Statistical and frequency-domain analyses of the separation distances between successive layers and successive reflectors confirms the agreement of radar reflector spacing with characteristic spacing of certain visible layers. Direct elevation comparisons between individual reflectors and discrete optical layers, while necessary for a one-to-one correlation, are complicated by variations in subsurface structure that exist between the outcrop and the SHARAD observations, as inferred from subsurface mapping. Although these complications have prevented a unique correlation, a genetic link between radar reflectors and visible layers has been confirmed, validating the assumption that radar reflectors can be used as geometric proxies for visible stratigraphy. Furthermore, the techniques for conducting a stratigraphic integration have been generalized and improved so that the integration can be undertaken at additional locations.  相似文献   

4.
The condensing CO2 south polar cap of Mars and the mechanisms of the CO2 ice accumulation have been studied through the analysis of spectra acquired by the Planetary Fourier Spectrometer (PFS) during the first two years of ESA's Mars Express (MEX) mission. This dataset spans more than half a martian year, from Ls∼330° to Ls∼194°, and includes the southern fall season which is found to be extremely important for the study of the residual south polar cap asymmetry. The cap expands symmetrically and with constant speed during the fall season. The maximum extension occurs sometime in the 80°-90° Ls range, when the cap edges are as low as −40° latitude. Inside Hellas and Argyre basins, frost can be stable at lower latitudes due to the higher pressure values, causing the seasonal cap to be asymmetric. Within the seasonal range considered in this paper, the cap edge recession rate is approximately half the rate at which the cap edge expanded. The longitudinal asymmetries reduce during the cap retreat, and disappear around Ls∼145°. Two different mechanisms are responsible for CO2 ice accumulation during the fall season, especially in the 50°-70° Ls range. Here, CO2 condensation in the atmosphere, and thus precipitation, is allowed exclusively in the western hemisphere, and particularly in the longitudinal corridor of the perennial cap. In the eastern hemisphere, the cap consists mainly of CO2 frost deposits, as a consequence of direct vapor deposition. The differences in the nature of the surface ice deposits are the main cause for the residual south polar cap asymmetry. Results from selected PFS orbits have also been compared with the results provided by the martian general circulation model (GCM) of the Laboratoire de Météorologie dynamique (LMD) in Paris, with the aim of putting the observations in the context of the global circulation. This first attempt of cross-validation between PFS measurements and the LMD GCM on the one hand confirms the interpretation of the observations, and on the other hand shows that the climate modeling during the southern polar night on Mars is extremely sensitive to the dynamical forcing.  相似文献   

5.
Internal layers in ice masses can be detected with ice-penetrating radar. In a flowing ice mass, each horizon represents a past surface that has been subsequently buried by accumulation, and strained by ice flow. These layers retain information about relative spatial patterns of accumulation and ablation (mass balance). Internal layers are necessary to accurately infer mass-balance patterns because the ice-surface shape only weakly reflects spatial variations in mass balance. Additional rate-controlling information, such as the layer age, the ice temperature, or the ice-grain sizes and ice-crystal fabric, can be used to infer the absolute rate of mass balance. To infer mass balance from the shapes of internal layers, we solve an inverse problem. The solution to the inverse problem is the best set or sets of unknown boundary conditions or initial conditions that, when used in our calculation of ice-surface elevation and internal-layer shape, generate appropriate predictions of observations that are available. We also show that internal layers can be used to infer martian paleo-surface topography from a past era of ice flow, even though the topography may have been largely altered by subsequent erosion. We have successfully inferred accumulation rates and surface topography from internal layers in Antarctica. Using synthetic data, we demonstrate the ability of this method to solve the corresponding inverse problem to infer accumulation and ablation rates, as well as the surface topography, for martian ice. If past ice flow has affected the shapes of martian internal layers, this method is necessary to infer the spatial pattern and rate of mass balance.  相似文献   

6.
It is shown that viscous liquid film flow (VLF-flow) on the surfaces of slopes of martian dunes can be a low-temperature rheological phenomenon active today on high latitudes. A quantitative model indicates that the VLF-flows are consistent with the flow of liquid brines similar to that observed by imaging at the Phoenix landing site. VLF-flows depend on the viscosity, dynamics, and energetics of temporary darkened liquid brines. The darkening of the flowing brine is possibly, at least partially, attributed to non-volatile ingredients of the liquid brines. Evidence of previous VLF-flows can also be seen on the dunes, suggesting that it is an ongoing process that also occurred in the recent past.  相似文献   

