首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The core accretion theory of planet formation has at least two fundamental problems explaining the origins of Uranus and Neptune: (1) dynamical times in the trans-saturnian solar nebula are so long that core growth can take >15 Myr and (2) the onset of runaway gas accretion that begins when cores reach ∼10M necessitates a sudden gas accretion cutoff just as Uranus and Neptune’s cores reach critical mass. Both problems may be resolved by allowing the ice giants to migrate outward after their formation in solid-rich feeding zones with planetesimal surface densities well above the minimum-mass solar nebula. We present new simulations of the formation of Uranus and Neptune in the solid-rich disk of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. [2009]. Icarus 200, 672-693) using the initial semimajor axis distribution of the Nice model (Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A. [2005]. Nature 435, 466-469; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R. [2005]. Nature 435, 462-465; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435, 459-461), with one ice giant forming at 12 AU and the other at 15 AU. The innermost ice giant reaches its present mass after 3.8-4.0 Myr and the outermost after 5.3-6 Myr, a considerable time decrease from previous one-dimensional simulations (e.g. Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y. [1996]. Icarus 124, 62-85). The core masses stay subcritical, eliminating the need for a sudden gas accretion cutoff.Our calculated carbon mass fractions of 22% are in excellent agreement with the ice giant interior models of Podolak et al. (Podolak, M., Weizman, A., Marley, M. [1995]. Planet. Space Sci. 43, 1517-1522) and Marley et al. (Marley, M.S., Gómez, P., Podolak, M. [1995]. J. Geophys. Res. 100, 23349-23354). Based on the requirement that the ice giant-forming planetesimals contain >10% mass fractions of methane ice, we can reject any Solar System formation model that initially places Uranus and Neptune inside of Saturn’s orbit. We also demonstrate that a large population of planetesimals must be present in both ice giant feeding zones throughout the lifetime of the gaseous nebula. This research marks a substantial step forward in connecting both the dynamical and chemical aspects of planet formation. Although we cannot say that the solid-rich solar nebula model of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. [2009]. Icarus 200, 672-693) gives exactly the appropriate initial conditions for planet formation, rigorous chemical and dynamical tests have at least revealed it to be a viable model of the early Solar System.  相似文献   

2.
E.W. Thommes  M.J. Duncan 《Icarus》2003,161(2):431-455
Runaway growth ends when the largest protoplanets dominate the dynamics of the planetesimal disk; the subsequent self-limiting accretion mode is referred to as “oligarchic growth.” Here, we begin by expanding on the existing analytic model of the oligarchic growth regime. From this, we derive global estimates of the planet formation rate throughout a protoplanetary disk. We find that a relatively high-mass protoplanetary disk (∼10 × minimum-mass) is required to produce giant planet core-sized bodies (∼10 M) within the lifetime of the nebular gas (?10 million years). However, an implausibly massive disk is needed to produce even an Earth mass at the orbit of Uranus by 10 Myrs. Subsequent accretion without the dissipational effect of gas is even slower and less efficient. In the limit of noninteracting planetesimals, a reasonable-mass disk is unable to produce bodies the size of the Solar System’s two outer giant planets at their current locations on any timescale; if collisional damping of planetesimal random velocities is sufficiently effective, though, it may be possible for a Uranus/Neptune to form in situ in less than the age of the Solar System. We perform numerical simulations of oligarchic growth with gas and find that protoplanet growth rates agree reasonably well with the analytic model as long as protoplanet masses are well below their estimated final masses. However, accretion stalls earlier than predicted, so that the largest final protoplanet masses are smaller than those given by the model. Thus the oligarchic growth model, in the form developed here, appears to provide an upper limit for the efficiency of giant planet formation.  相似文献   

3.
The existence of Uranus and Neptune presents severe difficulties for the core accretion model for the formation of ice giant planets. We suggest an alternative mechanism, namely disk instability leading to the formation of gas giant protoplanets, coagulation and settling of dust grains to form ice-rock cores at their centers, and photoevaporation of their gaseous envelopes by a nearby OB star, as a possible means of forming ice giant planets.  相似文献   

