首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we present the first quantitative study of the gas to solid particle conversion in a Radio Frequency dusty plasma experiment simulating the complex atmospheric reactivity on Titan.Analogs of Titan’s aerosols have been produced in different N2-CH4 gas mixtures. Using in situ mass spectrometry, it has been found that, by varying the initial methane concentration, aerosols could be produced in methane steady state concentrations similar to Titan’s atmospheric conditions. In our experiment, an initial ∼5% methane concentration is necessary to ensure a ∼1.5% methane steady state concentration in the plasma.The tholin mass production rate has been quantified as a function of the initial methane concentration. A maximum was found for a steady state CH4 concentration in agreement with Titan’s atmospheric CH4 concentrations. At this maximum, the tholin C/N ratio is about 1.45 and the carbon gas to solid conversion yield is about 35%.We have modeled the mass production rate by a parabolic function, highlighting two competitive chemical regimes controlling the tholin production efficiency: an efficient growth process which is proportional to the methane consumption, and an inhibiting process which opposes the growth process and dominates it for initial methane concentrations higher than ∼5%. To explain these two opposite effects, we propose two mechanisms: one involving HCN patterns in the tholins for the growth process, and one involving the increasing amount of atomic hydrogen in the plasma as well as the increase in aliphatic contributions in the tholins for the inhibiting process. This study highlights new routes for understanding the chemical growth of the organic aerosols in Titan’s atmosphere.  相似文献   

2.
Sang J. Kim  John Caldwell 《Icarus》1982,52(3):473-482
The 8.6-μm emission feature of Titan's infrared spectrum was analyzed using the Voyager temperature-pressure profile. Although both C3H8 and CH3D have bands at that wavelength, we show that CH3D dominates the observed emission on Titan. We derived a CH3D/CH4 mixing ratio using this band and the strong CH4 band at 7.7 μm. The corresponding D/H ratio is 4.2?1.5+2 × 10?4, neglecting deuterium fractionation with other molecules. The main uncertainty in this value comes from the continuum emission characteristics. The D/H ratio is apparently significantly enhanced on Titan with respect to published values for Saturn.  相似文献   

3.
Molecular nitrogen, the main component of the modern atmosphere of Titan, may have formed without significant changes in the nitrogen and hydrogen isotopic composition from the clathrate hydrate of ammonia NH3 · H2OSLD, which is the main accreted form of nitrogen. The most preferable transformation mechanism of NH3 · H2OSLD into atmospheric N2 is its thermal decomposition in the interior of Titan rather than the photochemical decomposition of ammonia in the upper atmosphere of early Titan. The photolysis of ammonia does not lead to a change in the isotopic composition of nitrogen, as all the nitrogen remains in Titan’s atmosphere. The photolysis of NH does not lead to a change in the isotopic composition of nitrogen in Titan’s atmosphere. Fractionation of hydrogen and nitrogen isotopes during the impacts of comets with Titan does not seem to be significant either. It will be possible to determine the dissociative fractionation factor, the original ratio 14N/15N, and the mass of Titan’s original atmosphere when fractionation of nitrogen isotopes in Titan’s atmosphere is examined in additional theoretical and experimental studies that take into account processes occurring during the formation of a system of Saturn’s satellites.  相似文献   

4.
The origin of Titan’s atmospheric methane is a key issue for understanding the origin of the saturnian satellite system. It has been proposed that serpentinization reactions in Titan’s interior could lead to the formation of the observed methane. Meanwhile, alternative scenarios suggest that methane was incorporated in Titan’s planetesimals before its formation. Here, we point out that serpentinization reactions in Titan’s interior are not able to reproduce the deuterium over hydrogen (D/H) ratio observed at present in methane in its atmosphere, and would require a maximum D/H ratio in Titan’s water ice 30% lower than the value likely acquired by the satellite during its formation, based on Cassini observations at Enceladus. Alternatively, production of methane in Titan’s interior via radiolytic reactions with water can be envisaged but the associated production rates remain uncertain. On the other hand, a mechanism that easily explains the presence of large amounts of methane trapped in Titan in a way consistent with its measured atmospheric D/H ratio is its direct capture in the satellite’s planetesimals at the time of their formation in the solar nebula. In this case, the mass of methane trapped in Titan’s interior can be up to ∼1300 times the current mass of atmospheric methane.  相似文献   