7.
The residual south polar cap of Mars (RSPC) is distinct from the residual north polar cap both in composition and in morphology. CO2 frost in the RSPC is stabilized by its high albedo during southern spring and summer despite the relatively large insolation during that period. The morphology of the RSPC in summer displays a bewildering variety of depressions that are formed in relatively thin layers of CO2. The increase of the size of these depressions between each of the first three years of Mars Global Surveyor (MGS) observations may possibly signal some sort of climate change on the planet. For example, the erosion of the bright plateaus might reduce the RSPC albedo and affect the energy balance. The Mars Orbiter Cameras (MOC) on MGS observed Mars for four consecutive martian years before contact with the spacecraft was lost in late 2006. During this period coverage of the polar regions was particularly dense because MGS flew over them on every orbit. In this paper we report on the four-year behavior of the morphological features in the RSPC and on the large-scale variability in RSPC albedo over the period. The changes in the size of the surface features in the RSPC due to backwasting that were first observed between Mars years (MY) 24 and 25 and subsequently between MY25 and M26 was observed to continue at the same rate through MY 27. The results indicate that on average thicker layers in the RSPC retreat faster than thinner ones, roughly in proportion to their thickness. We argue that a simple difference in porosity between the A and B layers can explain this difference although other factors could be involved. The large-scale albedo of the RSPC decreases as the depressions are uncovered by sublimation of seasonal CO2. However, any interannual differences in albedo due to the backwasting process are masked by interannual differences in the summer dust opacity in the RSPC region.  相似文献   

8.
It is uncertain whether the residual (perennial) south polar cap on Mars is a transitory or a permanent feature in the current Martian climate. While there is no firm evidence for complete disappearance of the cap in the past, clearly observable changes have been documented. Observations suggest that the perennial cap lost more CO2 material in the spring/summer season prior to the Mariner 9 mission than in those same seasons monitored by Viking and Mars Global Surveyor. In this paper we examine one process that may contribute to these changes—the radiative effects of a planet encircling dust storm that starts during late Martian southern spring on the stability of the perennial south polar cap. To approach this, we model the radiative transfer through a dusty planetary atmosphere bounded by a sublimating CO2 surface.A critical parameter for this modeling is the surface albedo spectrum from the near-UV to the thermal-IR, which was determined from both space-craft and Earth-based observations covering multiple wavelength regimes. Such a multi-wavelength approach is highly desirable since one spectral band by itself cannot tightly constrain the three-parameter space for polar surface albedo models, namely photon “scattering length” in the CO2 ice and the amounts of intermixed water and dust.Our results suggest that a planet-encircling dust storm with onset near solstice can affect the perennial cap's stability, leading to advanced sublimation in a “dusty” year. Since the total amount of solid CO2 removed by a single storm may be less than the total CO2 thickness, a series of dust storms would be required to remove the entire residual CO2 ice layer from the south perennial cap.  相似文献   

9.
We used MGS-MOC and MRO-MARCI daily mapping images of the North Polar Region of Mars from 16 August 2005 (Ls = 270°) to 21 May 2009 (Ls = 270°), covering portions of three consecutive martian years (MY 27-MY 29), to observe the seasonal behavior of the polar ice cap and atmospheric phenomena. The rate of cap regression was similar in MY 28 and MY 29, but was advanced by 3.5° of Ls (∼7-8 sols) in MY 29. The spatial and temporal behaviors of dust and condensate clouds were similar in the two years and generally in accord with prior years. Dust storms (>100 km2) were observed in all seasons, with peak activity occurring at Ls = 10-20° from 50°N to 70°N and at Ls = 135-140° from 70°N to 90°N. The most active quadrant was 0-90°W in MY 28, shifting to 180-270°W in MY 29. The majority of regional storms in both years developed in longitudes from 10°W to 60°W. During late summer the larger storms obscure the North Polar Region in a cloud of dust that transitions to north polar hood condensate clouds around autumnal equinox.Changes in the distribution of perennial ice deposits, especially in Olympia Planum, were observed between the 2 years, with the MY 29 ice distribution being the most extensive observed to date. Modeling suggests that the small, bright ice patches on the residual cap are not the result of slope or elevation effects. Rather we suggest that they are the result of local meteorological effects on ice deposition. The annual darkening and brightening of peripheral areas of the residual cap around summer solstice can be explained by the sublimation of a brighter frost layer revealing an underlying darker, ice rich layer that itself either sublimes to reveal brighter material below or acts as a cold trap, attracting condensation of water vapor that brightens the surface. An alternative explanation invokes transport and deposition of dust on the surface from the cap interior, and later removal of that dust. The decrease in cap albedo and accompanying increase in near surface atmospheric stability may be related to the annual minimum of polar storm activity near northern summer solstice.  相似文献   

