首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on sorting of small grained material under simulated martian conditions in order to better understand the nature of particle movement in the acquisition-to-analysis chain for future martian missions. We find that triboelectric charging when material is sieved is a major phenomenon that has to be understood and mitigation strategies explored in order to be able to successfully move particles under these types of conditions while minimizing cross sample talk. In different experimental set-ups, we have observed such phenomena as caking of the sieve, adhesion of particles to hardware, clodding of dry fines, and electrostatic repulsion. These phenomena occur when different experimental testing is performed with varied configurations and environmental conditions. Identifying these electrostatic effects can help us understand potential bias in the analytical instruments and to define the best operational protocols to collect samples on the surface of Mars. These experiments demonstrate the need for end-to-end system testing under the most realistic environmental conditions and platforms before mission configurations can be demonstrated before launch.  相似文献   

2.
The interval from Ls = 330° in Mars Year (MY) 26 until Ls = 84° in MY 27 has been used to compare and validate measurements from the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Express Planetary Fourier Spectrometer (PFS). We studied differences between atmospheric temperatures observed by the two instruments. The best agreement between atmospheric temperatures was found at 50 Pa between 40°S and 40°N latitude, where differences were within ±5 K. For other atmospheric levels, differences as large as ∼25 K were observed between the two instruments at some locations. The largest temperature differences occurred mainly over the Hellas Planitia, Argyre Planitia, Tharsis and Valles Marineris regions.On this basis we report on the variability of the martian atmosphere during the 5.5 martian years of Mars climatology obtained by combining the two data sets from TES and PFS. Atmospheric temperatures at 50 Pa responded to the global-scale dust storms of MY 25 and in MY 28 raising temperatures from ∼220 K to ∼250 K during the daytime. An atmospheric temperature of ∼140 K at 50 Pa was observed poleward of 70°N during northern winter and poleward of 60°S during southern winter each year in both the PFS and TES results. Water vapor observed by the two spectrometers showed consistent seasonal and latitudinal variations.  相似文献   

3.
This work is devoted to the analysis of the variation of albedo measured by orbiting instruments with atmospheric opacity on Mars. The study has been conduced by analysing Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data from martian regions with different surface albedo.In support of these data, synthetic spectra with different surface albedo and atmospheric opacities have been computed, so that a comparison has been performed. The synthetic spectra have been retrieved by using two different grain sizes for suspended dust (0.5 and 1.2 μm), allowing a comparison between the two models and the observations.Using the DCI, a parameter describing the quantity of dust deposited on the surface, the effectiveness of the single scattering approximation has been tested for low atmospheric opacity by analysing the quality of the linear fit up to different atmospheric opacity.For more opaque conditions two kinds of fits have been applied to the data, linear and second-order degree polynomial. In this case, we found that the polynomial fit better describes the observations.The analysis of these data made it possible to notice a peculiar trend, already reported by Christensen (1988), of the albedo over Syrtis Major after the occurrence of dust storms, but, differently from that work, now the study of DCI together with atmospheric opacity and albedo allowed us to robustly confirm the hypothesis made by Christensen.Finally, the comparison between observations and synthetic spectra computed with models with different particles grain sizes indicates that dust particles of 0.5 μm diameter are the most effective to change the aerosol atmospheric opacity on Mars.  相似文献   

4.
A suite of instruments on the Beagle 2 Mars lander was designed and built in order to investigate the environmental conditions at the landing site. The sensor suite was capable of measuring air temperature at two heights, surface level pressure, wind speed and direction, saltated particle momentum, UV flux (diffuse and direct at five wavelengths), the total accumulated radiation dose and investigating the nature of the oxidising environment. The scientific goals of the instruments are discussed within the context of current understanding of the environmental conditions on Mars, and the instruments themselves are described in detail. Beagle 2 landed on Mars in late 2003, as part of the ESA Mars Express mission. The expected lifetime of the lander on the surface was 180 sols, with a landing site in Isidis Planitia, but has not responded to attempts to contact it, and has now been declared lost. The Environmental Sensor Suite (ESS) was intended to monitor and characterise the current local meteorological parameters, investigating specific areas of scientific interest raised from previous missions, most notably dust transport and transient phenomena, and additionally to add context to the conditions that any possible martian micro-organisms would have to face. The design of the instrument suite was strongly influenced by mass limitations, with eight sensor subsystems having a total mass of approximately 100 g. Although Beagle 2 has been now declared lost, the scientific goals of an Environmental Sensors Suite still remain a valid target for any future astrobiology orientated missions.  相似文献   

