首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Javier Ruiz 《Icarus》2005,177(2):438-446
The heat flow from Europa has profound implications for ice shell thickness and structure, as well as for the existence of an internal ocean, which is strongly suggested by magnetic data. The brittle-ductile transition depth and the effective elastic thickness of the lithosphere are here used to perform heat flow estimations for Europa. Results give preferred heat flow values (for a typical geological strain rate of 10−15 s−1) of 70-110 mW m−2 for a brittle-ductile transition 2 km deep (the usually accepted upper limit for the brittle-ductile transition depth in the ice shell of Europa), 24-35 mW m−2 for an effective elastic thickness of 2.9 km supporting a plateau near the Cilix impact crater, and >130 mW m−2 for effective elastic thicknesses of ?0.4 km proposed for the lithosphere loaded by ridges and domes. These values are clearly higher than those produced by radiogenic heating, thus implying an important role for tidal heating. The ?19-25 km thick ice shell proposed from the analysis of size and depth of impact structures suggests a heat flow of ?30-45 mW m−2 reaching the ice shell base, which in turn would imply an important contribution to the heat flow from tidal heating within the ice shell. Tidally heated convection in the ice shell could be capable to supply ∼100 mW m−2 for superplastic flow, and, at the Cilix crater region, ∼35-50 mW m−2 for dislocation creep, which suggests local variations in the dominant flow mechanism for convection. The very high heat flows maybe related to ridges and domes could be originated by preferential heating at special settings.  相似文献   

2.
The Isidis Planitia region on Mars usually is regarded as a comparably attractive site for landing missions based on engineering constraints such as elevation and smooth regional topography. The Mars Express landed element Beagle 2 was deployed to this area, and the southern margin of the basin was selected as one of the backup landing sites for the NASA Mars Exploration Rovers.Especially in the context of the Beagle 2 mission, Isidis Planitia has been discussed as a place which might have experienced a volatile-rich history with associated potential for biological activity [e.g. Bridges et al., 2003. Selection of the landing site in Isidis Planitia of Mars Probe Beagle 2. J. Geophys. Res. 108(E1), 5001, doi: 10.1029/2001JE001820]. However the measurements of by the GRS instrument on Mars Odyssey indicate a maximum inferred water abundance of only 3 wt% in the upper few meters of the surface [Feldman et al., 2004. Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109, E09006, doi: 10.1029/2003JE002160]. Based on these measurements this area seems to be one of the driest spots in the equatorial region of Mars.To support future landing site selections we took a more detailed look at the minimum burial depth of stable ice deposits in this area, focusing as an example on the planned Beagle 2 landing site. We are especially interested in the likelihood of ground ice deposits within the range of proposed subsurface sampling tools as drills or ‘mole’-like devices [Richter et al., 2002. Development and testing of subsurface sampling devices for the Beagle 2 Lander. Planet. Space Sci. 50, 903-913] given reasonable physical constraints for the surface and near surface material.For a mission like ExoMars [Kminek, G., Vago, J.L., 2005. The Aurora Exploration Program—The ExoMars Mission. In: Proceedings of the 35th Lunar and Planetary Science Conference, abstract no. 1111, 15-19 March 2004, League City, TX] with a focus on finding traces of fossil life the area might be of potential interest, because these traces would be better conserved in the dry soil. Modeling and measurement indicate that Isidis Planitia is indeed a dry place and any hypothetical ground ice deposits in this region are out of range of currently proposed sampling devices.  相似文献   