5.
In the lower troposphere of the Titan the temperature is about 90 K, therefore the chemical production of compounds in the CH4/N2 atmosphere is extremely slow. However, atmospheric electricity could provide conditions at which chemical reactions are fast. This paper is based on the assumption that there are lightning discharges in the Titan’s lower atmosphere. The temporal temperature profile of a gas parcel after lightning was calculated at the conditions of 10 km above the Titan’s surface. Using this temperature profile, composition of the after-lightning atmosphere was simulated using a detailed chemical kinetic mechanism consisting of 1829 reactions of 185 species. The main reaction paths leading to the products were investigated. The main products of lighting discharges in the Titan’s atmosphere are H2, HCN, C2N2, C2H2, C2H4, C2H6, NH3 and H2CN. The annual production of these compounds was estimated in the Titan’s atmosphere.  相似文献   

6.
Chemical reactions and volatile supply through hypervelocity impacts may have played a key role for the origin and evolution of both planetary and satellite atmospheres. In this study, we evaluate the role of impact-induced N2 production from reduced nitrogen-bearing solids proposed to be contained in Titan’s crust, ammonium sulfate ((NH4)2SO4), for the replenishment of N2 to the atmosphere in Titan’s history. To investigate the conversion of (NH4)2SO4 into N2 by hypervelocity impacts, we measured gases released from (NH4)2SO4 that was exposed to hypervelocity impacts created by a laser gun. The sensitivity and accuracy of the measurements were enhanced by using an isotope labeling technique for the target. We obtained the efficiency of N2 production from (NH4)2SO4 as a function of peak shock pressure ranging from ∼8 to ∼45 GPa. Our results indicate that the initial and complete shock pressures for N2 degassing from (NH4)2SO4 are ∼10 and ∼25 GPa, respectively. These results suggest that cometary impacts on Titan (i.e., impact velocity vi > ∼8 km/s) produce N2 efficiently; whereas satellitesimal impacts during the accretion (i.e., vi < 4 km/s) produce N2 only inefficiently. Even when using the proposed small amount of (NH4)2SO4 content in the crust (∼4 wt.%) (Fortes, A.D. et al., 2007. Icarus 188, 139-153), the total amount of N2 provided through cometary impacts over 4.5 Ga reaches ∼2-6 times the present atmospheric N2 (i.e., ∼7 × 1020-2 × 1021 [mol]) based on the measured production efficiency and results of a hydrodynamic simulation of cometary impacts onto Titan. This implies that cometary impacts onto Titan’s crust have the potential to account for a large part of the present N2 through the atmospheric replenishment after the accretion.  相似文献   

7.
We have analyzed Titan observations performed by the Infrared Space Observatory (ISO) in the range 7-30 μm. The spectra obtained by three of the instruments on board the mission (the short wavelength spectrometer, the photometer, and the camera) were combined to provide new and more precise thermal and compositional knowledge of Titan’s stratosphere. With the high spectral resolution achieved by the SWS (much higher than that of the Voyager 1 IRIS spectrometer), we were able to detect and separate the contributions of most of the atmospheric gases present on Titan and to determine disk-averaged mole fractions. We have also tested existing vertical distributions for C2H2, HCN, C2H6, and CO2 and inferred some information on the abundance of the first species as a function of altitude. From the CH3D band at 1161 cm−1 and for a CH4 mole fraction assumed to be 1.9% in Titan’s stratosphere, we have obtained the monodeuterated methane-averaged abundance and retrieved a D/H isotopic ratio of 8.7−1.9+3.2 × 10−5. We discuss the implications of this value with respect to current evolutionary scenarios for Titan. The ν5 band of HC3N at 663 cm−1 was observed for the first time in a disk-averaged spectrum. We have also obtained a first tentative detection of benzene at 674 cm−1, where the fit of the ISO/SWS spectrum at R = 1980 is significantly improved when a constant mean mole fraction of 4 × 10−10 of C6H6 is incorporated into the atmospheric model. This corresponds to a column density of ∼ 2 × 1015 molecules cm−2 above the 30-mbar level. We have also tested available vertical profiles for HC3N and C6H6 and adjusted them to fit the data. Finally, we have inferred upper limits of a few 10−10 for a number of molecules proposed as likely candidates on Titan (such as allene, acetonitrile, propionitrile, and other more complex gases).  相似文献   