4.
Massimiliano Guzzo 《Icarus》2006,181(2):475-485
The motion of the giant planets from Jupiter to Neptune is chaotic with Lyapunov time of approximately 10 Myr. A recent theory explains the presence of this chaos with three-planet mean-motion resonances, i.e. resonances among the orbital periods of at least three planets. We find that the distribution of these resonances with respect to the semi-major axes of all the planets is compatible with orbital instability. In particular, they overlap in a region of 10−3 AU with respect to the variation of the semi-major axes of Uranus and Neptune. Fictitious planetary systems with initial conditions in this region can undergo systematic variations of semi-major axes. The true Solar System is marginally in this region, and Uranus and Neptune undergo very slow systematic variations of semi-major axes with speed of order 10−4 AU/Gyr.  相似文献   

5.
R. Smoluchowski  M. Torbett 《Icarus》1981,48(1):146-148
It has been shown by us previously that a hydromagnetic dynamo can operate in the core of Uranus but probably not on Neptune. A similar analysis is made for the “icy” liquid mantles of both planets. It is concluded that pressure ionization and the associated increased conductivity of water is probably not enough to satisfy the necessary conditions for a dynamo on Uranus and that it is marginal for Neptune. On the other hand the expected presence of metallic water in a thick layer around the core of Neptune makes the operation of a dynamo on this planet plausible. A similar layer on Uranus might be too thin to play the same role. It appears that if a magnetic field is indeed present on Uranus it is probably generated in the core of the planet, while on Neptune it is more likely operating in the icy mantle.  相似文献   

6.
Conventional planet formation models via coagulation of planetesimals require timescales in the range of several 10 or even 100 Myr in the outer regions of a protoplanetary disk. But according to observational data, the lifetime of a protoplanetary disk is limited to about 6 Myr. Therefore the existence of Uranus and Neptune poses a problem. Planet formation via gravitational instability may be a solution for this discrepancy. We present a parameter study of the possibility of gravitationally triggered disk instability. Using a restricted N‐body model which allows for a survey of an extended parameter space, we show that a passing dwarf star with a mass between 0.1 and 1 M can probably induce gravitational instabilities in the pre‐planetary solar disk for prograde passages with minimum separations below 80‐170 AU. Inclined and retrograde encounters lead to similar results but require slightly closer passages. Such encounter distances are quite likely in young moderately massive star clusters. The induced gravitational instabilities may lead to enhanced planetesimal formation in the outer regions of the protoplanetary disk, and could therefore be relevant for the formation of Uranus and Neptune. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The accumulation of giant planets involves processes typical for terrestrial planet formation as well as gasdynamic processes that were previously known only in stars. The condensible element cores of the gas-giants grow by solid body accretion while envelope formation is governed by stellar-like equilibria and the dynamic departures thereof. Two hypotheses for forming Uranus/Neptune-type planets — at sufficiently large heliocentric distances while allowing accretion of massive gaseous envelopes, i.e. Jupiter-type planets at intermediate distances — have been worked out in detailed numerical calculations: (1) Hydrostatic gas-accretion models with time-dependent solid body accretion-rates show a slow-down of core-accretion at the appropriate masses of Uranus and Neptune. As a consequence, gas-accretion also stagnates and a window is opened for removing the solar nebula during a time of roughly constant envelope mass. (2) Gasdynamic calculations of envelope accretion for constant planetesimal accretion-rates show a dynamic transition to new envelope equilibria at the so called critical mass. For a wide range of solar nebula conditions the new envelopes have respective masses similar to those of Uranus and Neptune and are more tightly bound to the cores. The transitions occur under lower density conditions typical for the outer parts of the solar nebula, whereas for higher densities, i.e. closer to the Sun, gasdynamic envelope accretion sets in and is able to proceed to Jupiter-masses.  相似文献   