10.
P.C. Thomas  P.B. James  R. Haberle 《Icarus》2009,203(2):352-798
The residual south polar cap (RSPC) of Mars includes a group of different depositional units of CO2 ice undergoing a variety of erosional processes. Complete summer coverage of the RSPC by ∼6-m/pixel data of the Context Imager (CTX) on Mars Reconnaissance Orbiter (MRO) has allowed mapping and inventory of the units in the RSPC. Unit maps and estimated thicknesses indicate the total volume of the RSPC is currently <380 km3, and represents less than 3% of the total mass of the current Mars atmosphere. Scarp retreat rates in the CO2 ice derived from comparison of High Resolution Imaging Science Experiment (HiRISE) data with earlier images are comparable to those obtained for periods up to 3 Mars years earlier. These rates, combined with sizes of depressions suggest that the oldest materials were deposited more than 125 Mars years ago. Most current erosion is by backwasting of scarps 1-12 m in height. This backwasting is initiated by a series of scarp-parallel fractures. In the older, thicker unit these fractures form about every Mars year; in thinner, younger materials they form less frequently. Some areas of the older, thicker unit are lost by downwasting rather than by the scarp retreat. A surprising finding from the HiRISE data is the scarcity of visible layering of RSPC materials, a result quite distinct from previous interpretations of layers in lower resolution images. Layers ∼0.1 m thick are exposed on the upper surfaces of some areas, but their timescale of deposition is not known. Late summer albedo changes mapped by the CTX images indicate local recycling of ice, although the amounts may be morphologically insignificant. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data show that the primary material of all the different forms of the RSPC is CO2 ice with only small admixtures of water ice and dust.  相似文献   

11.
The time evolution of atmospheric dust at high southern latitudes on Mars has been determined using observations of the south seasonal cap acquired in the near infrared (1-2.65 μm) by OMEGA/Mars Express in 2005. Observations at different solar zenith angles and one EPF sequence demonstrate that the reflectance in the 2.64 μm saturated absorption band of the surface CO2 ice is mainly due to the light scattered by aerosols above most places of the seasonal cap. We have mapped the total optical depth of dust aerosols in the near-IR above the south seasonal cap of Mars from mid-spring to early summer with a time resolution ranging from one day to one week and a spatial resolution of a few kilometers. The optical depth above the south perennial cap is determined on a longer time range covering southern spring and summer. A constant set of optical properties of dust aerosols is consistent with OMEGA observations during the analyzed period. Strong variations of the optical depth are observed over small horizontal and temporal scales, corresponding in part to moving dust clouds. The late summer peak in dust opacity observed by Opportunity in 2005 propagated to the south pole contrarily to that observed in mid spring. This may be linked to evidence for dust scavenging by water ice-rich clouds circulating at high southern latitudes at this season.  相似文献   

12.
The MARSIS radar experiment aboard the ESA Mars Express satellite has recorded several unusual reflections in the Ma'adim Vallis region of Mars. These reflections display a wide variety of morphologies which are very different from those of reflections seen beneath the Polar Layered Deposits, Medusae Fossae Formation and Dorsa Argentea Formation. Their morphologies are sometimes very laterally extensive, parabolic or hyperbolic, and apparently deep, but they can also appear horizontal and shallow. Aided by a geological map of the Ma'adim Vallis region, the morphological, locational and temporal characteristics of the reflections have been studied individually in an attempt to constrain their origin. While some may be subsurface reflections based on their shallow morphologies and correlation with the Eridania Planitia basin network, all of the reflections are ambiguous to some degree, displaying characteristics that do not allow a definite subsurface- or possibly ionospheric-sourced mechanism to be proposed for their creation. Those with more exaggerated morphologies are regarded as being much more likely to result from ionospheric distortion rather than subsurface inhomogeneity.  相似文献   

