首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Keiji Ohtsuki 《Icarus》2004,172(2):432-445
We examine the rotation of a small moonlet embedded in planetary rings caused by impacts of ring particles, using analytic calculation and numerical orbital integration for the three-body problem. Taking into account the Rayleigh distribution of particles' orbital eccentricities and inclinations, we evaluate both systematic and random components of rotation, where the former arises from an average of a large number of small impacts and the latter is contribution from large impacts. Calculations for parameter values corresponding to inner parts of Saturn's rings show that a moonlet would spin slowly in the prograde direction if most impactors are small particles whose velocity dispersion is comparable to or smaller than the moonlet's escape velocity. However, we also find that the effect of the random component can be significant, if the velocity dispersion of particles is larger and/or impacts of large particles comparable to the moonlet's size are common: in this case, both prograde and retrograde rotations can be expected. In the case of a small moonlet embedded in planetary rings of equal-sized particles, we find that the systematic component dominates the moonlet rotation when m/M?0.1 (m and M are the mass of a particle and a moonlet, respectively), while the random component is dominant when m/M?0.3. We derive the condition for the random component to dominate moonlet rotation on the basis of our results of three-body orbital integration, and confirm agreement with N-body simulation.  相似文献   

2.
Ryuji Morishima  Heikki Salo 《Icarus》2004,167(2):330-346
We investigate the spin rates of moonlets embedded in planetary rings, subject to collisions with surrounding small particles, using three-body integrations including friction and spins. All successive impacts of the particle with the moonlet are followed, including a possible sliding phase after the initial inelastic rebounds. Two methods for treating impacts, (1) as instantaneous velocity changes and (2) using an impact force model, are applied after Salo (1995, Icarus 117, 287). Conducting a series of integrations with various initial summed spin velocity of the moonlet and the particle, we determine the equilibrium spin rate for which the averaged torque vanishes. This equilibrium spin rate corresponds to the final spin rate of the moonlet if the moonlet is much larger than the surrounding particles; it also corresponds to the mean spin rate for a ring composed of identical particles. We find that the equilibrium spin rate is enhanced by sliding orbits as compared with the spin rate determined by considering only the first impacts of the particles with the moonlet. If the random velocities of incident particles are small enough, the resulting equilibrium spin rate of the moonlet can be larger than the synchronous rotation rate, for rp∼1, where rp denotes the sum of radii of the colliding pair normalized by their mutual Hill radius. In this special case aggregates without internal strength may become rotationally unstable. However, the equilibrium spin rate decreases with increasing random velocity, and aggregates are always rotationally stable in the more likely case where the relative velocities are comparable to the mutual escape velocity. We also compare our results with the mean spin rates found in previous N-body simulations, and find a good agreement for optically thin rings; however the spin rates for optically thick rings are significantly larger than those predicted by our three-body calculations.  相似文献   

3.
We both test and offer an alternative to a meteoroid bombardment model (M. R. Showalter 1998, Science282, 1099-1102) and suggest that anomalous localized brightenings in the F ring observed by Voyager result from disruptive collisions involving poorly consolidated moonlets, or “rubble piles.” This model can also explain the transient events observed during ring plane crossing. We have developed an evolutionary model that considers both the competing effects of accretion and disruption at the location of the F ring. Our numerical model is a Markov process where probabilities of mass transfer between the states of the system form a “transition matrix.” Successive multiplications of this matrix by the state vector generate expectation values of the distribution after each time step as the system approaches quasi-equilibrium. Competing effects of accretion and disruption in the F ring are found to lead to a bimodal distribution of ring particle sizes. In fact, our simulation predicts the presence of a belt of kilometer-sized moonlets in the F ring. These moonlets may continually disrupt one another and re-accrete on short time scales. We also agree with J. N. Cuzzi and J. A. Burns (1988, Icarus74, 284-324), who suggest that the classical F ring itself may be the consequence of a relatively recent collision between two of the largest of these yet unseen objects. Cassini observations can confirm the existence of the moonlet belt by directly observing these objects or the waves they create in the rings.  相似文献   