8.
To date, there is no core accretion simulation that can successfully account for the formation of Uranus or Neptune within the observed 2–3 Myr lifetimes of protoplanetary disks. Since solid accretion rate is directly proportional to the available planetesimal surface density, one way to speed up planet formation is to take a full accounting of all the planetesimal-forming solids present in the solar nebula. By combining a viscously evolving protostellar disk with a kinetic model of ice formation, which includes not just water but methane, ammonia, CO and 54 minor ices, we calculate the solid surface density of a possible giant planet-forming solar nebula as a function of heliocentric distance and time. Our results can be used to provide the starting planetesimal surface density and evolving solar nebula conditions for core accretion simulations, or to predict the composition of planetesimals as a function of radius. We find three effects that favor giant planet formation by the core accretion mechanism: (1) a decretion flow that brings mass from the inner solar nebula to the giant planet-forming region, (2) the fact that the ammonia and water ice lines should coincide, according to recent lab results from Collings et al. [Collings, M.P., Anderson, M.A., Chen, R., Dever, J.W., Viti, S., Williams, D.A., McCoustra, M.R.S., 2004. Mon. Not. R. Astron. Soc. 354, 1133–1140], and (3) the presence of a substantial amount of methane ice in the trans-saturnian region. Our results show higher solid surface densities than assumed in the core accretion models of Pollack et al. [Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y., 1996. Icarus 124, 62–85] by a factor of 3–4 throughout the trans-saturnian region. We also discuss the location of ice lines and their movement through the solar nebula, and provide new constraints on the possible initial disk configurations from gravitational stability arguments.  相似文献   

9.
The interior of giant planets can give valuable information on formation and evolution processes of planetary systems. However, the interior and evolution of Uranus and Neptune is still largely unknown. In this paper, we compare water-rich three-layer structure models of these planets with predictions of shell structures derived from magnetic field models. Uranus and Neptune have unusual non-dipolar magnetic fields contrary to that of the Earth. Extensive three-dimensional simulations of Stanley and Bloxham (Stanley, S., Bloxham, J. [2004]. Nature 428, 151-153) have indicated that such a magnetic field is generated in a rather thin shell of at most 0.3 planetary radii located below the H/He rich outer envelope and a conducting core that is fluid but stably stratified. Interior models rely on equation of state data for the planetary materials which have usually considerable uncertainties in the high-pressure domain. We present interior models for Uranus and Neptune that are based on ab initio equation of state data for hydrogen, helium, and water as the representative of all heavier elements or ices. Based on a detailed high-pressure phase diagram of water we can specify the region where superionic water should occur in the inner envelope. This superionic region correlates well with the location of the stably-stratified region as found in the dynamo models. Hence we suggest a significant impact of the phase diagram of water on the generation of the magnetic fields in Uranus and Neptune.  相似文献   

10.
Stephen R. Kane 《Icarus》2011,214(1):327-333
With more than 15 years since the first radial velocity discovery of a planet orbiting a Sun-like star, the time baseline for radial velocity surveys is now extending out beyond the orbit of Jupiter analogs. The sensitivity to exoplanet orbital periods beyond that of Saturn orbital radii however is still beyond our reach such that very few clues regarding the prevalence of ice giants orbiting solar analogs are available to us. Here we simulate the radial velocity, transit, and photometric phase amplitude signatures of the Solar System giant planets, in particular Uranus and Neptune, and assess their detectability. We scale these results for application to monitoring low-mass stars and compare the relative detection prospects with other potential methods, such as astrometry and imaging. These results quantitatively show how many of the existing techniques are suitable for the detection of ice giants beyond the snow line for late-type stars and the challenges that lie ahead for the detection true Uranus/Neptune analogs around solar-type stars.  相似文献   