3.
We describe the results of our morphologic, stratigraphic and mineralogic investigations of fluvial landforms, paleolakes and possible shoreline morphologies at the Libya Montes/Isidis Planitia boundary. The landforms are indicative of aqueous activity and standing bodies of water, including lakes, seas and oceans, that are attributed to a complex hydrologic cycle that may have once existed on Mars in the Noachian (>3.7 Ga) and perhaps also in the Hesperian (>3.1 Ga). Our observations of the Libya Montes/Isidis Planitia boundary between 85°/86.5°E and 1.8°/5°N suggest, that (1) the termination of valley networks between roughly ?2500 and ?2800 m coincide with lake-size ponding in basins within the Libya Montes, (2) an alluvial fan and a possible delta, layered morphologies and associated Al-phyllosilicates identified within bright, polygonally fractured material at the front of the delta deposits are interpreted to be the results of fluvial activity and discharge into a paleolake, (3) the Arabia “shoreline” appears as a series of possible coastal cliffs at about ?3600 and ?3700 m indicating two distinct still stands and wave-cut action of a paleosea that temporarily filled the Isidis basin the Early Hesperian, and (4) the Deuteronilus “shoreline” appears at ?3800 m and is interpreted to be a result of the proposed sublimation residue of a frozen sea that might have filled the Isidis basin, similar to the Vastitas Borealis Formation (VBF) identified in the northern lowlands. We interpret the morphologic–geologic setting and associated mineral assemblages of the Libya Montes/Isidis Planitia boundary as results of fluvial activity, lake-size standing bodies of water and an environmental change over time toward decreasing water availability and a cold and dry climate.  相似文献   

4.
We have mapped the area of Isidis Planitia (1–27°N, 75–103°E) in order to assess the geologic history of this region using modern data sets such as MOLA topography and the high-resolution images provided by the HRSC, CTX, and HiRISE cameras. Results of our mapping show that the geologic history of Isidis Planitia consists of three principal episodes. (1) Impact dominated episode (Noachian, until ~3.8 Ga): During this time, the oldest materials in the study area were formed mostly by impact reworking and mass-wasting. Other processes (e.g., volcanism and fluvial/glacial activity) likely operated at this time but played a subordinate role. (2) An episode related to volcanic and fluvial/glacial activities (late Noachian–early Amazonian, ~3.8–2.8 Ga): Volcanism appears as the most important process at the beginning of this episode (~3.8–3.5 Ga) and was responsible for the formation of a large circum-Isidis volcanic province by the early Hesperian epoch. Volcanic materials covered large portions of the Isidis rim, almost completely buried the previous crater record on the floor of the Isidis basin, and probably were the major contributors to the filling of the basin. Fluvial/glacial processes prevailed closer to the end of the episode (early Hesperian–early Amazonian, ~3.5–2.8 Ga) and were responsible for widespread resurfacing in the Isidis Planitia region, mostly at ~3.1–3.4 Ga. Glaciers and/or ice sheets probably resulted in a massive glaciation of the rim and the floor of the Isidis basin. The total volume of material eroded from the Isidis rim by glacial and fluvial activity is estimated to be about 35,000–50,000 km3, which is equivalent to a composite layer about 40–60 m thick on entire floor of the basin. More important, however, is that the eroded materials were likely saturated with ice/water and could form wet deposits on the floor. (3) Wind-dominated episode (since early Amazonian, ~2.8 Ga): Wind activity dominated the later geologic history of Isidis Planitia but resulted only in minor modification of the surface.  相似文献   

5.
Mark A. Wieczorek 《Icarus》2008,196(2):506-517
The polar caps of Mars have long been acknowledged to be composed of unknown proportions of water ice, solid CO2 (dry ice), and dust. Gravity and topography data are here analyzed over the southern cap to place constraints on its density, and hence composition. Using a localized spectral analysis combined with a lithospheric flexure model of ice cap loading, the best fit density of the volatile-rich south polar layered deposits is found to be 1271 kg m−3 with 1-σ limits of 1166 and 1391 kg m−3. The best fit elastic thickness of this geologically young deposit is 140 km, though any value greater than 102 km can fit the observations. The best fit density implies that about 55% dry ice by volume could be sequestered in these deposits if they were completely dust free. Alternatively, if these deposits were completely free of solid CO2, the dust content would be constrained to lie between about 14 and 28% by volume. The bulk thermal conductivity of the polar cap is not significantly affected by these maximum allowable concentrations of dust. However, even if a moderate quantity of solid CO2 were present as horizontal layers, the bulk thermal conductivity of the polar cap would be significantly reduced. Reasonable estimates of the present day heat flow of Mars predict that dry ice beneath the thicker portions of the south polar cap would have melted. Depending on the quantity of solid CO2 in these deposits today, it is even possible that water ice could melt where the cap is thickest. If independent estimates for either the dust or CO2 content of the south polar cap could be obtained, and if radar sounding data could determine whether this polar cap is presently experiencing basal melting or not, it would be possible to use these observations to place tight constraints on the present day heat flow of Mars.  相似文献   