4.
《Icarus》1987,71(1):69-77
The gravitational influence of moonlets or satellites on the radial structure of the rings of Saturn has been calculated numerically. A drastic change in the surface mass density is obtained even after a single scattering process of the ring particles on a moonlet (satellite). The final surface density shows a significant radial structure, which has been used to estimate the radius and the mass of moonlets or satellites embedded in rings of low optical depth (E ring, Cassini division, C ring).  相似文献   

5.
From 378 Hubble Space Telescope WFPC2 images obtained between 1996-2004, we have measured the detailed nature of azimuthal brightness variations in Saturn's rings. The extensive geometric coverage, high spatial resolution (), and photometric precision of the UBVRI images have enabled us to determine the dependence of the asymmetry amplitude and longitude of minimum brightness on orbital radius, ring elevation, wavelength, solar phase angle, and solar longitude. We explore a suite of dynamical models of self-gravity wakes for two particle size distributions: a single size and a power law distribution spanning a decade in particle radius. From these N-body simulations, we calculate the resultant wake-driven brightness asymmetry for any given illumination and viewing geometry. The models reproduce many of the observed properties of the asymmetry, including the shape and location of the brightness minimum and the trends with ring elevation and solar longitude. They also account for the “tilt effect” in the A and B rings: the change in mean ring brightness with effective ring opening angle, |Beff|. The predicted asymmetry depends sensitively on dynamical ring particle properties such as the coefficient of restitution and internal mass density, and relatively weakly on photometric parameters such as albedo and scattering phase function. The asymmetry is strongest in the A ring, reaching a maximum amplitude A∼25% near a=128,000 km. Here, the observations are well-matched by an internal particle density near 450 kg m−3 and a narrow particle size distribution. The B ring shows significant asymmetry (∼5%) in regions of relatively low optical depth (τ∼0.7). In the middle and outer B ring, where τ?1, the asymmetry is much weaker (∼1%), and in the C ring, A<0.5%. The asymmetry diminishes near opposition and at shorter wavelengths, where the albedo of the ring particles is lower and multiple-scattering effects are diminished. The asymmetry amplitude varies strongly with ring elevation angle, reaching a peak near |Beff|=10° in the A ring and at |Beff|=15-20° in the B ring. These trends provide an estimate of the thickness of the self-gravity wakes responsible for the asymmetry. Local radial variations in the amplitude of the asymmetry within both the A and B rings are probably caused by regional differences in the particle size distribution.  相似文献   

6.
Using a Markov chain model, we consider the regolith growth on a small body in orbit around Saturn, subject to meteoritic bombardment, and assuming all impact ejecta are re-collected. We calculate the growth of regolith and the fractional pollution, assuming an initial pure ice body and amorphous carbon as a pollutant. We extend the meteorite flux of Cuzzi and Estrada (Cuzzi, J., Estrada, P. [1998]. Icarus 132, 1-35) to larger sizes to consider the effect of disruption of the moonlet on other moonlets in the ensemble. This is a relatively small effect, completely negligible for moonlets of 1 m radius. For the given impact model, fractional pollution reaches 22% for 1 m bodies, but only 3% for 10 m bodies, 1.7% for 20 m bodies, and 1% for 30 m bodies after 4 byr. By considering an ensemble of moonlets, which have identical cross-sections for releasing and capturing ejecta, this analysis can be extended to a model of particles in Saturn’s rings, where the calculated spectra can be compared to observed ring spectra. The measured spectral reflectance of Saturn’s rings from Cassini observations therefore constrains the size and age of the ring particles. The comparison between 1 m, 10 m, 20 m, and 30 m particles confirms that for larger ring mass, the current rings would be less polluted; for the largest particles, we expect negligible changes in the UV spectrum after 4 byr of meteoritic bombardment. We consider two end members for mixing of the meteoritic material: areal and intimate. Given the uncertainties in the actual mixing of the meteoritic infall and in its composition (as a worst case, we assume the meteoritic material is 100% amorphous carbon, intimately mixed) initially pure ice 30 m ring particles would darken after 4 byr of exposure by 15%.  相似文献   