13.
P.B. James  P.C. Thomas 《Icarus》2010,208(1):82-85
We have used Mars Reconnaissance Orbiter data from 2007 and 2009 to compare summer behaviors of the seasonal and residual south polar caps of Mars in those two years. We find that the planet-encircling dust storm that occurred in the first of the two Mars years enhanced the loss of seasonal CO2 deposits relative to the second year but did not have a large effect on the continuing erosion of the pits and mesas within the residual cap materials. This suggests that the increase of bright frost in some regions of the residual cap observed between Mariner 9 and Viking can be accommodated within observed martian weather variability and does not require unknown processes or climate change.  相似文献   

14.
Over the last few decades, General Circulation Models (GCM) have been used to simulate the current martian climate. The calibration of these GCMs with the current seasonal cycle is a crucial step in understanding the climate history of Mars. One of the main climatic signals currently used to validate GCMs is the annual atmospheric pressure cycle. It is difficult to use changes in seasonal deposits on the surface of Mars to calibrate the GCMs given the spectral ambiguities between CO2 and H2O ice in the visible range. With the OMEGA imaging spectrometer covering the near infra-red range, it is now possible to monitor both types of ice at a spatial resolution of about 1 km. At global scale, we determine the change with time of the Seasonal South Polar Cap (SSPC) crocus line, defining the edge of CO2 deposits. This crocus line is not symmetric around the geographic South Pole. At local scale, we introduce the snowdrop distance, describing the local structure of the SSPC edge. Crocus line and snowdrop distance changes can now be used to calibrate GCMs. The albedo of the seasonal deposits is usually assumed to be a uniform and constant parameter of the GCMs. In this study, albedo is found to be the main parameter controlling the SSPC recession at both global and local scale. Using a defrost mass balance model (referred to as D-frost) that incorporates the effect of shadowing induced by topography, we show that the global SSPC asymmetry in the crocus line is controlled by albedo variations. At local scale, we show that the snowdrop distance is correlated with the albedo variability. Further GCM improvements should take into account these two results. We propose several possibilities for the origin of the asymmetric albedo control. The next step will be to identify and model the physical processes that create the albedo differences.  相似文献   

15.
We extracted the surface echo power from 2 years of MARSIS measurements. The retrieved values are calibrated to compensate for changes in the distance of the spacecraft to the surface and for the attenuation of the signal by the ionosphere. The results are used to build the first global map of surface echo power at 3–5 MHz. The surface echo power variations are primarily caused by kilometer-scale surface roughness. Then, we derive the values of dielectric constant of the shallow subsurface materials by normalizing the surface echo power map using a simulation of MARSIS signal from the MOLA topography. As a result, we obtain a map that characterizes the dielectric properties of the materials down to a few decameters below the surface. Dielectric properties vary with latitude, with high values in mid-latitudes belts (20–40°) and lower values at both equatorial and high latitudes. From the comparison of MARSIS reflectivity map to GRS observations, we conclude that the reflectivity decrease observed poleward of 50–60° corresponds to the onset of water-ice occurrence within the regolith. Assuming homogenous ground composition and texture at the scale of the MARSIS resolution cell, our inferred volume of ground water ice is of 106 km3, equivalent to a polar cap. Low reflectivity areas are also observed in equatorial regions. From radar studies alone, equatorial low dielectric constant values could have different interpretations but the correlation with GRS hydrogen distribution rather points toward a water-related explanation.  相似文献   

16.
It has been suggested that inclusions of CO2 or CO2 clathrate hydrates may comprise a portion of the polar deposits on Mars. Here we present results from an experimental study in which CO2 molecules were trapped in water ice deposited from CO2/H2O atmospheres at temperatures relevant for the polar regions of Mars. Fourier-Transform Infrared spectroscopy was used to monitor the phase of the condensed ice, and temperature programmed desorption was used to quantify the ratio of species in the generated ice films. Our results show that when H2O ice is deposited at 140-165 K, CO2 is trapped in large quantities, greater than expected based on lower temperature studies in amorphous ice. The trapping occurs at pressures well below the condensation point for pure CO2 ice, and therefore this mechanism may allow for CO2 deposition at the poles during warmer periods. The amount of trapped CO2 varied from 3% to 16% by mass at 160 K, depending on the substrate studied. Substrates studied were a tetrahydrofuran (C4H8O) base clathrate and Fe-montmorillonite clay, an analog for Mars soil. Experimental evidence indicates that the ice structures are likely CO2 clathrate hydrates. These results have implications for the CO2 content, overall composition, and density of the polar deposits on Mars.  相似文献   

