首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new model of albedo and emissivity of the martian seasonal caps represented as porous CO2 slabs containing spherical voids and dust particles is described. In the model, a radiative transfer model is coupled with a microphysical model in order to link changes in albedo and emissivity to changes in porosity caused by ice metamorphism. The coupled model is capable of reproducing temporal changes in the spectra of the caps taken by the Thermal Emission Spectrometer onboard the Mars Global Surveyor and it can be used as the forward model in the retrievals of the caps' physical properties (porosity, dust abundance, void and dust grain size) from the spectra. Preliminary results from such inversion studies are presented.  相似文献   

2.
The atmosphere of Mars does little to attenuate incoming ultraviolet (UV) radiation. Large amounts of UV radiation sterilize the hardiest of terrestrial organisms within minutes, and chemically alter the soil such that organic molecules at or near the surface are rapidly destroyed. Thus the survival of any putative martian life near the surface depends to a large extent on how much UV radiation it receives. Variations in small-scale geometry of the surface such as pits, trenches, flat faces and overhangs can have a significant effect on the incident UV flux and may create “safe havens” for organisms and organic molecules. In order to examine this effect, a 1-D radiative transfer sky model with 836 meshed points (plus the Sun) was developed which includes both diffuse and direct components of the surface irradiance. This model derives the variation of UV flux with latitude and an object's Geometric Shielding Ratio (a ratio which describes the geometry of each situation). The best protection is offered by overhangs with flux reduced to a factor of 1.8±0.2×10−5 of the unprotected value, a reduction which does not vary significantly by latitude. Pits and cracks are less effective with a reduction in UV flux of only up to 4.5±0.5×10−3 for the modeled scenarios; however, they are more effective for the same geometric shielding ratio than overhangs at high latitudes due to the low height of the Sun in the sky. Lastly, polar faces of rocks have the least effective shielding geometry with at most a 1.1±0.1×10−1 reduction in UV flux. Polar faces of rocks are most effective at mid latitudes where the Sun is never directly overhead, as at tropical latitudes, and never exposes the back of the rock, as at polar latitudes. In the most favorable cases, UV flux is sufficiently reduced such that organic in-fall could accumulate beneath overhanging surfaces and in pits and cracks. As well, hardy terrestrial microorganisms such as Bacillus pumilus could persist for up to 100 sols on the outer surfaces of typical spacecraft or several tens of martian years in the most shielded surface niches.  相似文献   

3.
Directional thermal infrared measurements of the martian surface is one of a variety of methods that may be used to characterize surface roughness and slopes at scales smaller than can be obtained by orbital imagery. Thermal Emission Spectrometer (TES) emission phase function (EPF) observations show distinct apparent temperature variations with azimuth and emission angle that are consistent with the presence of warm, sunlit and cool, shaded slopes at typically ∼0.1 m scales. A surface model of a Gaussian distribution of azimuth independent slopes (described by θ-bar) is combined with a thermal model to predict surface temperature from each viewing angle and azimuth of the TES EPF observation. The models can be used to predict surface slopes using the difference in measured apparent temperature from 2 separate 60-70° emission angle observations taken ∼180° in azimuth relative to each other. Most martian surfaces are consistent with low to moderate slope distributions. The slope distributions display distinct correlations with latitude, longitude, and albedo. Exceptionally smooth surfaces are located at lower latitudes in both the southern highlands as well as in high albedo dusty terrains. High slopes are associated with southern high-latitude patterned ground and north polar sand dunes. There is little apparent correlation between high resolution imagery and the derived θ-bar, with exceptions such as duneforms. This method can be used to characterize potential landing sites by assuming fractal scaling behavior to meter scales. More precisely targeted thermal infrared observations from other spacecraft instruments are capable of significantly reducing uncertainty as well as reducing measurement spot size from 10s of kilometers to sub-kilometer scales.  相似文献   