7.
Heikki Salo  Jürgen Schmidt 《Icarus》2010,206(2):390-409
We study viscous instability of planetary rings in terms of N-body simulations. We show that for rings composed of fairly elastic particles (e.g. as in Hatzes et al. [Hatzes, A., Bridges, F.G., Lin, D.N.C., 1988. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc. 231, 1091-1115]) the instability may lead to the spontaneous formation of dense ringlets in a background of lower density. In most parts of Saturn’s rings the particle collisions are probably much more dissipative, as suggested by the presence of self-gravity wakes, and classic viscous instability should be suppressed. However, our results demonstrate that the mechanism of viscous instability itself is valid. The dynamical effects of size-dependent elasticity in a system with a size distribution have never been studied before. We show that this may in principle lead to a size-selective viscous instability, small particles concentrating on ringlets against the more uniform background of large particles.  相似文献   

8.
An explanation of the dynamical mechanism for apse alignment of the eccentric uranian rings is necessary before observations can be used to determine properties such as ring masses, particle sizes, and elasticities. The leading model (P. Goldreich and S. Tremaine 1979, Astron J.84, 1638-1641) relies on the ring self-gravity to accomplish this task, yet it yields equilibrium masses which are not in accord with Voyager radio measurements. We explore possible solutions such that the self-gravity and the collisional terms are both involved in the process of apse alignment. We consider limits that correspond to a hot and a cold ring, and we show that pressure terms may play a significant role in the equilibrium conditions for the narrow uranian rings. In the cold ring case, where the scale height of the ring near periapse is comparable to the ring particle size, we introduce a new pressure correction pertaining to a region of the ring where the particles are locked in their relative positions and jammed against their neighbors and the velocity dispersion is so low that the collisions are nearly elastic. In this case, we find a solution such that the ring self-gravity maintains apse alignment against both differential precession (m=1 mode) and the fluid pressure. We apply this model to the uranian α ring and show that, compared to the previous self-gravity model, the mass estimate for this ring increases by an order of magnitude. In the case of a hot ring, where the scale height can reach a value as much as 50 times the particle size, we find velocity dispersion profiles that result in pressure forces which act in such a way as to alter the ring equilibrium conditions, again leading to a ring mass increase of an order of magnitude. We find that such a velocity dispersion profile would require a different mechanism than is currently envisioned for establishing a heating/cooling balance in a finite-sized, inelastic particle ring. Finally, we introduce an important correction to the model of E. I. Chiang and P. Goldreich (2000, Astrophys. J.540, 1084-1090.). These authors relied on collisional forces in the last ∼100 m of an ∼10 km wide ring to increase ring equilibrium masses by up to a factor of ∼100. However, their treatment of ring edges as one-sided surface density drops leads to a strong dependence of the ring mass on the adjustable parameter λ (the length scale over which the ring's optical depth drops from order unity to zero at the edge). A treatment of the ring edges that takes into account their ridgelike structure retains the increase of ring mass of the order of ∼100 for a 10 km wide ring, while exhibiting weak dependence on λ. We conclude that a modified Chiang-Goldreich model can likely account for the masses of narrow, eccentric planetary rings; however, the role of shepherd satellites both in forming ring edges and in altering the streamline precession conditions near them needs to be explored further. It is also unclear whether a fully self-consistent ring model allows for the possibility of rings with negative eccentricity gradients.  相似文献   

9.
Keiji Ohtsuki 《Icarus》2006,183(2):384-395
We examine rotation rates of gravitating particles in low optical depth rings, on the basis of the evolution equation of particle rotational energy derived by Ohtsuki [Ohtsuki, K., 2006. Rotation rate and velocity dispersion of planetary ring particles with size distribution. I. Formulation and analytic calculation. Icarus 183, 373-383]. We obtain the rates of evolution of particle rotation rate and velocity dispersion, using three-body orbital integration that takes into account distribution of random velocities and rotation rates. The obtained stirring and friction rates are used to calculate the evolution of velocity dispersion and rotation rate for particles in one- and two-size component rings as well as those with a narrow size distribution, and agreement with N-body simulation is confirmed. Then, we perform calculations to examine equilibrium rotation rates and velocity dispersion of gravitating ring particles with a broad size distribution, from 1 cm up to 10 m. We find that small particles spin rapidly with 〈ω21/2/Ω?102-103, where ω and Ω are the particle rotation rate and its orbital angular frequency, respectively, while the largest particles spin slowly, with 〈ω21/2/Ω?1. The vertical scale height of rapidly rotating small particles is much larger than that of slowly rotating large particles. Thus, rotational states of ring particles have vertical heterogeneity, which should be taken into account in modeling thermal infrared emission from Saturn's rings.  相似文献   