17.
Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) is a subsurface and topside ionosphere radar sounder aboard the European Space Agency spacecraft Mars Express, in orbit at Mars since 25 December 2003, and in operation since 17 June 2005. The ionospheric sounding mode of MARSIS is capable of detecting the reflection of the sounding wave from the martian surface. This ability has been used in previous work to show that the surface reflection is absorbed and disappears during periods when high fluxes of energetic particles are incident on the ionosphere of Mars. These absorption events are believed to be the result of increased collisional damping of the sounding wave, caused by increased electron density below the spacecraft, in turn caused by impact ionization from the impinging particles. In this work we identify two absorption events that were isolated during periods when the surface reflection is consistently visible and when Mars is nearly at opposition. The visibility of the surface reflection is viewed in conjunction with particle and photon measurements taken at both Mars and Earth. Both absorption events are found to coincide with Earth passing through solar wind speed and ion flux signatures indicative of a corotating interaction region (CIR). The two events are separated by an interval of approximately 27 days, corresponding to one solar rotation. The first of the two events coincides with abruptly enhanced particle fluxes seen in situ at Mars. Simultaneous with the particle enhancement there are an abrupt decrease in the intensity of electron oscillations, typically seen by the Mars Express particle instrument ASPERA-3 between the magnetic pileup boundary and the martian bow shock, and a sharp drop in the solar wind pressure, seen in the proxy quantity based on MGS magnetometer observations. The decrease in oscillation intensity is therefore the probable effect of a relaxation of the martian bow shock. The second absorption event does not show a particle enhancement and complete ASPERA-3 data during that time are unavailable. Other absorption events are the apparent result of solar X-ray and XUV enhancements. We conclude that surface reflection absorption events are sometimes caused by enhanced ionospheric ionization from high energy particles accelerated by the shocks associated with a CIR. A full statistical analysis of CIRs in relation to observed absorption events in conjunction with a quantitative analysis of the deposition of ionization during space weather events is needed for a complete understanding of this phenomenon. If such analyses can be carried out, radar sensing of the martian ionosphere might be useful as a space weather probe.  相似文献   

18.
Mars General Circulation Model (GCM) simulations are presented to illustrate the importance of the ice emissivity of the seasonal CO2 polar caps in regulating the effects of airborne dust on the martian CO2 cycle. Simulated results show that atmospheric dust suppresses CO2 condensation when the CO2 ice emissivity is high but enhances it when the CO2 ice emissivity is low. This raises the possibility that the reason for the repeatable nature of the CO2 cycle in the presence of a highly variable dust cycle is that the CO2 ice emissivity is “neutral” - the value that leads to no change in CO2 condensation with changing atmospheric dust. For this GCM, the “neutral” emissivity is approximately 0.55, which is low compared to observed cap emissivities. This inconsistency poses a problem for this hypothesis. However, it is clear that the CO2 ice emissivity is a critical physical parameter in determining how atmospheric dust affects the CO2 cycle on Mars.  相似文献   

19.
J.L. France  M.D. King 《Icarus》2010,207(1):133-139
Dusty water-ice snowpacks on Mars may provide a habitable zone for DNA based photosynthetic life. Previous work has over estimated the depths and thicknesses of such photohabitable zones by not considering the effect of red dust within the snowpack. For the summer solar solstice, at 80°N and a surface albedo of 0.45, there is a calculated photohabitable zone in the snowpack between depths of 5.5 and 7.5 cm. For an albedo of 0.62, there is a calculated photohabitable zone in the snowpack between depths of 8 and 11 cm. A coupled atmosphere-snow radiative-transfer model was set to model the Photosynthetic Active Radiation and DNA dose rates through water-ice snow at the north polar region of Mars. The optical properties of the polar caps were determined by creating a laboratory analogue to the Mars north polar deposits, and directly measuring light penetration and albedo. It is important for future exobiology missions to the polar regions of Mars to consider the implications of these findings, as drilling to depths of ∼11 cm should be sufficient to determine whether life exists within the martian snows, whether it is photosynthetic or otherwise, as at this depth the snow cover will provide a permanent protection from DNA damaging UV radiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号