4.
We present measurements of ratios of elements of the scattering matrix of martian analogue palagonite particles for scattering angles ranging from 3° to 174° and a wavelength of 632.8 nm. To facilitate the use of these measurements in radiative transfer calculations we have devised a method that enables us to obtain, from these measurements, a normalized synthetic scattering matrix covering the complete scattering angle range from 0° to 180°. Our method is based on employing the coefficients of the expansions of scattering matrix elements into generalized spherical functions. The synthetic scattering matrix elements and/or the expansion coefficients obtained in this way, can be used to include multiple scattering by these irregularly shaped particles in (polarized) radiative transfer calculations, such as calculations of sunlight that is scattered in the dusty martian atmosphere.  相似文献   

5.
The Thermal Emission Spectrometer (TES) has observed a high-silica material in the dark regions of Mars that is spectrally similar to obsidian glass and may have a volcanic origin. An alternate interpretation is that the spectrally amorphous material consists of clay minerals or some other secondary material, formed by chemical alteration of surface rocks. The regions where this material is observed (e.g., Acidalia Planitia) have relatively high spectral contrast, suggesting that the high-silica material exists as coarse particulates, indurated soils or cements, within rocks, or as indurated coatings on rock surfaces. The geologic interpretation of this spectral result has major implications for understanding magmatic evolution and weathering processes on Mars. One of the complications in interpreting spectral observations of glasses and clay minerals is that both are structurally and compositionally complex. In this study, we perform a detailed spectroscopic analysis of indurated smectite clay minerals and relate their thermal emission spectral features to structural and crystal chemical properties. We examine the spectral similarities and differences between smectite clay minerals and obsidian glass from a structural-chemical perspective, and make further mineralogical interpretations from previous TES results. The results suggest that neither smectite clays nor any clay mineral with similar structural and chemical properties can adequately explain TES observations of high-silica materials in some martian dark regions. If the spectrally amorphous materials observed by TES do represent an alteration product, then these materials are likely to be poorly crystalline aluminosilicates. While all clay minerals have Si/O ratios ?0.4, the position of the emissivity minimum at Mars suggests a Si/O ratio of 0.4-0.5. The spectral observation could be explained by the existence of a silica-rich alteration product, such as Al- or Fe-bearing opal, an intimate physical mixture of relatively pure silica and other aluminosilicates (such as clay minerals or clay precursors), or certain zeolites. The chemical alteration of basaltic rocks on Mars to phyllosilicate-poor, silica-rich alteration products provides a geologically reasonable and consistent explanation for the global TES surface mineralogical results.  相似文献   

6.
7.
Patricia Gavin  Vincent Chevrier 《Icarus》2010,208(2):721-12100
To test the effects of meteorite impacts on martian phyllosilicate deposits, we heated two smectites (nontronite and montmorillonite) to temperatures ranging from 350 °C to 1150 °C for durations of 4-24 h in two different atmospheres, under air and a steady flow of CO2. Samples were analyzed using X-ray diffraction (XRD) and near-infrared (NIR) and mid-infrared (MIR) reflectance spectroscopy. Interlayer water was lost after heating to temperatures of ∼400 °C. Between 400 °C and 700 °C, nontronite converted to an intermediary phase which conserved the XRD pattern of untreated nontronite with the exception of the 0 0 1 peak. Nanocrystalline high-temperature phases formed for both smectites at temperatures between 700 °C and 1000 °C. Finally, after being heated to temperatures above ∼1100 °C, the samples melted and recrystallized into secondary phases. Secondary high-temperature phases included sillimanite and cristobalite for both smectites plus hematite for nontronite. NIR and MIR reflectance spectra significantly evolved with increasing temperature. NIR spectra of smectites showed that 1.4 and 1.9 μm bands decrease in intensity and disappear above 700 °C. Similarly, the 2.2-2.3 μm metal-OH band showed a decrease in intensity as well as an overall shift towards lower wavelengths (for nontronite) due to the thermal resistance of the Al-OH bond compared to the Fe-OH bond. NIR spectra of montmorillonite showed a gradual increase in band depth up to temperatures between 500 °C and 600 °C, then decreased with increasing temperature. In the MIR spectra of samples heated to temperatures above ∼1100 °C, newly formed bands confirmed the secondary phases identified by XRD. Similarities between the NIR spectra of our heated samples and the phyllosilicates in some martian craters imply that these phyllosilicates were altered by the impact-generated heat and thus were not formed post-impact. In addition, NIR reflectance spectra provide a proxy for shock temperatures of smectites up to 700 °C while MIR is optimum for identification of high-temperature phases of smectites above 700 °C.  相似文献   