8.
The discovery that Titan had an atmosphere was made by the identification of methane in the satellite's spectrum in 1944. But the abundance of this gas and the identification of other major constituents required the 1980 encounter by the Voyager 1 spacecraft. In the intervening years, traces of C2H2, C2H4, C2H6 and CH3D had been posited to interpret emission bands in Titan's i.r. spectrum. The Voyager Infra-red Spectrometer confirmed that these gases were present and added seven more. The atmosphere is now known to be composed primarily of molecular nitrogen. But the derived mean molecular weight suggests the presence of a significant amount of some heavier gas, most probably argon. It is shown that this argon must be primordial, and that one can understand the evolution of Titan's atmosphere in terms of degassing of a mixed hydrate dominated by CH4, N2 and 36Ar. This model satisfactorily explains the absence of neon and makes no special requirements on the satellite's surface temperature.  相似文献   

9.
As on Earth, Titan’s atmosphere plays a major role in the cooling of heated surfaces. We have assessed the mechanisms by which Titan’s atmosphere, dominantly N2 at a surface pressure of 1.5 × 105 Pa, cools a warm or heated surface. These heated areas can be caused by impacts generating melt sheets and (possibly) by endogenic processes emplacing cryolavas (a low-temperature liquid that freezes on the surface). We find that for a cooling cryolava flow, lava lake, or impact melt body, heat loss is mainly driven by atmospheric convection. Radiative heat loss, a dominant heat loss mechanism with terrestrial silicate lava flows, plays only a minor role on Titan. Long-term cooling and solidification are dependent on melt sheet or flow thickness, and also local climate, because persistent winds will speed cooling. Relatively rapid cooling caused by winds reduces the detectability of these thermal events by instruments measuring surface thermal emission. Because surface temperature drops by ≈50% within ≈1 day of emplacement, fresh flows or impact melt may be difficult to detect via thermal emission unless an active eruption is directly observed. Cooling of flow or impact melt surfaces are orders of magnitude faster on Titan than on airless moons (e.g., Enceladus or Europa).Although upper surfaces cool fast, the internal cooling and solidification process is relatively slow. Cryolava flow lengths are, therefore, more likely to be volume (effusion) limited, rather than cooling-limited. More detailed modeling awaits constraints on the thermophysical properties of the likely cryomagmas and surface materials.  相似文献   

10.
R. de Kok  P.G.J. Irwin 《Icarus》2010,209(2):854-857
We use Cassini far-infrared limb and nadir spectra, together with recent Huygens results, to shed new light on the controversial far-infrared opacity sources in Titan’s troposphere. Although a global cloud of large CH4 ice particles around an altitude of 30 km, together with an increase in tropospheric haze opacity with respect to the stratosphere, can fit nadir and limb spectra well, this cloud does not seem consistent with shortwave measurements of Titan. Instead, the N2-CH4 collision-induced absorption coefficients are probably underestimated by at least 50% for low temperatures.  相似文献   