6.
An analysis of the planetwide tectonic system of Mars provided by Harp (1976) reveals that the Hellas and Isidis impact basins have general tectonic systems similar to that of the Argyre impact basin. This implies that Mars does indeed have a lithospheric thickness which would have to be considered thinner than that of the Moon or Mercury but thicker than that of the Galilean satellite Callisto.  相似文献   

7.
Prelaunch planetary protection protocols on spacecraft are designed to reduce the numbers and diversity of viable bioloads on surfaces in order to mitigate the forward contamination of planetary surfaces. In addition, there is a growing appreciation that prelaunch spacecraft cleaning protocols will be required to reduce the levels of biogenic signature molecules on spacecraft to levels that will not compromise life-detection experiments on landers. The biogenic molecule, adenosine triphosphate (ATP) was tested for long-term stability under simulated Mars surface conditions of high UV flux, low temperature, low pressure, Mars atmosphere, and clear-sky dust loading conditions. Data on UV-induced ATP degradation rates were then extrapolated to a diversity of global conditions using a radiative transfer model for UV on Mars. The UV-induced degradation of ATP tested at 4.1 W m−2 UVC (200-280 nm), −10 °C, 7.1 mb, 95% CO2 gas composition, and an atmospheric opacity of τ=0.1 yielded a half-life for ATP of 1342 kJ m−2; or extrapolated to approximately 22 sols on equatorial Mars with an atmospheric opacity of τ=0.5. Temperature was found to moderately affect ATP degradation rates under martian conditions; tests at −80 or 20 °C yielded ATP half-lives of 2594 or 1183 kJ m−2, respectively. The ATP degradation rates reported here are over 10 orders of magnitude slower than the UV-induced biocidal rates reported in the literature on the inactivation of strongly UV-resistant bacterial spores from Bacillus pumilus SAFR-032 [Schuerger, A.C., Richards, J.T., Newcombe, D.A., Venkateswaran, K.J., 2006. Icarus 181, 52-62]. Extrapolating results to global Mars conditions, residence times for a 99% reduction of ATP on spacecraft surfaces ranged from 158 sols on Sun-exposed surfaces to approximately 32,000 sols for the undersides of landers similar to Viking. However, spacecraft materials greatly affected the survival times of ATP under martian conditions. Stainless steel was found to enhance the UV degradation of ATP by over 2 orders of magnitude compared to ATP-doped iridited aluminum, graphite, and astroquartz coupons. Extrapolating these results to global conditions, ATP on stainless steel might be expected to persist between 2 and 320 sols for upper and lower surfaces of landers. Liquid chromatography-mass spectrometry data supported the conclusion that UV irradiation acted to remove the γ-phosphate group from ATP, and no evidence was observed for the UV-degradation of d-ribose or adenine moieties. Long residence times for ATP on spacecraft materials under martian conditions suggest that prelaunch cleaning protocols may need to be strengthened to mitigate against possible ATP contamination of life-detection experiments on Mars landers.  相似文献   