5.
Alberto G. Fairén 《Icarus》2010,208(1):165-48
Water on Mars has been explained by invoking controversial and mutually exclusive solutions based on warming the atmosphere with greenhouse gases (the “warm and wet” Mars) or on local thermal energy sources acting in a global freezing climate (the “cold and dry” Mars). Both have critical limitations and none has been definitively accepted as a compelling explanation for the presence of liquid water on Mars. Here is considered the hypothesis that cold, saline and acidic liquid solutions have been stable on the sub-zero surface of Mars for relatively extended periods of time, completing a hydrogeological cycle in a water-enriched but cold planet. Computer simulations have been developed to analyze the evaporation processes of a hypothetical martian fluid with a composition resulting from the acid weathering of basalt. This model is based on orbiter- and lander-observed surface mineralogy of Mars, and is consistent with the sequence and time of deposition of the different mineralogical units. The hydrological cycle would have been active only in periods of dense atmosphere, as having a minimum atmospheric pressure is essential for water to flow, and relatively high temperatures (over ∼245 K) are required to trigger evaporation and snowfall; minor episodes of limited liquid water on the surface could have occurred at lower temperatures (over ∼225 K). During times with a thin atmosphere and even lesser temperatures (under ∼225 K), only transient liquid water can potentially exist on most of the martian surface. Assuming that surface temperatures have always been maintained below 273 K, Mars can be considered a “cold and wet” planet for a substantial part of its geological history.  相似文献   

6.
The absolute chronology of Mars is poorly known and, as a consequence, a key science aim is to perform accurate radiometric dating of martian geological materials. The scientific benefits of in situ radiometric dating are significant and arguably of most importance is the calibration of the martian cratering rate, similar to what has been achieved for the Moon, to reduce the large uncertainties on absolute boundary ages of martian epochs. The Beagle 2 Mars lander was capable of performing radiometric date measurements of rocks using the analyses from two instruments in its payload: (i) the X-ray Spectrometer (XRS) and (ii) the Gas Analysis Package (GAP). We have investigated the feasibility of in situ radiometric dating using the K-Ar technique employing flight-like versions of Beagle 2 instrumentation. The K-Ar ages of six terrestrial basalts were measured and compared to the ‘control’ Ar-Ar radiometric ages in the range 171-1141 Ma. The K content of each basalt was measured by the flight spare XRS and the 40Ar content using a laboratory analogue of the GAP. The K-Ar ages of five basalts broadly agreed with their corresponding Ar-Ar ages. For one final basalt, the 40Ar content was below the detection limit and so an age could not be derived. The precision of the K-Ar ages was ∼30% on average. The conclusions from this study are that careful attention must be paid to improving the analytical performance of the instruments, in particular the accuracy and detection limits. The accuracy of the K and Ar measurements are the biggest source of uncertainty in the derived K-Ar age. Having investigated the technique using flight-type planetary instrumentation, we conclude that come of the principle challenges of conducting accurate in situ radiometric dating on Mars using instruments of these types include determining the sample mass, ensuring all the argon is liberated from the sample given the maximum achievable temperature of the mass spectrometer ovens, and argon loss and non-radiogenic argon in the analysed samples.  相似文献   

7.
A.C. Marra  M.D. Lane  A. Blanco 《Icarus》2011,211(1):839-848
Hematite is an iron oxide that is very important for the study of climatic evolution of Mars. It can occur in three forms: nanophase (dark purple), fine-grained (red) and coarse-grained (gray).In a previous work, we studied the influence of particle size and shape on the infrared spectra (in the wavelength range 6.25-50 μm) of submicron red hematite particles and found that bulk optical constants did not fit the spectra of very fine particles with several classes of models.In the present paper, we derive bulk optical constants of a sample of the same parent material of hematite already used in a previous work in order to determine the particulate optical constants. As a first result we find that, also in this case, bulk and particulate optical constants are different from each other. Furthermore, we show that these bulk optical constants, although derived starting from the same parent material of hematite and used with a model adopting the laboratory measured grain size distribution of the sample, cannot be used to reproduce the spectra of submicron particles. Our results can help the scientific community to appropriately model the contribution of hematite submicron grains to the martian dust for a better understanding of the geologic evolution of the planet.  相似文献   