11.
We propose a new interpretation of the D/H ratio in CH4 observed in the atmosphere of Titan. Using a turbulent evolutionary model of the subnebula of Saturn (O. Mousis et al. 2002, Icarus156, 162-175), we show that in contrast to the current scenario, the deuterium enrichment with respect to the solar value observed in Titan cannot have occurred in the subnebula. Instead, we argue that values of the D/H ratio measured in Titan were obtained in the cooling solar nebula by isotopic thermal exchange of hydrogen with CH3D originating from interstellar methane D-enriched ices that vaporized in the nebula. The rate of the isotopic exchange decreased with temperature and became fully inhibited around 200 K. Methane was subsequently trapped in crystalline ices around 10 AU in the form of clathrate hydrates formed at 60 K, and incorporated into planetesimals that formed the core of Titan. The nitrogen-methane atmosphere was subsequently outgassed from the decomposition of the hydrates (Mousis et al. 2002). By use of a turbulent evolutionary model of the solar nebula (O. Mousis et al. 2000, Icarus148, 513-525), we have reconstructed the entire story of D/H in CH4, from its high value in the early solar nebula (acquired in the presolar cloud) down to the value measured in Titan's atmosphere today. Considering the two last determinations of the D/H ratio in Titan—D/H=(7.75±2.25)×10−5 obtained from ground-based observations (Orton 1992, In: Symposium on Titan, ESA SP-338, pp. 81-85), and D/H=(8.75+3.25−2.25)×10−5, obtained from ISO observations (Coustenis et al. 2002, submitted for publication)—we inferred an upper limit of the D/H ratio in methane in the early outer solar nebula of about 3×10−4. Our approach is consistent with the scenario advocated by several authors in which the atmospheric methane of Titan is continuously replenished from a reservoir of clathrate hydrates of CH4 at high pressures, located in the interior of Titan. If this scenario is correct, observations of the satellite to be performed by the radar, the imaging system, and other remote sensing instruments aboard the spacecraft of the Cassini-Huygens mission from 2004 to 2008 should reveal local disruptions of the surface and other signatures of the predicted outgassing.  相似文献   

12.
Molecular level Monte Carlo simulations have been performed with various model potentials for the CH4-N2 vapor-liquid equilibrium at conditions prevalent in the atmosphere of Saturn’s moon Titan. With a single potential parameter adjustment to reproduce the vapor-liquid equilibrium at a higher temperature, Monte Carlo simulations are in excellent agreement with available laboratory measurements. The results demonstrate the ability of simple pair potential models to describe phase equilibria with the requisite accuracy for atmospheric modeling, while keeping the number of adjustable parameters at a minimum. This allows for stable extrapolation beyond the range of available laboratory measurements into the supercooled region of the phase diagram, so that Monte Carlo simulations can serve as a reference to validate phenomenological models commonly used in atmospheric modeling. This is most important when the relevant region of the phase diagram lies outside the range of laboratory measurements as in the case of Titan. The present Monte Carlo simulations confirm the validity of phenomenological thermodynamic equations of state specifically designed for application to Titan. The validity extends well into the supercooled region of the phase diagram. The possible range of saturation levels of Titan’s troposphere above altitudes of 7 km is found to be completely determined by the remaining uncertainty of the most recent revision of the Cassini-Huygens data, yielding a saturation of 100 ± 6% with respect to CH4-N2 condensation up to an altitude of about 20 km.  相似文献   

13.
Using spectra taken with NIRSPEC (Near Infrared Spectrometer) and adaptive optics on the Keck II telescope, we resolved the latitudinal variation of the 3ν2 band of CH3D at 1.56 μm. As CH3D is less abundant than CH4 by a factor of 50±10×10-5, these CH3D lines do not saturate in Titan’s atmosphere, and are well characterized by laboratory measurements. Thus they do not suffer from the large uncertainties of the CH4 lines that are weak enough to be unsaturated in Titan. Our measurements of the methane abundance are confined to the latitude range of 32°S-18°N and longitudes sampled by a 0.04″ slit centered at ∼195°W. The methane abundance below 10 km is constant to within 20% in the tropical atmosphere sampled by our observations, consistent with the low surface insolation and lack of surface methane [Griffith, C.A., McKay, C.P., Ferri, F., 2008. Astrophys. J. 687, L41-L44].  相似文献   