8.
We examine gravity, topography, and magnetic field data along the well-preserved Martian dichotomy boundary between 105° and 180°E to better understand the origin and modification of the dichotomy boundary. Admittance modeling indicates bottom-loading for the Amenthes region (105–135°E) with crustal and elastic thickness estimates of 15–40 km, and 15–35 km and top-loading for the Aeolis region (145–180°E) with crustal and elastic thickness estimates of 10–20 km and 10–15 km, respectively. There is a general trend from bottom-loading in the west, to top-loading in the east. The bottom-loading signature near Amenthes may reflect its proximity to the Isidis basin or a broad valley southeast of Isidis. Surface volcanic deposits may produce the top-loading seen at Aeolis. Additional processes such as erosion and faulting have clearly affected the dichotomy and may contribute to the loading signature. Low elastic thickness estimates are consistent with loading in the Noachian, when heat flow was high. Significant Bouguer and isostatic gravity anomalies in these areas indicate substantial variations in the crustal density structure. Crater age dating indicates that major surface modification occurred early in the Noachian, and the small elastic thickness estimates also suggest that subsurface modification occurred in the Noachian. Magnetic and gravity anomalies show comparable spatial scales (several hundred kilometers). The similarity in scale and the constant ratio of the amplitudes of the isostatic and Bouguer gravity to the magnetic anomalies along the dichotomy suggest a common origin for the anomalies. Igneous intrusion and/or local thinning or thickening of the crust, possibly with a contribution from hydrothermal alteration, are the most likely mechanisms to create the observed anomalies.  相似文献   

9.
Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m−2 K−1s−1/2 at mid-latitudes (60° S to 60° N) and 600 J m−2 K−1s−1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.  相似文献   

10.
Eileen M. McGowan 《Icarus》2011,212(2):622-628
The largest areal concentration of pitted cones on Mars is located in the southwest section of Utopia basin. This particular area of pitted cones has been attributed to mud volcanism; several factors may have facilitated extensive mud volcanism at this location. The concentration of pitted cones is located where Utopia basin intersects Isidis basin; both features are multi-ring impact basins. On Earth, seismic investigations have shown that the outer rings of the Chicxulub multi-ring impact basin extend to the Mohorovi?i? discontinuity (Moho). If this is true on Mars as well, the fractures could act as conduits for water from Utopia Planitia, the site of a large, putative water body. It has been shown that methane can be generated at the mantle on Earth. On Mars this possible source of methane could combine with the infiltrated water to generate clathrates. While methane is not currently being released at the location of the pitted cones it could have been in the past. Three locations of methane release have been observed on Mars, two of which are located on the same outer ring of Isidis basin that intersects the pitted cone population. The area of Utopia basin that contains the large population of pitted cones is adjacent to the highland/lowland boundary where extensive deposition would have occurred. Extensive deposition combined with the potential for methane release may have contributed to the large population of pitted cones in this area of the Utopia basin.  相似文献   

11.
Clay mineral-bearing deposits previously discovered on Mars with near infrared (λ=0.3-5 μm) remote sensing data are of major significance for understanding the aqueous history, geological evolution, and past habitability of Mars. In this study, we analyzed the thermal infrared (λ=6-35 μm) surface properties of the most extensive phyllosilicate deposit on Mars: the Mawrth Vallis area. Clay mineral-bearing units, which in visible images appear to be relatively light-toned, layered bedrock, have thermal inertia values ranging from 150 to 460 J m−2 K−1 s−1/2. This suggests the deposits are composed of a mixture of rock with sand and dust at 100-meter scales. Dark-toned materials that mantle the clay-bearing surfaces have thermal inertia values ranging from 150 to 800, indicating variable degrees of rockiness or induration of this younger sedimentary or pyroclastic unit. Thermal Emission Spectrometer (TES) spectra of the light-toned rocks were analyzed with a number of techniques, but none of the results shows a large phyllosilicate component as has been detected in the same surfaces with near-infrared data. Instead, TES spectra of light-toned surfaces are best modeled by a combination of plagioclase feldspar, high-silica materials (similar to impure opaline silica or felsic glass), and zeolites. We propose three hypotheses for why the clay minerals are not apparent in thermal infrared data, including effects due to surface roughness, sub-pixel mixing of multiple surface temperatures, and low absolute mineral abundances combined with differences in spatial sampling between instruments. Zeolites modeled in TES spectra could be a previously unrecognized component of the alteration assemblage in the phyllosilicate-bearing rocks of the Mawrth Vallis area. TES spectral index mapping suggests that (Fe/Mg)-clays detected with near infrared data correspond to trioctahedral (Fe2+) clay minerals rather than nontronite-like clays. The average mineralogy and geologic context of these complex, interbedded deposits suggests they are either aqueous sedimentary rocks, altered pyroclastic deposits, or a combination of both.  相似文献   