11.
《Icarus》1986,65(1):37-50
In the planet X model periodic comet showers are associated with passages of the planet's perihelion and aphelion points through a primordial disk of comets believed to lie beyond the orbit of Neptune. A strong feature of this model is that the required orbital elements and mass of planet X are consistent with independently predicted values based on the residuals in the motions of Uranus and Neptune. Here we present a more extensive analysis of the model taking into account the fact that only those comets scattered directly into the zones of influence of Saturn and Jupiter can contribute to a shower whose duration is consistent with observation (≲ 15 myr). These requirements impose a minimum planetary inclination of ≈25°, which in turn restricts the semimajor axis to be ≲100 AU. A fraction of the comets scattered directly into the zones of influence of Uranus and Neptune will evolve on time scales of ∼108 years into the steady state flux of short-period comets. We find that the absolute numbers of shower and steady state are comparable and compatible with the known terrestrial cratering rate, assuming the existence of long-lived extinct comet cores. Canonical planet X model parameters, deduced in part from the scattering dynamics analysis, are: semimajor axis ≈80 AU, eccentricity ≈0.3, inclination ≈45°, and mass ≈5m. An analysis is given which suggests that planet X, in its present orbit, can create the requisite density gradient of comets near perihelion and aphelion during the lifetime of the Solar System. The required inclination of planet X's orbit (≳25°) may explain the failure of previous surveys to discover the planet as its present latitude is not likely to be near the ecliptic. It it exists, the best immediate hope of finding planet X is the ongoing IRAS search in the 100-μm band and the full sky optical survey by Shoemaker and Shoemaker. Independent of the question of periodic comet showers, the existence of planet X and the comet disk can readily explain the origin of the steady state flux of short-period comets over a wide range of parameters.  相似文献   

12.
We investigated the stable area for fictive Trojan asteroids around Neptune’s Lagrangean equilibrium points with respect to their semimajor axis and inclination. To get a first impression of the stability region we derived a symplectic mapping for the circular and the elliptic planar restricted three body problem. The dynamical model for the numerical integrations was the outer Solar system with the Sun and the planets Jupiter, Saturn, Uranus and Neptune. To understand the dynamics of the region around L 4 and L 5 for the Neptune Trojans we also used eight different dynamical models (from the elliptic problem to the full outer Solar system model with all giant planets) and compared the results with respect to the largeness and shape of the stable region. Their dependence on the initial inclinations (0° < i < 70°) of the Trojans’ orbits could be established for all the eight models and showed the primary influence of Uranus. In addition we could show that an asymmetry of the regions around L 4 and L 5 is just an artifact of the different initial conditions.  相似文献   

13.
Recently published laboratory measurements of the isotopic exchange rate constant k(T) between CD4 and H2 are used to calculate f(z)—the isotopic enrichment factor between CH4 and H2—at every level in the outer atmosphere of the giant planets. The variation of f(z) with local vertical velocity, temperature and pressure has been calculated under the assumption that atmospheres are convective and uncertainties have been calculated by error propagation. Considering only the random errors—mainly the uncertainty on k(T)—the f values in the observable upper atmospheres of giant planets (i.e. at z = 0, P = 1 bar) are: f(0) = 1.25 ± 0.05, 1.38 ± 0.06, 1.68 ± 0.09, and 1.61 ± 0.08 for Jupiter, Saturn, Uranus, and Neptune, respectively. Additional systematic errors due to the uncertainty in calculating the vertical velocity in the framework of the mixing length Prandtl theory lead to an overall uncertainty on f(0) of ±0.12, ±0.15, ±0.23, and ±0.21 for each planet, respectively. The D/H ratios in H2 derived from the measured CH3D/CH4 ratios in the upper atmosphere of the four giant planets are then recalculated. Uranus and Neptune seem to be enriched in deuterium with respect to the protosolar nebula but depleted relative to the Standard Mean Oceanic Water on the Earth (SMOW). However calculations based on current interior models of Neptune suggest that ices which formed the core of the planet had a D/H ratio of the order of the SMOW. The deuterium abundance in proto-Uranian ices remains uncertain. The case where water is a major constituent of the fluid envelope of Neptune is discussed. It is shown that the D/H ratio of the planet would then be higher than the value measured in hydrogen. Even in this case, the D/H ratio in proto-Neptunian ices is less than the recently revised value in P/Halley and less than the value measured in water of the Semarkona meteorite. These results suggest that the ices which formed the core of Neptune did not have an interstellar origin. Similarly, the comparison of the most recent determination of the D/H ratio in the atmosphere of Titan with the value of D/H in P/Halley suggests that this atmosphere was not formed by infalling comets but more likely from grains embedded in the sub-nebula of Saturn.  相似文献   