8.
The biologically damaging solar ultraviolet (UV) radiation (quantified by the DNA-weighted dose) reaches the martian surface in extremely high levels. Searching for potentially habitable UV-protected environments on Mars, we considered the polar ice caps that consist of a seasonally varying CO2 ice cover and a permanent H2O ice layer. It was found that, though the CO2 ice is insufficient by itself to screen the UV radiation, at approximately 1 m depth within the perennial H2O ice the DNA-weighted dose is reduced to terrestrial levels. This depth depends strongly on the optical properties of the H2O ice layers (for instance snow-like layers). The Earth-like DNA-weighted dose and Photosynthetically Active Radiation (PAR) requirements were used to define the upper and lower limits of the northern and southern polar Radiative Habitable Zone (RHZ) for which a temporal and spatial mapping was performed. Based on these studies we conclude that photosynthetic life might be possible within the ice layers of the polar regions. The thickness varies along each martian polar spring and summer between approximately 1.5 and 2.4 m for H2O ice-like layers, and a few centimeters for snow-like covers. These martian Earth-like radiative habitable environments may be primary targets for future martian astrobiological missions. Special attention should be paid to planetary protection, since the polar RHZ may also be subject to terrestrial contamination by probes.  相似文献   

9.
Attila Elteto  Owen B. Toon 《Icarus》2010,210(2):589-611
We present retrieved trends in dust optical depth, dust effective radius and surface temperature from our analysis of Mars Global Surveyor Thermal Emission Spectrometer daytime data from global dust storm 2001A, and describe their significance for the martian dust cycle. The dust optical depth becomes correlated with surface pressure during southern spring and summer in years both with and without a global dust storm, indicating that global dust mixing processes are important at those seasons. The correlation is low at other times of the year. We found that the observed decay of optical depths at the later stages of the dust storm match, to first-order, theoretical values of clearing from Stokes–Cunningham fallout of the dust. Zonally averaged effective radius is constant within standard deviation of results (between 1.2 and 2.0 μm, with a global mean for all seasons of 1.7 μm), at all latitudes and seasons except at southern latitudes of 35° and higher around equinoxes in both martian years, where it is larger than average (2–3 μm). The emergence and disappearance of these larger particles correlates with observations of polar cap edge storms at those latitudes. Northern latitude observations under similar conditions did not yield a similar trend of larger average effective radii during the equinoxes. We also report on a linear correlation between daytime surface temperature drop and rise in optical depth during the global dust storm. Global dust storm 2001A produced a significant optical depth and surface temperature change.  相似文献   