14.
《Icarus》1987,72(2):381-393
Bombardment of Titan by Uranus-Neptune planetesimals and/or fragments of a disrupted Hyperion progenitor supplied more than enough energy to drive vigorous atmospheric shock chemistry. Chemical equilibrium modeling of the shock products in simulated atmospheres indicates that impact energy has produced large amounts of N2 and organic compounds over Titan's history. The mole fraction of organic compounds in the shocked gas mixture (T = 1200−2500°K, P = 10−1−103bar) reaches a maximum of approximately 3% in a current Titan mixture and 12% in a primordial CH4, NH3-rich mixture. Atmospheric water mixing ratio controls the organic yield in shock reactions, but its limiting effect may have been reduced by cold-trapping of water in a cooling atmosphere. Kinetic inhibition of graphite formation in the shocked gas enhanced the yield of radicals and organic. The resulting mixture of carbonaceous soot and condensed hydrocarbons subsequently settled onto the surface; the depth of the generated layer was on the order of hundreds of meters. Impact shock energy was capable of converting massive amounts of NH3 to N2 early in Titan history—over twice the present atmospheric and 1.5 times the total ocean-atmospheric inventory of N2. Shock conversion of NH3 into N2 bypasses the difficulties of other schemes of N2 production and may have been of singular importance in Titan's atmospheric evolution.  相似文献   

15.
We report on mid-resolution (R∼2000) spectroscopic observations of Titan, acquired in November 2000 with the Very Large Telescope and covering the range 4.75-5.07 μm. These observations provide a detailed characterization of the CO (1-0) vibrational band, clearly separating for the first time individual CO lines (P10 to P19 lines of 13CO). They indicate that the CO/N2 mixing ratio in Titan’s troposphere is 32±10 ppm. Comparison with photochemical models indicates that CO is not in a steady state in Titan’s atmosphere. The observations confirm that Titan’s 5-μm continuum geometric albedo is ∼0.06, and further indicates a ∼20% albedo decrease over 4.98-5.07 μm. Nonzero flux is detected at the 0.01 geometric albedo level in the saturated core of the 12CO (1-0) band, at 4.75-4.85 μm, providing evidence for backscattering on the stratospheric haze. Finally, emission lines are detected at 4.75-4.835 μm, coinciding in position with lines from the CO(1-0) and/or CO(2-1) bands. Matching them by thermal emission would require Titan’s stratosphere to be much warmer (by ∼ 25 K at 0.1 mbar) than indicated by the methane 7.7-μm emission and the Voyager radio-occultation. We show instead that a nonthermal mechanism, namely solar-excited fluorescence, is a more plausible source for these emissions. Improved observations and laboratory measurements on the vibrational-translational relaxation of CO are needed for further interpretation of these emissions in terms of a CO stratospheric mixing ratio.  相似文献   

16.
New independent constraints on the amount of water delivered to Earth by comets are derived using the 15N/14N isotopic ratio, measured to be roughly twice as high in cometary CN and HCN as in the present Earth. Under reasonable assumptions, we find that no more than a few percent of Earth’s water can be attributed to comets, in agreement with the constraints derived from D/H. Our results also suggest that a significant part of Earth’s atmospheric nitrogen might come from comets. Since the 15N/14N isotopic ratio is not different in Oort-cloud and Kuiper-belt comets, our estimates apply to the contribution of both types of objects.  相似文献   

17.
“Water and related chemistry in the Solar System” is a Herschel Space Observatory Guaranteed-Time Key Programme. This project, approved by the European Space Agency, aims at determining the distribution, the evolution and the origin of water in Mars, the outer planets, Titan, Enceladus and the comets. It addresses the broad topic of water and its isotopologues in planetary and cometary atmospheres. The nature of cometary activity and the thermodynamics of cometary comae will be investigated by studying water excitation in a sample of comets. The D/H ratio, the key parameter for constraining the origin and evolution of Solar System species, will be measured for the first time in a Jupiter-family comet. A comparison with existing and new measurements of D/H in Oort-cloud comets will constrain the composition of pre-solar cometary grains and possibly the dynamics of the protosolar nebula. New measurements of D/H in giant planets, similarly constraining the composition of proto-planetary ices, will be obtained. The D/H and other isotopic ratios, diagnostic of Mars’ atmosphere evolution, will be accurately measured in H2O and CO. The role of water vapor in Mars’ atmospheric chemistry will be studied by monitoring vertical profiles of H2O and HDO and by searching for several other species (and CO and H2O isotopes). A detailed study of the source of water in the upper atmosphere of the Giant Planets and Titan will be performed. By monitoring the water abundance, vertical profile, and input fluxes in the various objects, and when possible with the help of mapping observations, we will discriminate between the possible sources of water in the outer planets (interplanetary dust particles, cometary impacts, and local sources). In addition to these inter-connected objectives, serendipitous searches will enhance our knowledge of the composition of planetary and cometary atmospheres.  相似文献   