14.
We use numerical integrations to investigate the dynamical evolution of resonant Trojan and quasi-satellite companions during the late stages of migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. Our migration simulations begin with Jupiter and Saturn on orbits already well separated from their mutual 2:1 mean-motion resonance. Neptune and Uranus are decoupled from each other and have orbital eccentricities damped to near their current values. From this point we adopt a planet migration model in which the migration speed decreases exponentially with a characteristic timescale τ (the e-folding time). We perform a series of numerical simulations, each involving the migrating giant planets plus test particle Trojans and quasi-satellites. We find that the libration frequencies of Trojans are similar to those of quasi-satellites. This similarity enables a dynamical exchange of objects back and forth between the Trojan and quasi-satellite resonances during planetary migration. This exchange is facilitated by secondary resonances that arise whenever there is more than one migrating planet. For example, secondary resonances may occur when the circulation frequencies, f, of critical arguments for the Uranus-Neptune 2:1 mean-motion near-resonance are commensurate with harmonics of the libration frequency of the critical argument for the Trojan and quasi-satellite 1:1 mean-motion resonance . Furthermore, under the influence of these secondary resonances quasi-satellites can have their libration amplitudes enlarged until they undergo a close-encounter with their host planet and escape from the resonance. High-resolution simulations of this escape process reveal that ≈80% of jovian quasi-satellites experience one or more close-encounters within Jupiter’s Hill radius (RH) as they are forced out of the quasi-satellite resonance. As many as ≈20% come within RH/4 and ≈2.5% come within RH/10. Close-encounters of escaping quasi-satellites occur near or even below the 2-body escape velocity from the host planet. Finally, the exchange and escape of Trojans and quasi-satellites continues to as late as 6-9τ in some simulations. By this time the dynamical evolution of the planets is strongly dominated by distant gravitational perturbations between the planets rather than the migration force. This suggests that exchange and escape of Trojans and quasi-satellites may be a contemporary process associated with the present-day near-resonant configuration of some of the giant planets in our Solar System.  相似文献   

15.
Adrián Brunini 《Icarus》2005,177(1):264-268
The sample of known exoplanets is strongly biased to masses larger than the ones of the giant gaseous planets of the Solar System. Recently, the discovery of two extrasolar planets of considerably lower masses around the nearby Stars GJ 436 and ρ Cancri was reported. They are like our outermost icy giants, Uranus and Neptune, but in contrast, these new planets are orbiting at only some hundredth of the Earth-Sun distance from their host stars, raising several new questions about their origin and constitution. Here we report numerical simulations of planetary accretion that show, for the first time through N-body integrations that the formation of compact systems of Neptune-like planets close to the hosts stars could be a common by-product of planetary formation. We found a regime of planetary accretion, in which orbital migration accumulates protoplanets in a narrow region around the inner edge of the nebula, where they collide each other giving rise to Neptune-like planets. Our results suggest that, if a protoplanetary solar environment is common in the Galaxy, the discovery of a vast population of this sort of ‘hot cores’ should be expected in the near future.  相似文献   

16.
We propose an interpretation of the enrichments in volatiles observed in the four giant planets with respect to the solar abundance. It is based on the assumption that volatiles were trapped in the form of solid clathrate hydrates and incorporated in planetesimals embedded in the feeding zones of each of the four giant planets. The mass of trapped volatiles is then held constant with time. The mass of hydrogen and of not trapped gaseous species continuously decreased with time until the formation of the planet was completed, resulting in an increase in the ratio of the mass of trapped volatiles to the mass of hydrogen (Gautier et al., Astrophys. J. 550 (2001) L227). The efficiency of the clathration depends upon the amount of ice available in the early feeding zone. The quasi-uniform enrichment in Ar, Kr, Xe, C, N, and S observed in Jupiter is reproduced because all volatiles were trapped. The non-uniform enrichment observed in C, N and S in Saturn is due to the fact that CH4, NH3, and H2S were trapped but not CO and N2. The non-uniform enrichment in C, N and S in Uranus and Neptune results from the trapping of CH4, CO, NH3 and H2S, while N2 was not trapped. Our scenario permits us to interpret the strongly oversolar sulfur abundance inferred by various modelers to be present in Saturn, Uranus and Neptune for reproducing the microwave spectra of the three planets. Abundances of Ar, Kr and Xe in these three are also predicted. Only Xe is expected to be substantially oversolar. The large enrichment in oxygen in Neptune with respect to the solar abundance, calculated by Lodders and Fegley (Icarus 112 (1994) 368) from the detection of CO in the upper troposphere of the planet, is consistent with the trapping of volatiles by clathration. The upper limit of CO in Uranus does not exclude that this process also occurred in Uranus.  相似文献   