10.
Cassini UVIS star occultations by the F ring detect 13 events ranging from 27 m to 9 km in width. We interpret these structures as likely temporary aggregations of multiple smaller objects, which result from the balance between fragmentation and accretion processes. One of these features was simultaneously observed by VIMS. There is evidence that this feature is elongated in azimuth. Some features show sharp edges. At least one F ring object is opaque and may be a “moonlet.” This possible moonlet provides evidence for larger objects embedded in Saturn's F ring, which were predicted as the sources of the F ring material by Cuzzi and Burns [Cuzzi, J.N., Burns, J.A., 1988. Icarus 74, 284-324], and as an outcome of tidally modified accretion by Barbara and Esposito [Barbara, J.M., Esposito, L.W., 2002. Icarus 160, 161-171]. We see too few events to confirm the bi-modal distribution which Barbara and Esposito [Barbara, J.M., Esposito, L.W., 2002. Icarus 160, 161-171] predict. These F ring structures and other youthful features detected by Cassini may result from ongoing destruction of small parent bodies in the rings and subsequent aggregation of the fragments. If so, the temporary aggregates are 10 times more abundant than the solid objects. If recycling by re-accretion is significant, the rings could be quite ancient, and likely to persist far into the future.  相似文献   

11.
Gravitational accretion in the rings of Saturn is studied with local N-body simulations, taking into account the dissipative impacts and gravitational forces between particles. Common estimates of accretion assume that gravitational sticking takes place beyond a certain distance (Roche distance) where the self-gravity between a pair of ring particles exceeds the disrupting tidal force of the central object, the exact value of this distance depending on the ring particles' internal density. However, the actual physical situation in the rings is more complicated, the growth and stability of the particle groups being affected also by the elasticity and friction in particle impacts, both directly via sticking probabilities and indirectly via velocity dispersion, as well as by the shape, rotational state and the internal packing density of the forming particle groups. These factors are most conveniently taken into account via N-body simulations. In our standard simulation case of identical 1 m particles with internal density of solid ice, ρ=900 kg m−3, following the Bridges et al., 1984 elasticity law, we find accretion beyond a=137,000-146,000 km, the smaller value referring to a distance where transient aggregates are first obtained, and the larger value to the distance where stable aggregates eventually form in every experiment lasting 50 orbital periods. Practically the same result is obtained for a constant coefficient of restitution εn=0.5. In terms of rp parameter, the sum of particle radii normalized by their mutual Hill radius, the above limit for perfect accretion corresponds to rp<0.84. Increased dissipation (εn=0.1), or inclusion of friction (tangential force 10% of normal force) shifts the accretion region inward by about 5000 km. Accretion is also more efficient in the case of size distribution: with a q=3 power law extending over a mass range of 1000, accretion shifts inward by almost 10,000 km. The aggregates forming in simulations via gradual accumulation of particles are synchronously rotating.  相似文献   