10.
The near-infrared reflectance spectra of the martian surface present strong absorption features attributed to hydration water present in the regolith. In order to characterize the relationships between this water and atmospheric vapor and decipher the physical state of water molecules in martian regolith analogs, we designed and built an experimental setup to measure near-IR reflectance spectra under martian atmospheric conditions. Six samples were studied that cover part of the diversity of Mars surface mineralogy: a hydrated ferric oxide (ferrihydrite), two igneous samples (volcanic tuff, and dunite sand), and three potential water rich soil materials (Mg-sulfate, smectite powder and a palagonitic soil, the JSC Mars-1 regolith stimulant). Sorption and desorption isotherms were measured at 243 K for water vapor pressure varying from 10−5 to ∼0.3 mbar (relative humidity: 10−4 to 75%). These measurements reveal a large diversity of behavior among the sample suite in terms of absolute amount of water adsorbed, shape of the isotherm and hysteresis between the adsorption and desorption branches. Simultaneous in situ spectroscopic observations permit a detailed analysis of the spectral signature of adsorbed water and also point to clear differences between the samples. Ferric (oxy)hydroxides like ferrihydrite or other phases present in palagonitic soils are very strong water adsorbent and may play an important role in the current martian water cycle by allowing large exchange of water between dust-covered regions and atmosphere at diurnal and seasonal scales.  相似文献   

11.
We have used HST/NICMOS to observe approximately 57% of the martian surface in 7 narrow band filters (0.97, 1.08, 1.13, 1.66, 1.90, 2.12, and 2.15 μm) during the 2003 opposition (Ls∼250°) and at a resolution of ∼12 km/pixel. Principal components analysis (PCA) of the dataset has identified regional variability on scales of hundreds of kilometers associated with differences in the near-infrared spectrum of Mars. Visualization of the data in principal component space has allowed us to identify spectral endmembers associated with the south polar cap, the classic bright terrains, northern Syrtis Major, southern Syrtis Major, Tyrrhena Terra, and Acidalia Planitia. The two Syrtis Major endmembers and the Tyrrhena Terra endmember differ in their absolute reflectivities but have the same spectral shape at wavelengths longer than 1.6 μm. The Acidalia endmember is distinct from the other dark terrain endmembers because it exhibits a strong negative near-IR spectral slope. Comparisons with spectral library measurements cannot provide unique constraints on the surface mineralogy for these sparsely-sampled spectral data. However, the observed spectral variations between Tyrrhena Terra and Syrtis Major are consistent with variations in iron- and sulfur-bearing minerals, and the relatively strong negative spectral slope in the spectrum of Acidalia is consistent with the presence of hydrated alteration products. Additional comparison with previous NICMOS observations taken in 1997 at Ls∼150° indicate that the average near-IR spectral slope of the Acidalia region is more negative during the late northern fall than during the mid northern summer. This may indicate seasonal variations in the presence of either adsorbed water or re-hydrated minerals in the regolith of Acidalia.  相似文献   

12.
Radiative control of surface temperature is a key characteristic of the martian environment and its low-density atmosphere. Here we show through meteorological modeling that surface temperature can be far from radiative equilibrium over numerous sloping terrains on Mars, where nighttime mesoscale katabatic winds impact the surface energy budget. Katabatic circulations induce both adiabatic atmospheric heating and enhancement of downward sensible heat flux, which then becomes comparable to radiative flux and acts to warm the ground. Through this mechanism, surface temperature can increase up to 20 K. One consequence is that warm signatures of surface temperature over slopes, observed through infrared spectrometry, cannot be systematically associated with contrasts of intrinsic soil thermal inertia. Apparent thermal inertia maps retrieved thus far possibly contain wind-induced structures. Another consequence is that surface temperature observations close to sloping terrains could allow the validation of model predictions for martian katabatic winds, provided contrasts in intrinsic thermal inertia can be ruled out. The thermal impact of winds is mostly discussed in this paper in the particular cases of Olympus Mons/Lycus Sulci and Terra Meridiani but is generally significant over any sloped terrains in low thermal inertia areas. It is even general enough to apply under daytime conditions, thereby providing a possible explanation for observed afternoon surface cooling, and to ice-covered terrains, thereby providing new insights on how winds could have shaped the present surface of Mars.  相似文献   