12.
I. Pat-El 《Icarus》2009,201(1):406-411
From recent close encounters with Comets Wild-2 and Tempel 1 we learned that their surfaces are very rugged and no simple uniform layers model can be applied to them. Rather, a glaciological approach should be applied for describing their surface features and behavior. Such intrinsically rugged surface is formed in our large scale experiments, where an agglomerate of ∼200 μm gas-laden amorphous ice particles is accumulated to form a 20 cm diameter and few cm high ice sample. The density, tensile strength and thermal inertia of our ice sample were found to be very close to those found by Deep Impact for Comet Tempel 1: density 250-300 kg m−3 vs DI 350-400 kg m−3; tensile strength 2-4 kPa vs DI 1-10 kPa; thermal inertia 80 W K−1 m−2 s1/2 vs <100 W K−1 m−2 s1/2 and <50 W K−1 m−2 s1/2. From the close agreement between the thermal inertias measured in our ice sample, which had no dust coverage and that of Comet Tempel 1, we deduce that the low thermal inertia is an intrinsic property of the fluffy structure of the ice as a result of its low density, with an addition by the broken terrain and not due to the formation of a dust layer. Upon warming up of the ice, water vapor migrates both outward into the coma and inward. Reaching cooler layers, the water vapor condenses, forming a denser ice crust, as we show experimentally. We also demonstrate the inward and outward flow of water vapor in the outer ice layers through the exchange between layers of D2O ice and H2O ice, to form HDO.  相似文献   

13.
Javier Ruiz  Valle López 《Icarus》2010,207(2):631-637
The present-day thermal state of the martian interior is a very important issue for understanding the internal evolution of the planet. Here, in order to obtain an improved upper limit for the heat flow at the north polar region, we use the lower limit of the effective elastic thickness of the lithosphere loaded by the north polar cap, crustal heat-producing elements (HPE) abundances based on martian geochemistry, and a temperature-dependent thermal conductivity for the upper mantle. We also perform similar calculations for the south polar region, although uncertainties in lithospheric flexure make the results less robust. Our results show that the present-day surface and sublithospheric heat flows cannot be higher than 19 and 12 mW m−2, respectively, in the north polar region, and similar values might be representative of the south polar region (although with a somewhat higher surface heat flow due to the radioactive contribution from a thicker crust). These values, if representative of martian averages, do not necessarily imply sub-chondritic HPE bulk abundances for Mars (as previously suggested), since (1) chondritic composition models produce a present-day total heat power equivalent to an average surface heat flow of 14-22 mW m−2 and (2) some convective models obtain similar heat flows for the present time. Regions of low heat flow may even have existed during the last billions of years, in accordance with several surface heat flow estimates of ∼20 mW m−2 or less for terrains loaded during Hesperian or Amazonian times. On the other hand, there are some evidences suggesting the current existence of regions of enhanced heat flow, and therefore average heat flows could be higher than those obtained for the north (and maybe the south) polar region.  相似文献   

14.
15.
The Neutral Particle Detector (NPD), an Energetic Neutral Atom (ENA) sensor of the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) on board Mars Express, detected intense fluxes of ENAs emitted from the subsolar region of Mars. The typical ENA fluxes are (4-7) × 105 cm−2 sr−1 s−1 in the energy range 0.3-3 keV. These ENAs are likely to be generated in the subsolar region of the martian exosphere. As the satellite moved away from Mars, the ENA flux decreased while the field of view of the NPD pointed toward the subsolar region. These decreases occurred very quickly with a time scale of a few tens of seconds in two thirds of the orbits. Such a behavior can be explained by the spacecraft crossing a spatially constrained ENA jet, i.e., a highly directional ENA emission from a compact region of the subsolar exosphere. This ENA jet is highly possible to be emitted conically from the subsolar region. Such directional ENAs can result from the anisotropic solar wind flow around the subsolar region, but this can not be explained in the frame of MHD models.  相似文献   