12.
We analyze stellar occultations by Saturn's rings observed with the Cassini Ultraviolet Imaging Spectrograph and find large variations in the apparent normal optical depth of the B ring with viewing angle. The line-of-sight optical depth is roughly independent of the viewing angle out of the ring plane so that optical depth is independent of the path length of the line-of-sight. This suggests the ring is composed of virtually opaque clumps separated by nearly transparent gaps, with the relative abundance of clumps and gaps controlling the observed optical depth. The observations can be explained with a model of self-gravity wakes like those observed in the A ring. These trailing spiral density enhancements are due to the competing processes of self-gravitational accretion of ring particles and Kepler shear. The B ring wakes are flatter and more closely packed than their neighbors in the A ring, with height-to-width ratios <0.1 for most of the ring. The self-gravity wakes are seen in all regions of the B ring that are not opaque. The observed variation in total B ring optical depth is explained by the amount of relatively empty space between the self-gravity wakes. Wakes are more tightly packed in regions where the apparent normal optical depth is high, and the wakes are more widely spaced in lower optical depth regions. The normal optical depth of the gaps between the wakes is typically less than 0.5 and shows no correlation with position or overall optical depth in the ring. The wake height-to-width ratio varies with the overall optical depth, with flatter, more tightly packed wakes as the overall optical depth increases. The highly flattened profile of the wakes suggests that the self-gravity wakes in Saturn's B ring correspond to a monolayer of the largest particles in the ring. The wakes are canted to the orbital direction in the trailing sense, with a trend of decreasing cant angle with increasing orbital radius in the B ring. We present self-gravity wake properties across the B ring that can be used in radiative transfer modeling of the ring. A high radial resolution (∼10 m) scan of one part of the B ring during a grazing occultation shows a dominant wavelength of 160 m due to structures that have zero cant angle. These structures are seen at the same radial wavelength on both ingress and egress, but the individual peaks and troughs in optical depth do not match between ingress and egress. The structures are therefore not continuous ringlets and may be a manifestation of viscous overstability.  相似文献   

13.
Stellar occultations by Saturn’s rings observed with the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft reveal that dusty features such as the F ring and the ringlets in the Encke and the Laplace Gaps have distinctive infrared transmission spectra. These spectra show a narrow optical depth minimum at wavelengths around 2.87 μm. This minimum is likely due to the Christiansen Effect, a reduction in the extinction of small particles when their (complex) refractive index is close to that of the surrounding medium. Simple Mie-scattering models demonstrate that the strength of this opacity dip is sensitive to the size distribution of particles between 1 and 100 μm across. Furthermore, the spatial resolution of the occultation data is sufficient to reveal variations in the transmission spectra within and among these rings. In both the Encke Gap ringlets and F ring, the opacity dip weakens with increasing local optical depth, which is consistent with the larger particles being concentrated near the cores of these rings. The Encke Gap ringlets also show systematically weaker opacity dips than the F ring and Laplace Gap ringlet, implying that the former has a smaller fraction of grains less than ∼30 μm across. However, the strength of the opacity dip varies most dramatically within the F ring; certain compact regions of enhanced optical depth lack an opacity dip and therefore appear to have a greatly reduced fraction of grains in the few-micron size range. Such spectrally-identifiable structures probably represent a subset of the compact optically-thick clumps observed by other Cassini instruments. These variations in the ring’s particle size distribution can provide new insights into the processes of grain aggregation, disruption and transport within dusty rings. For example, the unusual spectral properties of the F-ring clumps could perhaps be ascribed to small grains adhering onto the surface of larger particles in regions of anomalously low velocity dispersion.  相似文献   

14.
We analyze density waves in the Cassini Division of Saturn's rings revealed by multiple stellar occultations by Saturn's rings observed with the Cassini Ultraviolet Imaging Spectrograph. The dispersion and damping of density waves provide information on the local ring surface mass density and viscosity. Several waves in the Cassini Division are on gradients in the background optical depth, and we find that the dispersion of the wave reflects a change in the underlying surface mass density. We find that over most of the Cassini Division the ring opacity (the ratio of optical depth to surface mass density) is nearly constant and is ∼5 times higher than the opacity in the A ring where most density waves are found. However, the Cassini Division ramp, a 1100-km-wide, nearly featureless region of low optical depth that connects the Cassini Division to the inner edge of the A ring, has an opacity like that of the A ring and significantly less than that in the rest of the Cassini Division. This is consistent with particles in the ramp originating in the A ring and being transported into the Cassini Division through ballistic transport processes. Damping of the waves in the Cassini Division suggests a vertical thickness of 3–6 m. Using a mean opacity of 0.1 cm2/g we find the mass of the Cassini Division, excluding the ramp, is 3.1×1016 kg while the mass of the Cassini Division ramp, with an opacity of 0.015 cm2/g, is 1.1×1017 kg. Assuming a power-law size distribution for the ring particles, the larger opacity of the main Cassini Division is consistent with the largest ring particles there being ∼5 times smaller than the largest particles in the ramp and A ring.  相似文献   