17.
《Icarus》1986,67(3):409-443
We have assessed the ability of planetesimals to penetrate through the envelopes of growing giant planets that form by a “core-instability” mechanism. According to this mechanism, a core grows by the accretion of solid bodies in the solar nebula and the growing core becomes progressively more effective in gravitationally concentrating gas from the surrounding solar nebula in an envelope until a “runaway” accretion of gas occurs. In performing this assessment, we have considered the ability of gas drag to slow down a planetesimal; the effectiveness of gas dynamical pressure in fracturing and ultimately finely fragmenting it; the ability of its strength and self-gravity to resist such fracturing; and the degree to which it is evaporated due to heating by the surrounding envelope, including shock heating that develops during the supersonic portion of its trajectory. We also consider what happens if the planetesimal is able to reach the core at free-fall velocity and the ability of the envelope to convectively mix dissolved materials to different radial distances. These calculations were performed for various epochs in the growth of a giant planet with the model envelopes derived by Bodenheimer and Pollack (1986,67, 391–408). As might have been anticipated, our results vary significantly with the size of the planetesimal, its composition, and the stage of growth of the giant planet and hence the mass of its envelope. Over much of the growth phase of the core, prior to its reaching its critical mass for runaway gas accretion, icy planetesimals less than about 1 m in size dissolve in the outer region of the envelope, ones larger than about 1 m and smaller than about 1 km dissolve in the middle region of the envelope, ones larger than 1 km either reach the core interface or dissolve in the deeper regions of the envelope. Similarly rocky planetesimals smaller than about a kilometer dissolve in the middle portion of the envelope, while larger ones can penetrate more deeply. Furthermore, the convection zones of the envelopes during this stage are confined to localized regions and hence dissolved materials experience little radial mixing then. Thus, if much of the accreted mass is contained in planetesimals larger than about a kilometer, the critical core mass for runaway accretion is not expected to change significantly when planetesimal dissolution is taken into account. After accretion is terminated and the planet contracts toward its present size, the convection zone grows until it encompasses the entire envelope. Therefore, dissolved material should eventually become well mixed through the envelope. We proposed that the envelopes of the giant planets should contain significant enhancements above solar proportions in the abundances of virtually all elements relative to that of hydrogen, with the magnitude of the enhancement increasing approximately linearly with the ratio of the high Z mass to the (H, He) mass for the bulk of the planet. This prediction is in accord both qualitatively and quantitatively with the systematic increase in the atmospheric C/H ratio from Jupiter to Saturn to Uranus and Neptune and semiquantitatively with the results of recent interior models of the giant planets. It is not clear whether it is consistent with the abundances of H2O and NH3 in the atmospheres of some of the outer planets. Finally, the complete reduction of some dissolved materials, especially C containing compounds, is expected to consume some of the H2 in the envelopes. Consequently, the He/H2 ratios in the atmospheres of Uranus and Neptune may be slightly enhanced over the solar ratio. We estimate that the He/H2 ratios for Uranus' and Neptune's atmospheres should be about 6 and 15% larger, respectively, than the solar ratio.  相似文献   