8.
We present a Mars General Circulation Model (GCM) numerical investigation of the physical processes (i.e., wind stress and dust devil dust lifting and atmospheric transport) responsible for temporal and spatial variability of suspended dust particle sizes. Measurements of spatial and temporal variations in airborne dust particles sizes in the martian atmosphere have been derived from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) spectral and emission phase function data [Wolff, M.J., Clancy, R.T., 2003. J. Geophys. Res. (Planets) 108 (E9), doi:10.1029/2003JE002057. 1-1; Clancy, R.T., Wolff, M.J., Christensen, P.R., 2003. J. Geophys. Res. (Planets) 108 (E9), doi:10.1029/2003JE002058. 2-1]. The range of dust particle sizes simulated by the NASA Ames GCM is qualitatively consistent with TES-derived observations of effective dust particle size variability. Model results suggest that the wind stress dust lifting scheme (which produces regionally confined dust lifting) is the process responsible for the majority of the dust particle size variability in the martian atmosphere. Additionally, model results suggest that atmospheric transport processes play an important role in the evolution of atmospheric dust particles sizes during substantial dust storms on Mars. Finally, we show that including the radiative effects of a spatially variable particle size distribution significantly influences thermal and dynamical fields during the dissipation phase of the simulated global dust storm.  相似文献   

9.
The origin and nature of the early atmosphere of Mars is still debated. The discovery of sulfate deposits on the surface, coupled with the evidence that there are not large abundances of carbonates detectable on Mars in the optically accessible part of the regolith, leaves open different paleoclimatic evolutionary pathways. Even if carbonates are responsible for the feature observed by TES and Mini-TES at 6.76 μm, alternative hypotheses suggest that it could be due to the presence of Hydrated Iron Sulfates (HIS). Carbonates can be discerned from HIS by investigating the spectral region in which a strong overtone carbonate band is present. The Planetary Fourier Spectrometer on board the Mars Express spacecraft has acquired several thousand martian spectra in the range 1.2-45 μm since January 2004, most of which show a weak absorption feature between 3.8 and 4 μm. A similar feature was observed previously from the Earth, but its origin could not be straightforwardly ascribed to surface materials, and specifically to carbonates. Here we show the surficial nature of this band that can be ascribed to carbonate mixed with the martian soil materials. The materials that best reproduce the detected feature are Mg-rich carbonates (huntite [CaMg3(CO3)4] and/or magnesite [MgCO3]). The presence of carbonates is demonstrated in both bright and dark martian regions. An evaluation of the likeliest abundance gives an upper limit of ∼10 wt%. The widespread distribution of carbonates supports scenarios that suggest carbonate formation occurred not by precipitation in a water-rich environment but by weathering processes.  相似文献   

10.
Hale crater, a 125 × 150 km impact crater located near the intersection of Uzboi Vallis and the northern rim of Argyre basin at 35.7°S, 323.6°E, is surrounded by channels that radiate from, incise, and transport material within Hale’s ejecta. The spatial and temporal relationship between the channels and Hale’s ejecta strongly suggests the impact event created or modified the channels and emplaced fluidized debris flow lobes over an extensive area (>200,000 km2). We estimate ∼1010 m3 of liquid water was required to form some of Hale’s smaller channels, a volume we propose was supplied by subsurface ice melted and mobilized by the Hale-forming impact. If 10% of the subsurface volume was ice, based on a conservative porosity estimate for the upper martian crust, 1012 m3 of liquid water could have been present in the ejecta. We determine a crater-retention age of 1 Ga inside the primary cavity, providing a minimum age for Hale and a time at which we propose the subsurface was volatile-rich. Hale crater demonstrates the important role impacts may play in supplying liquid water to the martian surface: they are capable of producing fluvially-modified terrains that may be analogous to some landforms of Noachian Mars.  相似文献   