15.
P.D. Nicholson  M.M. Hedman 《Icarus》2010,206(2):410-423
An increasing body of evidence shows that, at the sub-km level, Saturn’s main A and B rings are dominated by an ever-changing pattern of elongated, canted structures known as self-gravity wakes. Best known for causing azimuthal variations in the rings’ reflectivity, these structures also have a profound influence on how the transmission of the rings varies with both longitude and opening angle, B (Colwell et al. [2006] Geophys. Res. Lett. 33, 7201; Colwell et al. [2007] Icarus 190, 127-144; Hedman et al. [2007] Astron. J. 133, 2624-2629). We use data from three stellar occultations observed by Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) to measure the transmission of the rings as a function of B, when viewed parallel to the wakes. These data are used to constrain properties of the self-gravity wakes as a function of radius across the A and B rings: specifically the fractional width of the gaps between the wakes, G/λ, and the average normal optical depth in the gaps, τG. We find that the overall normal optical depth of the rings, τn is primarily controlled by G/λ, which varies between <0.05 and ∼0.70 in the A and B rings. The gaps, however, are not completely empty, being filled by material — possibly cm-sized ring particles — with an average normal optical depth which varies from 0.12 to ∼0.4. In addition to regional variations, local variations in τG are seen in the regular structure which dominates the inner B ring, and in the environs of strong density waves in the A ring. The same model applied to the lower optical depth Cassini Division reveals very little evidence of self-gravity wakes, except where τn exceeds ∼0.25.  相似文献   

16.
Soon after the Cassini-Huygens spacecraft entered orbit about Saturn on 1 July 2004, its Visual and Infrared Mapping Spectrometer obtained two continuous spectral scans across the rings, covering the wavelength range 0.35-5.1 μm, at a spatial resolution of 15-25 km. The first scan covers the outer C and inner B rings, while the second covers the Cassini Division and the entire A ring. Comparisons of the VIMS radial reflectance profile at 1.08 μm with similar profiles at a wavelength of 0.45 μm assembled from Voyager images show very little change in ring structure over the intervening 24 years, with the exception of a few features already known to be noncircular. A model for single-scattering by a classical, many-particle-thick slab of material with normal optical depths derived from the Voyager photopolarimeter stellar occultation is found to provide an excellent fit to the observed VIMS reflectance profiles for the C ring and Cassini Division, and an acceptable fit for the inner B ring. The A ring deviates significantly from such a model, consistent with previous suggestions that this region may be closer to a monolayer. An additional complication here is the azimuthally-variable average optical depth associated with “self-gravity wakes” in this region and the fact that much of the A ring may be a mixture of almost opaque wakes and relatively transparent interwake zones. Consistently with previous studies, we find that the near-infrared spectra of all main ring regions are dominated by water ice, with a typical regolith grain radius of 5-20 μm, while the steep decrease in visual reflectance shortward of 0.6 μm is suggestive of an organic contaminant, perhaps tholin-like. Although no materials other than H2O ice have been identified with any certainty in the VIMS spectra of the rings, significant radial variations are seen in the strength of the water-ice absorption bands. Across the boundary between the C and B rings, over a radial range of ∼7000 km, the near-IR band depths strengthen considerably. A very similar pattern is seen across the outer half of the Cassini Division and into the inner A ring, accompanied by a steepening of the red slope in the visible spectrum shortward of 0.55 μm. We attribute these trends—as well as smaller-scale variations associated with strong density waves in the A ring—to differing grain sizes in the tholin-contaminated icy regolith that covers the surfaces of the decimeter-to-meter sized ring particles. On the largest scale, the spectral variations seen by VIMS suggest that the rings may be divided into two larger ‘ring complexes,’ with similar internal variations in structure, optical depth, particle size, regolith texture and composition. The inner complex comprises the C and B rings, while the outer comprises the Cassini Division and A ring.  相似文献   