18.
Both Uranus and Neptune are thought to have strong zonal winds with velocities of several 100 m s−1. These wind velocities, however, assume solid-body rotation periods based on Voyager 2 measurements of periodic variations in the planets’ radio signals and of fits to the planets’ magnetic fields; 17.24 h and 16.11 h for Uranus and Neptune, respectively. The realization that the radio period of Saturn does not represent the planet’s deep interior rotation and the complexity of the magnetic fields of Uranus and Neptune raise the possibility that the Voyager 2 radio and magnetic periods might not represent the deep interior rotation periods of the ice giants. Moreover, if there is deep differential rotation within Uranus and Neptune no single solid-body rotation period could characterize the bulk rotation of the planets. We use wind and shape data to investigate the rotation of Uranus and Neptune. The shapes (flattening) of the ice giants are not measured, but only inferred from atmospheric wind speeds and radio occultation measurements at a single latitude. The inferred oblateness values of Uranus and Neptune do not correspond to bodies rotating with the Voyager rotation periods. Minimization of wind velocities or dynamic heights of the 1 bar isosurfaces, constrained by the single occultation radii and gravitational coefficients of the planets, leads to solid-body rotation periods of ∼16.58 h for Uranus and ∼17.46 h for Neptune. Uranus might be rotating faster and Neptune slower than Voyager rotation speeds. We derive shapes for the planets based on these rotation rates. Wind velocities with respect to these rotation periods are essentially identical on Uranus and Neptune and wind speeds are slower than previously thought. Alternatively, if we interpret wind measurements in terms of differential rotation on cylinders there are essentially no residual atmospheric winds.  相似文献   

19.
Yuan Lian  Adam P. Showman 《Icarus》2010,207(1):373-393
Three-dimensional numerical simulations show that large-scale latent heating resulting from condensation of water vapor can produce multiple zonal jets similar to those on the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune). For plausible water abundances (3-5 times solar on Jupiter/Saturn and 30 times solar on Uranus/Neptune), our simulations produce ∼20 zonal jets for Jupiter and Saturn and 3 zonal jets on Uranus and Neptune, similar to the number of jets observed on these planets. Moreover, these Jupiter/Saturn cases produce equatorial superrotation whereas the Uranus/Neptune cases produce equatorial subrotation, consistent with the observed equatorial-jet direction on these planets. Sensitivity tests show that water abundance, planetary rotation rate, and planetary radius are all controlling factors, with water playing the most important role; modest water abundances, large planetary radii, and fast rotation rates favor equatorial superrotation, whereas large water abundances favor equatorial subrotation regardless of the planetary radius and rotation rate. Given the larger radii, faster rotation rates, and probable lower water abundances of Jupiter and Saturn relative to Uranus and Neptune, our simulations therefore provide a possible mechanism for the existence of equatorial superrotation on Jupiter and Saturn and the lack of superrotation on Uranus and Neptune. Nevertheless, Saturn poses a possible difficulty, as our simulations were unable to explain the unusually high speed (∼) of that planet’s superrotating jet. The zonal jets in our simulations exhibit modest violations of the barotropic and Charney-Stern stability criteria. Overall, our simulations, while idealized, support the idea that latent heating plays an important role in generating the jets on the giant planets.  相似文献   

20.
J.A. Fernández  W.-H. Ip 《Icarus》1981,47(3):470-479
The dynamical evolution of bodies under the gravitational influence of the accreting proto-Uranus and proto-Neptune is investigated. The main aim of this study is to analyze the interrelations between the accretion of Uranus and Neptune with other processes of cosmological importance as, for example, the formation of a cometary reservoir from bodies placed into near-parabolic orbits by planetary perturbations and the scattering of bodies to the region of the terrestrial planets. Starting with a mass ratio (initial mass/present mass) of 0.1, Uranus and Neptune acquire masses close to their present ones in a time scale of 108 years. Neptune is found to be the most important contributor of comets to the cometary reservoir. The time scale of bodies scattered by Neptune to reach near-parabolic orbits (semimajor axes a > 104 AU)is about 109 years. The contribution of Uranus was partially inhibited because a large part of the residual bodies of its accretion zone fell under the strong gravitational influence of Jupiter and Saturn. A significant fraction of the bodies dispersed by Uranus and Neptune reached the region of the terrestrial planets in a time scale of some 108 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号