16.
Experiments to investigate the effect of impacts on side-walls of dust detectors such as the present NASA/ESA Galileo/Ulysses instrument are reported. Side walls constitute 27% of the internal area of these instruments, and increase field of view from 140° to 180°. Impact of cosmic dust particles onto Galileo/Ulysses Al side walls was simulated by firing Fe particles, 0.5-5 μm diameter, 2-50 km s−1, onto an Al plate, simulating the targets of Galileo and Ulysses dust instruments. Since side wall impacts affect the rise time of the target ionization signal, the degree to which particle fluxes are overestimated varies with velocity. Side-wall impacts at particle velocities of 2-20 km s−1 yield rise times 10-30% longer than for direct impacts, so that derived impact velocity is reduced by a factor of ∼2. Impacts on side wall at 20-50 km s−1 reduced rise times by a factor of ∼10 relative to direct impact data. This would result in serious overestimates of flux of particles intersecting the dust instrument at velocities of 20-50 km s−1. Taking into account differences in laboratory calibration geometry we obtain the following percentages for previous overestimates of incident particle number density values from the Galileo instrument [Grün et al., 1992. The Galileo dust detector. Space Sci. Rev. 60, 317-340]: 55% for 2 km s−1 impacts, 27% at 10 km s−1 and 400% at 70 km s−1. We predict that individual particle masses are overestimated by ∼10-90% when side-wall impacts occur at 2-20 km s−1, and underestimated by ∼10-102 at 20-50 km s−1. We predict that wall impacts at 20-50 km s−1 can be identified in Galileo instrument data on account of their unusually short target rise times. The side-wall calibration is used to obtain new revised values [Krüger et al., 2000. A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids. Planet. Space Sci. 48, 1457-1471; 2003. Impact-generated dust clouds surrounding the Galilean moons. Icarus 164, 170-187] of the Galilean satellite dust number densities of 9.4×10−5, 9.9×10−5, 4.1×10−5, and 6.8×10−5 m−3 at 1 satellite radius from Io, Europa, Ganymede, and Callisto, respectively. Additionally, interplanetary particle number densities detected by the Galileo mission are found to be 1.6×10−4, 7.9×10−4, 3.2×10−5, 3.2×10−5, and 7.9×10−4 m−3 at heliocentric distances of 0.7, 1, 2, 3, and 5 AU, respectively. Work by Burchell et al. [1999b. Acceleration of conducting polymer-coated latex particles as projectiles in hypervelocity impact experiments. J. Phys. D: Appl. Phys. 32, 1719-1728] suggests that low-density “fluffy” particles encountered by Ulysses will not significantly affect our results—further calibration would be useful to confirm this.  相似文献   

17.
Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m−2 K−1 s−1/2) diurnal and seasonal variations in apparent thermal inertia even for small (∼10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.  相似文献   