17.
In late 2004 and 2005 the Cassini composite infrared spectrometer (CIRS) obtained spatially resolved thermal infrared radial scans of Saturn's main rings (A, B and C, and Cassini Division) that show ring temperatures decreasing with increasing solar phase angle, α, on both the lit and unlit faces of the ring plane. These temperature differences suggest that Saturn's main rings include a population of ring particles that spin slowly, with a spin period greater than 3.6 h, given their low thermal inertia. The A ring shows the smallest temperature variation with α, and this variation decreases with distance from the planet. This suggests an increasing number of smaller, and/or more rapidly rotating ring particles with more uniform temperatures, resulting perhaps from stirring by the density waves in the outer A ring and/or self-gravity wakes.The temperatures of the A and B rings are correlated with their optical depth, τ, when viewed from the lit face, and anti-correlated when viewed from the unlit face. On the unlit face of the B ring, not only do the lowest temperatures correlate with the largest τ, these temperatures are also the same at both low and high α, suggesting that little sunlight is penetrating these regions.The temperature differential from the lit to the unlit side of the rings is a strong, nearly linear, function of optical depth. This is consistent with the expectation that little sunlight penetrates to the dark side of the densest rings, but also suggests that little vertical mixing of ring particles is taking place in the A and B rings.  相似文献   

18.
This paper describes N-body simulations of two regions of the saturnian ring system and examines what we might expect the Cassini orbiter to see in those areas. The first region is the edge of the Encke gap in the A ring that is perturbed by the satellite, Pan. Our previous simulations of this region neglected particle self-gravity [Lewis and Stewart, 2000a, Bull. Am. Astron. Soc. 34, 883]. Here we examine the interactions of the wakes caused by Pan with the wakes that form from local gravitational instabilities. We find that the two phenomena do not normally coexist and predict that measurements of particle sizes between the moon wakes should reflect the true particle size distribution of the region and not what is caused by gravitational aggregation. The region between the Encke gap edge and the first wake peak is an exception to this rule because our simulations exhibit the formation of exceptionally large gravity-induced wakes in this region. We also describe simulations of the F ring and explain the nature of braid-like structures that form naturally when the ring is perturbed by a single moon on an eccentric orbit. Finally, we discuss the very dynamic nature of the F ring system and how this should be taken into account when interpreting observations and even when planning future observations of this system.  相似文献   

19.
Nicole Albers  Frank Spahn 《Icarus》2006,181(1):292-301
In planetary rings, binary collisions and mutual gravity are the predominant particle interactions. Based on a viscoelastic contact model we implement the concept of static adhesion. We discuss the collision dynamics and obtain a threshold velocity for restitution or agglomeration to occur. The latter takes place within a range of a few cm s−1 for icy grains at low temperatures. The stability of such two-body agglomerates bound by adhesion and gravity in a tidal environment is discussed and applied to the saturnian system. A maximal agglomerate size for a given orbit location is obtained. In this way we are able to resolve the borderline of the zone where agglomerates can exist as a function of the agglomerate size and thus gain an alternative to the classical Roche limit. An increasing ring grain size with distance to Saturn as observed by the VIMS-experiment on board the Cassini spacecraft can be found by our estimates and implications for the saturnian system will be addressed.  相似文献   

20.
Ryuji Morishima  Heikki Salo 《Icarus》2006,181(1):272-291
Previous self-gravitating simulations of dense planetary rings are extended to include particle spins. Both identical particles as well as systems with a modest range of particle sizes are examined. For a ring of identical particles, we find that mutual impact velocity is always close to the escape velocity of the particles, even if the total rms velocity dispersion of the system is much larger, due to collective motions associated to wakes induced by near-gravitational instability or by viscous overstability. As a result, the spin velocity (i.e., the product of the particle radius and the spin frequency) maintained by mutual impacts is also of the order of the escape velocity, provided that friction is significant. For the size distribution case, smaller particles have larger impact velocities and thus larger spin velocities, particularly in optically thick rings, since small particles move rather freely between wakes. Nevertheless, the maximum ratio of spin velocities between the smallest and largest particles, as well as the ratio for translational velocities, stays below about 5 regardless of the width of the size distribution. Particle spin state is one of the important factors affecting the temperature difference between the lit and unlit face of Saturn's rings. Our results suggest that, to good accuracy, the spin frequency is inversely proportional to the particle size. Therefore, the mixing ratio of fast rotators to slow rotators on the scale of the thermal relaxation time increases with the width of the particle size distribution. This will offer means to constrain the particle size distribution with the systematic thermal infrared observations carried by the Cassini probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号