13.
The gray crystalline hematite at Meridiani Planum first discovered by the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) instrument occurs as spherules that have been interpreted as concretions. Analysis of the TES and mini-TES spectra shows that no 390 cm−1 feature is present in the characteristic martian hematite spectrum. Here, we incorporate the mid-IR optical constants of hematite into a simple Fresnel reflectance model to understand the effect of emission angle and crystal morphology on the presence or absence of the 390 cm−1 feature in an IR hematite spectrum. Based on the results we offer two models for the internal structure of the martian hematite spherules.  相似文献   

14.
Oxygen and carbon isotope ratios in the martian CO2 are key values to study evolution of volatiles on Mars. The major problems in spectroscopic determinations of these ratios on Mars are uncertainties associated with: (1) equivalent widths of the observed absorption lines, (2) line strengths in spectroscopic databases, and (3) thermal structure of the martian atmosphere during the observation. We have made special efforts to reduce all these uncertainties. We observed Mars using the Fourier Transform Spectrometer at the Canada–France–Hawaii Telescope. While the oxygen and carbon isotope ratios on Mars were byproducts in the previous observations, our observation was specifically aimed at these isotope ratios. We covered a range of 6022 to 6308 cm−1 with the highest resolving power of ν/δν=3.5×105 and a signal-to-noise ratio of 180 in the middle of the spectrum. The chosen spectral range involves 475 lines of the main isotope, 184 lines of 13CO2, 181 lines of CO18O, and 119 lines of CO17O. (Lines with strengths exceeding 10−27 cm at 218 K are considered here.) Due to the high spectral resolution, most of the lines are not blended. Uncertainties of retrieved isotope abundances are in inverse proportion to resolving power, signal-to-noise ratio, and square root of the number of lines. Laboratory studies of the CO2 isotope spectra in the range of our observation achieved an accuracy of 1% in the line strengths. Detailed observations of temperature profiles using MGS/TES and data on temperature variations with local time from two GCMs are used to simulate each absorption line at various heights in each part of the instrument field of view and then sum up the results. Thermal radiation of Mars' surface and atmosphere is negligible in the chosen spectral range, and this reduces errors associated with uncertainties in the thermal structure on Mars. Using a combination of all these factors, the highest accuracy has been achieved in measuring the CO2 isotope ratios: 13C/12C = 0.978 ± 0.020 and 18O/16O = 1.018 ± 0.018 times the terrestrial standards. Heavy isotopes in the atmosphere are enriched by nonthermal escape and sputtering, and depleted by fractionation with solid-phase reservoirs. The retrieved ratios show that isotope fractionation between CO2 and oxygen and carbon reservoirs in the solid phase is almost balanced by nonthermal escape and sputtering of O and C from Mars.  相似文献   

15.
Multiple datasets have demonstrated that the crust of Mars is fundamentally basaltic. However, spectral libraries used to interrogate thermal infrared spectra of Martian dark regions through spectral deconvolution have heretofore lacked mafic glasses despite the importance of amorphous phases (or phases with amorphous-like spectral signatures) in Martian mineralogy. To establish the presence and importance of basaltic-to-intermediate glasses in Martian lithologies, we created five such glasses, obtained their thermal infrared spectra and included the spectra in a library used to deconvolve nine regional Thermal Emission Spectrometer spectra from Mars. We employed the nonnegative least squares (NNLS) deconvolution method, which yields deconvolved phase abundances and the uncertainties associated with those abundances. The basaltic-to-intermediate glasses do not appear in the deconvolution solutions, indicating they are not globally or regionally important phases. Because Martian igneous or impact processes are capable of basaltic-to-intermediate glass formation, the lack of such glasses in the deconvolved mineralogies suggests either the glasses did not form in detectable quantities or they (or their signatures) have been removed. The masking or replacement of basaltic-to-intermediate glasses through alteration is supported by the appearance in the deconvolution solutions of amorphous phases (e.g., silica-rich glasses, opal) or phases with amorphous-like spectral signatures (e.g., clays, zeolites) that commonly form through aqueous alteration of mafic glasses. The glasses may still be important to local-scale thermal infrared studies given the basaltic nature of Mars and the variety of local-scale lithologies detected by various missions. The regional mineralogies derived from the NNLS deconvolution analysis divide into five statistically separable groups, which provide insight into regional trends in mineralogy.  相似文献   