11.
Volcanism has been a major process during most of the geologic history of Mars. Based on data collected from terrestrial basaltic eruptions, we assume that the volatile content of martian lavas was typically ∼0.5 wt.% water, ∼0.7 wt.% carbon dioxide, ∼0.14 wt.% sulfur dioxide, and contained several other important volatile constituents. From the geologic record of volcanism on Mars we find that during the late Noachian and through the Amazonian volcanic degassing contributed ∼0.8 bar to the martian atmosphere. Because most of the outgassing consisted of greenhouse gases (i.e., CO2 and SO2) warmer surface temperatures resulting from volcanic eruptions may have been possible. Our estimates suggest that ∼1.1 × 1021 g (∼8 ± 1 m m−2) of juvenile water were released by volcanism; slightly more than half the amount contained in the north polar cap and atmosphere. Estimates for released CO2 (1.6 × 1021 g) suggests that a large reservoir of carbon dioxide is adsorbed in the martian regolith or alternatively ∼300 cm cm−2 of carbonates may have formed, although these materials would not occur readily in the presence of excess SO2. Up to ∼120 cm cm−2 (2.2 × 1020 g) of acid rain (H2SO4) may have precipitated onto the martian surface as the result of SO2 degassing. The hydrogen flux resulting from volcanic outgassing may help explain the martian atmospheric D/H ratio. The amount of outgassed nitrogen (∼1.3 mbar) may also be capable of explaining the martian atmospheric 15N/14N ratio. Minor gas constituents (HF, HCl, and H2S) could have formed hydroxyl salts on the surface resulting in the physical weathering of geologic materials. The amount of hydrogen fluoride emitted (1.82 × 1018 g) could be capable of dissolving a global layer of quartz sand ∼5 mm thick, possibly explaining why this mineral has not been positively identified in spectral observations. The estimates of volcanic outgassing presented here will be useful in understanding how the martian atmosphere evolved over time.  相似文献   

12.
Spores of Bacillus subtilis were used as a model system to study the impact of the two major DNA double-strand break (DSB) repair mechanisms [homologous recombination (HR) and non-homologous end-joining (NHEJ)] on the survivability of air-dried mono- and multilayers of bacterial spores under a simulated martian environment; i.e., an environment with low temperature (−10 °C), pure CO2 atmosphere (99.99% CO2), 200-1100 nm UV-VIS-NIR radiation, and 0.69 kPa pressure. Spores in multilayers exhibited low inactivation rates compared to monolayers, mainly due to shadowing effects of overlying spores. Simulated martian UV irradiation reduced dramatically spore viability, whereas when shielded from martian UV radiation, spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to simulated martian environmental conditions than were wild-type spores. In addition, NHEJ-deficient spores were consistently more sensitive than HR-deficient spores to simulated Mars environmental conditions, suggesting that DSBs were an important type of DNA damage. The results indicated that both HR and NHEJ provide an efficient set of DNA repair pathways ensuring spore survival after exposure to simulated martian environmental conditions.  相似文献   

13.
Recently aurora-type UV emissions were discovered on the nightside of Mars [Bertaux, J.-L., Leblanc, F., Witasse, O., et al., 2005. Discovery of an aurora on Mars. Nature 439, doi:10.1038/nature03603]. It was suggested that these emissions are produced by suprathermal electrons with energies of tens of eV, rather than by the electrons with spectra peaked above 100 eV [Leblanc, F., Witasse, O., Winningham J., et al., 2006. Origin of the martian aurora observed by spectroscopy for investigation of characteristics of the atmosphere of Mars (SPICAM) onboard Mars Express. J. Geophys. Res. 111, A09313, doi:10.1029/2006JA011763]. In this paper we present observations of fluxes of suprathermal electrons (Ee≈30-100 eV) on the Martian nightside by the ASPERA-3 experiment onboard the Mars Express spacecraft. Narrow spikes of suprathermal electrons are often observed in energy-time spectrograms of electron fluxes at altitudes between 250 and 600 km. These spikes are spatially organized and form narrow strips in regions with strong upward or downward crustal magnetic field. The values of electron fluxes in such events generally could explain the observed auroral UV emissions although a question of their origin (transport from the dayside or local precipitation) remains open.  相似文献   