18.
We examine hypotheses for the formation of light-toned layered deposits in Juventae Chasma using a combination of data from Mars Global Surveyor's Mars Orbiter Camera (MOC), Mars Orbiter Laser Altimeter (MOLA), and Thermal Emission Spectrometer (TES), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). We divide Juventae Chasma into geomorphic units of (i) chasm wall rock, (ii) heavily cratered hummocky terrain, (iii) a mobile and largely crater-free sand sheet on the chasm floor, (iv) light-toned layered outcrop (LLO) material, and (v) chaotic terrain. Using surface temperatures derived from THEMIS infrared data and slopes from MOLA, we derive maps of thermal inertia, which are consistent with the geomorphic units that we identify. LLO thermal inertias range from ∼400 to 850 J m−2 K−1 s−1/2. Light-toned layered outcrops are distributed over a remarkably wide elevation range () from the chasm floor to the adjacent plateau surface. Geomorphic features, the absence of small craters, and high thermal inertia show that the LLOs are composed of sedimentary rock that is eroding relatively rapidly in the present epoch. We also present evidence for exhumation of LLO material from the west wall of the chasm, within chaotic and hummocky terrains, and within a small depression in the adjacent plateau. The data imply that at least some of the LLO material was deposited long before the adjacent Hesperian plateau basalts, and that Juventae Chasma underwent, and may still be undergoing, enlargement along its west wall due to wall rock collapse, chaotic terrain evolution, and exposure and removal of LLO material. The new data allow us to reassess possible origins of the LLOs. Gypsum, one of the minerals reported elsewhere as found in Juventae Chasma LLO material, forms only at low temperatures () and thus excludes a volcanic origin. Instead, the data are consistent with either multiple occurrences of lacustrine or airfall deposition over an extended period of time prior to emplacement of Hesperian lava flows on the plateau above the chasm.  相似文献   

19.
R. Antoine  T. Lopez  M. Rabinowicz 《Icarus》2011,214(2):433-446
This study investigates the cause of high nighttime temperatures within Cerberus Fossae, a system of fractures affecting the Central Elysium Planitia. The inner parts (walls and floor) of the fractures are up to 40 K warmer than the surrounding plains. However, several temperature profiles exhibit a local temperature minima occurring in the central part of the fractures. We examined first the influence of cooling efficiency at night in the case of a strong reduction of the sky proportion induced by the fracture’s geometry. However, the lack of correlation between temperature and sky proportion, calculated from extracted Mars Orbiter Laser Altimeter (MOLA) profiles argues against this hypothesis. Albedo variations were considered but appear to be limited within the fractures, and are generally not correlated with the temperatures. Variations of the thermal properties of bedrocks exposures, debris aprons and sand dunes inferred from high-resolution images do not either correlate with temperature variations within the fractures. As none of these factors taken alone, or combined, can satisfactorily explain the temperature variations within and near the fracture, we suggest that geothermal heat transported by air convection within the porous debris aprons may contribute to explain high temperatures at night and the local minima on the fracture floor. The conditions for the occurrence of the suggested phenomenon and the consequences on the surface temperature are numerically explored. A conservative geothermal gradient of 20 mW/m2 was used in the simulations, this value being consistent with either inferred lithosphere elastic thicknesses below the shield volcanoes of the Tharsis dome or values predicted from numerical simulations of the thermal evolution of Mars. The model results indicate that temperature differences of 10-20 K between the central and upper parts of the fracture are explained in the case of high Darcy velocities which require high permeability values (5 × 10−6 m2). The presence of coarse material composing the debris aprons may explain why this key criteria was met in the context of Cerberus Fossae.  相似文献   

20.
In this study we explore the idea that coronae have formed on Venus as a result of gravitational (Rayleigh-Taylor) instability of the lithosphere. The lithosphere is represented by a system of stratified homogeneous viscous layers (low-density crust over high density mantle, over lower density layer beneath the lithosphere). A small harmonic perturbation imposed on the base of the lithosphere is observed to result in gravitational instability under the constraint of assumed axisymmetry. Topography develops with time under the influence of dynamic stress associated with downwelling or upwelling, and spatially variable crustal thickening or thinning. Topography may therefore be elevated or depressed above a mantle downwelling, but the computed gravity anomaly is always negative above a mantle downwelling in a homogeneous asthenosphere. The ratio of peak gravity to topography anomaly depends primarily on the ratio of crust to lithospheric viscosity. Average observed ratios are well resolved for two groups of coronae (∼40 mgal km−1), consistent with models in which the crust is perhaps 5 times stronger than the lithosphere. Group 3a (rim surrounding elevated central region) coronae are inferred to arise from a central upwelling model, whereas Group 8 (depression) coronae are inferred to arise from central downwelling. Observed average coronae radii are consistent with a lithospheric thickness of only 50 km. An upper low-density crustal layer is 10-20 km thick, as inferred from the amplitude of gravity and topography anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号