16.
Data from the Mars Odyssey Gamma-Ray Spectrometer (GRS) instrument suite and results from numerical simulations of subsurface ground-ice stability have been used to estimate the depth of martian ground-ice. Geographic correlation between these estimates is remarkable; the relative ice table depth distributions also agree well. However, GRS-based estimates of ice table depth are generally deeper than predictions based on ground-ice stability simulations. This discrepancy may be related to heterogeneities in the martian surface such as rocks, dust, and albedo variations. We develop a multi-dimensional numerical model of ground-ice stability in a heterogeneous martian subsurface and use it to place the first quantitative constraints on the response of the ice table to meter-scale heterogeneities. We find that heterogeneities produce significant undulations/topography in the ice table at horizontal length scales of a few meters. Decimeter scale rocks create localized areas of deep ice, producing a vertical depression of 10-60 cm in the ice table over a horizontal range of 1-2 rock radii. Decimeter scale dust lenses produce locally shallow ice; however the magnitude of the vertical deflection of the ice table is small (1-4 cm). The effects of decimeter scale albedo variations on the ice table are nearly negligible, although albedo very weakly enhances the effects of dark rocks and bright dust on the ice table. Additionally, we investigate the role played by rocks in estimates of ice table depth based on orbital data. Surface rocks can account for more than half of the discrepancy between ice table depths inferred from GRS data and those predicted by theoretical ice-stability simulations that utilize thermophysical observations. Our results have considerable relevance to the up-coming Mars Scout Mission, Phoenix, because they indicate that the uncertainty in the ice table depth of a given region is greater than differences between current depth estimates. Likewise, small-scale depth variability due to heterogeneities at the eventual landing site is potentially greater than differences between current depth estimates.  相似文献   

17.
Acid weathering of plagioclase-pyroxene mixtures has been investigated with an open system kinetic dissolution model. The modeling reveals that elevated plagioclase/pyroxene ratios observed in some low-albedo martian regions and atmospheric dust could be partially caused by preferential dissolution of pyroxenes at pHs below ∼3-4. Surface materials with smaller grain sizes, affected by lower pH fluids, and/or exposed to longer durations of acid weathering would be enriched in plagioclase. If preferential dissolution is responsible for the observed mineral ratios, the dissolution process likely occurred on a large scale, such as weathering by acid atmospheric precipitates. If dissolution was continuous, modeled timeframes required to produce a high plagioclase/pyroxene ratio are short on geologic timescales; however, it is likely that acid weathering on Mars was episodic, possibly occurring over a longer period of time.  相似文献   

18.
The presence of water-bearing minerals on Mars has long been discussed, but little or no data exist showing that minerals such as smectites and zeolites may be present on the surface in a hydrated state (i.e., that they could contain H2O molecules in their interlayer or extra-framework sites, respectively). We have analyzed experimental thermodynamic and X-ray powder diffraction data for smectite and the most common terrestrial zeolite, clinoptilolite, to evaluate the state of hydration of these minerals under martian surface conditions. Thermodynamic data for clinoptilolite show that water molecules in its extra-framework sites are held very strongly, with enthalpies of dehydration for Ca-clinoptilolite up to three times greater than that for liquid water. Using these data, we calculated the Gibbs free energy of hydration of clinoptilolite and smectite as a function of temperature and pressure. The calculations demonstrate that these minerals would indeed be hydrated under the very low-P (H2O) conditions existing on Mars, a reflection of their high affinities for H2O. These calculations assuming the partial pressure of H2O and the temperature range expected on Mars suggest that, if present on the surface, zeolites and Ca-smectites could also play a role in affecting the diurnal variations in martian atmospheric H2O because their calculated water contents vary considerably over daily martian temperature ranges. The open crystal structure of clinoptilolite and existing hydration and kinetic data suggest that hydration/dehydration are not kinetically limited. Based on these calculations, it is possible that hydrated zeolites and clay minerals may explain some of the recent observations of significant amounts of hydrogen not attributable to water ice at martian mid-latitudes.  相似文献   