14.
We report on laboratory experiments in which we allowed an SNC-derived mineral mix to react with pure water under a simulated Mars atmosphere for 7 months. These experiments were performed at one bar and at three different temperatures in order to simulate the subsurface conditions that most likely exist where liquid water and rock interact on Mars today. The dominant cations dissolved in the solutions we produced, which may be characterized as dilute brines, are Ca2+, Mg2+, Al3+, and Na+, while the major anions are dissolved C, F, SO2−4 and Cl. Typical solution pH was in the range of 4.2-6.0. Abundance patterns of elements in our synthetic sulfate-chloride brines are distinctly unlike those of terrestrial ocean water or continental waters, however, they are quite similar to those measured in the martian fines at the Mars Pathfinder and Viking 1 and 2 Landing sites. This suggests that salts present in the martian regolith may have formed over time as a result of the interaction of surface or subsurface liquid water with basalts in the presence of a martian atmosphere similar in composition to that of today. If most of the mobile surface layer was formed during the Noachian when erosion rates were much higher than at present, and if this layer is homogeneous in salt composition, the total amount of salt in the martian fines is approximately the same as in the Earth's oceans. The minimum quantity of circulating water necessary to deposit this amount of salt is approximately equivalent to a global layer 625 m deep.  相似文献   

15.
We study the propagation of gravity waves in the martian atmosphere using a linearized one-dimensional full-wave model. Calculations are carried out for atmospheric parameters characteristic of Mars Orbiter Laser Altimeter (on Mars Global Surveyor MGS) observations of apparent gravity waves in high latitude clouds and MGS radio occultation measurements of temperature variations with height suggestive of gravity wave activity. Waves that reach the thermosphere produce fluctuations in density comparable in amplitude with the density variations detected in Mars Odyssey aerobraking data. Gravity waves of modest amplitude are found to deposit momentum and generate significant heating and cooling in the martian atmosphere. The largest heating and cooling effects occur in the thermosphere, at altitudes between about 130 and 150 km, with heating occurring at the lower altitudes and cooling taking place above.  相似文献   

16.
Fifteen organic and three inorganic compounds were tested for methane (CH4) evolution under simulated martian conditions of 6.9 mbar; UVC (200-280 nm) flux of 4 W m−2; 20 °C; simulated optical depth of 0.1; and a Mars gas composition of CO2 (95.3%), N2 (2.7%), Ar (1.7%), O2 (0.13%), and water vapor (0.03%). All three inorganic compounds (i.e., NaCl, CaCO3, graphite) failed to evolve methane at the minimum detection level 0.5 ppm, or above. In contrast, all organic compounds evolved methane when exposed to UV irradiation under simulated martian conditions. The polycyclic aromatic hydrocarbon, pyrene, released the most methane per unit of time at 0.175 nmol CH4 g−1 h−1, and a spectral reflectance target material used for the MER rovers and Phoenix lander released the least methane at 0.00065 nmol CH4 cm−2 h−1. Methane was also released from UV-killed bacterial endospores of Bacillus subtilis. Although all organic compounds evolved methane when irradiated with UV photons under martian conditions, the concentrations of residual organics, biogenic signature molecules, and dead microbial cells should be relatively low on the exterior surfaces of the MSL rover, and, thus, not significant sources of methane contamination. In contrast, kapton tape was found to evolve methane at the rate of 0.00165 nmol CH4 cm−2 h−1 (16.5 nmol m−2 h−1) under the UV and martian conditions tested. Although the evolution of methane from kapton tape was found to decline over time, the large amount of kapton tape used on the MSL rover (lower bound estimated at 3 m2) is likely to create a significant source of terrestrial methane contamination during the early part of the mission.  相似文献   

17.
Dust is a major environmental factor on the surface and in the atmosphere of Mars. Knowing the electrical charge state of this dust would be of both scientific interest and important for the safety of instruments on the Martian surface. In this study the first measurements have been performed of dust electrification using suspended Mars analogue material. This has been achieved by attracting suspended dust onto electrodes placed inside a Mars simulation wind tunnel. The Mars analogue used was from Salten Skov in Denmark, this contained a high concentration of ferric oxide precipitate. Once suspended, this dust was found to consist of almost equal quantities of negatively (46±6%) and positively (44±15%) charged grains.These grains were estimated to typically carry a net charge of around 105e, this is sufficient to dominate the processes of adhesion and cohesion of this suspended dust. Evidence is presented for electrostatic aggregation of the dust while in suspension. Development of a simple instrument for measuring electrical charging of the suspended dust on Mars will be discussed.  相似文献   