18.
An investigation of the capabilities and science goals of a submillimeter-wave heterodyne sounder onboard a Titan orbiter is presented. Based on a model of Titan’s submillimeter spectrum, and including realistic instrumental performances, we show that passive limb observations of Titan’s submillimeter radiation would bring novel and unique information on the dynamical and chemical state of Titan’s atmosphere, particularly in the so far poorly probed 500-900 km region. The 300-360, 540-660 and 1080-1280 GHz spectral ranges appear especially promising, and could be explored with an instrument equipped with a tunable local oscillator system. Vertical temperature profiles can be determined up to ∼1200 km using rotational lines of CH4, CO, and HCN. Winds can be measured over the 200-1200 km altitude range with an accuracy of 3-5 m/s from Doppler shift measurements of any strong optically thin line. Numerous molecular species are accessible, including H2O, NH3, CH3C2H, CH2NH, and several nitriles (HC3N, HC5N, CH3CN, and C2H3CN). Many of them are expected to be detectable in a large fraction of the atmosphere and in some cases at all levels, providing an observational link between stratospheric and thermospheric chemistry. Isotopic variants of some of these species can also be measured, providing new measurements of H, C, N, and O isotopic ratios. Mapping of the thermal, wind, and composition fields, best achieved from a polar orbit and with an articulated antenna, would provide a new view of the couplings between chemistry and dynamics over an extended altitude range of Titan’s atmosphere. Additional science goals at Saturn and Enceladus are briefly discussed.  相似文献   

19.
The spectrum of Titan from 4800 to 11 000 Å has many CH4 absorption bands which cover a range of intensities of several orders of magnitude. Yet even the strongest of these bands in Titan's spectrum has considerable residual central intensity. Some investigators have concluded that these strong CH4 bands must be highly saturated, but recent laboratory measurements of the bands made at room temperature show that curve-of-growth saturation is very small. At the presumed low pressures and temperatures in Titan's atmosphere, we show that saturation is very dependent on the band model parameters. However, in either a simple reflecting layer model or in a homogeneous scattering model saturation cannot be the principal cause of the filling in of these strong CH4 bands if our best estimates of the band model parameters are correct. We find that an inhomogeneous scattering model atmosphere with fine “Axel dust” above most ot the CH4 gas is needed to fill in the band centers. The calculated spectrum of one particular model of this class is compared to observations of Titan. Our essential conclusion is that Titan does have most of its scattering particles above most of the CH4 gas which has an abundance of at least 2 km-am. This large abundance of CH4 is necessary to produce the 6420-Å feature recently discovered in Titan's spectrum.  相似文献   

20.
It is shown that Titan's surface and plausible atmospheric thermal opacity sources—gaseous N2, CH4, and H2, CH4 cloud, and organic haze—are sufficient to match available Earth-based and Voyager observations of Titan's thermal emission spectrum. Dominant sources of thermal emission are the surface for wavelenghts λ ? 1 cm, atmospheric N2 for 1 cm ? λ ? 200 μm,, condensed and gaseous CH4 for 200 μm ? λ ? 20 μm, and molecular bands and organic haze for λ ? 20 μm. Matching computed spectra to the observed Voyager IRIS spectra at 7.3 and 52.7° emission angles yields the following abundances and locations of opacity sources: CH4 clouds: 0.1 g cm? at a planetocentric radius of 2610–2625 km, 0.3 g cm?2 at 2590–2610 km, total 0.4 ± 0.1 g cm–2 above 2590 km; organic haze: 4 ± 2 × 10?6, g cm, ?2 above 2750 km; tropospheric H2: 0.3 ± 0.1 mol%. This is the first quantitative estimate of the column density of condensed methane (or CH4/C2H6) on Titan. Maximum transparency in the middle to far IR occurs at 19 μm where the atmospheric vertical absorption optical depth is ?0.6 A particle radius r ? 2 μm in the upper portion of the CH4 cloud is indicated by the apparent absence of scattering effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号