19.
To simulate the formation of impact glasses on Mars, an analogue of martian bright soil (altered volcanic soil JSC Mars-1) was melted at relevant oxygen fugacities using a pulsed laser and a resistance furnace. Reduction of Fe3+ to Fe2+ and in some cases formation of nanophase Fe0 in the glasses were documented by Mössbauer spectroscopy and TEM studies. Reflectance spectra for several size fractions of the JSC Mars-1 sample and the glasses were acquired between 0.3 and 25 μm. The glasses produced from the JSC Mars-1 soil show significant spectral variability depending on the method of production and the cooling rate. In general, they are dark and less red in the visible compared to the original JSC Mars-1 soil. Their spectra do not have absorption bands due to bound water and structural OH, have positive spectral slopes in the near-infrared range, and show two broad bands centered near 1.05 and 1.9 μm, typical of glasses rich in ferrous iron. The latter bands and low albedo partly mimic the spectral properties of martian dark regions, and may easily be confused with mafic materials containing olivine and low-Ca pyroxene. Due to their disordered structures and vesicular textures, the glasses show relatively weak absorption features from the visible to the thermal infrared. These weak absorption bands may be masked by the stronger bands of mafic minerals. Positive near-infrared spectral slopes typical of fresh iron-bearing impact or volcanic glasses may be masked either by oxide/dust coatings or by aerosols in the Mars' atmosphere. As a result, impact glasses may be present on the surface of Mars in significant quantities that have been either misidentified as other phases or masked by phases with stronger infrared features. Spectrometers with sufficient spatial resolution and wavelength coverage may detect impact glasses at certain locations, e.g., in the vicinity of fresh impact craters. Such dark materials are usually interpreted as accumulations of mafic volcanic sand, but the possibility of an impact melt origin of such materials also should be considered. In addition, our data suggest that high contents of feldspars or zeolites are not necessary to produce the transparency feature at 12.1 μm typical of martian dust spectra.  相似文献   

20.
Stephen D. Eckermann  Jun Ma 《Icarus》2011,211(1):429-442
Using a Curtis-matrix model of 15 μm CO2 radiative cooling rates for the martian atmosphere, we have computed vertical scale-dependent IR radiative damping rates from 0 to 200 km altitude over a broad band of vertical wavenumbers ∣m∣ = 2π(1-500 km)−1 for representative meteorological conditions at 40°N and average levels of solar activity and dust loading. In the middle atmosphere, infrared (IR) radiative damping rates increase with decreasing vertical scale and peak in excess of 30 days−1 at ∼50-80 km altitude, before gradually transitioning to scale-independent rates above ∼100 km due to breakdown of local thermodynamic equilibrium. We incorporate these computed IR radiative damping rates into a linear anelastic gravity-wave model to assess the impact of IR radiative damping, relative to wave breaking and molecular viscosity, in the dissipation of gravity-wave momentum flux. The model results indicate that IR radiative damping is the dominant process in dissipating gravity-wave momentum fluxes at ∼0-50 km altitude, and is the dominant process at all altitudes for gravity waves with vertical wavelengths ?10-15 km. Wave breaking becomes dominant at higher altitudes only for “fast” waves of short horizontal and long vertical wavelengths. Molecular viscosity plays a negligible role in overall momentum flux deposition. Our results provide compelling evidence that IR radiative damping is a major, and often dominant physical process controlling the dissipation of gravity-wave momentum fluxes on Mars, and therefore should be incorporated into future parameterizations of gravity-wave drag within Mars GCMs. Lookup tables for doing so, based on the current computations, are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号