18.
Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) is a subsurface and topside ionosphere radar sounder aboard the European Space Agency spacecraft Mars Express, in orbit at Mars since 25 December 2003, and in operation since 17 June 2005. The ionospheric sounding mode of MARSIS is capable of detecting the reflection of the sounding wave from the martian surface. This ability has been used in previous work to show that the surface reflection is absorbed and disappears during periods when high fluxes of energetic particles are incident on the ionosphere of Mars. These absorption events are believed to be the result of increased collisional damping of the sounding wave, caused by increased electron density below the spacecraft, in turn caused by impact ionization from the impinging particles. In this work we identify two absorption events that were isolated during periods when the surface reflection is consistently visible and when Mars is nearly at opposition. The visibility of the surface reflection is viewed in conjunction with particle and photon measurements taken at both Mars and Earth. Both absorption events are found to coincide with Earth passing through solar wind speed and ion flux signatures indicative of a corotating interaction region (CIR). The two events are separated by an interval of approximately 27 days, corresponding to one solar rotation. The first of the two events coincides with abruptly enhanced particle fluxes seen in situ at Mars. Simultaneous with the particle enhancement there are an abrupt decrease in the intensity of electron oscillations, typically seen by the Mars Express particle instrument ASPERA-3 between the magnetic pileup boundary and the martian bow shock, and a sharp drop in the solar wind pressure, seen in the proxy quantity based on MGS magnetometer observations. The decrease in oscillation intensity is therefore the probable effect of a relaxation of the martian bow shock. The second absorption event does not show a particle enhancement and complete ASPERA-3 data during that time are unavailable. Other absorption events are the apparent result of solar X-ray and XUV enhancements. We conclude that surface reflection absorption events are sometimes caused by enhanced ionospheric ionization from high energy particles accelerated by the shocks associated with a CIR. A full statistical analysis of CIRs in relation to observed absorption events in conjunction with a quantitative analysis of the deposition of ionization during space weather events is needed for a complete understanding of this phenomenon. If such analyses can be carried out, radar sensing of the martian ionosphere might be useful as a space weather probe.  相似文献   

19.
The evolution of the martian atmosphere with regard to its H2O inventory is influenced by thermal loss processes of H, H2, nonthermal atmospheric loss processes of H+, H2+, O, O+, CO2, and O2+ into space, as well as by chemical weathering of the surface soil. The evolution of thermal and nonthermal escape processes depend on the history of the intensity of the solar XUV radiation and the solar wind density. Thus, we use actual data from the observation of solar proxies with different ages from the Sun in Time program for reconstructing the Sun's radiation and particle environment from the present to 3.5 Gyr ago. The correlation between mass loss and X-ray surface flux of solar proxies follows a power law relationship, which indicates a solar wind density up to 1000 times higher at the beginning of the Sun's main sequence lifetime. For the study of various atmospheric escape processes we used a gas dynamic test particle model for the estimation of the pick up ion loss rates and considered pick up ion sputtering, as well as dissociative recombination. The loss of H2O from Mars over the last 3.5 Gyr was estimated to be equivalent to a global martian H2O ocean with a depth of about 12 m, which is smaller than the values reported by previous studies. If ion momentum transport, a process studied in detail by Mars Express is significant on Mars, the water loss may be enhanced by a factor of about 2. In our investigation we found that the sum of thermal and nonthermal atmospheric loss rates of H and all nonthermal escape processes of O to space are not compatible with a ratio of 2:1, and is currently close to about 20:1. Escape to space cannot therefore be the only sink for oxygen on Mars. Our results suggest that the missing oxygen (needed for the validation of the 2:1 ratio between H and O) can be explained by the incorporation into the martian surface by chemical weathering processes since the onset of intense oxidation about 2 Gyr ago. Based on the evolution of the atmosphere-surface-interaction on Mars, an overall global surface sink of about 2×1042 oxygen particles in the regolith can be expected. Because of the intense oxidation of inorganic matter, this process may have led to the formation of considerable amounts of sulfates and ferric oxides on Mars. To model this effect we consider several factors: (1) the amount of incorporated oxygen, (2) the inorganic composition of the martian soil and (3) meteoritic gardening. We show that the oxygen incorporation has also implications for the oxidant extinction depth, which is an important parameter to determine required sampling depths on Mars aimed at finding putative organic material. We found that the oxidant extinction depth is expected to lie in a range between 2 and 5 m for global mean values.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号