首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on physical parameters (flow rates and rheological properties) of lava flows observed in the Central Elysium Planitia (CEP) region of Mars. The flows are modeled as Newtonian fluids, using the Jeffrey's equation and the concept of Graetz number, or alternatively as Bingham fluids. In addition to these approaches, a theoretical model of the shape of shield volcanoes based on the solution for the porous flow of an unconfined aquifer is applied to 5 shields, providing independent quantifications of rheological variations between the shields. This analysis indicates that of the five volcanoes studied, two are partially buried by lava postdating their formation, a result which has been confirmed independently in one case by high resolution images. Our observations reveal that two types of lava flows may be found in the CEP region. The first group is composed of large lava flows with viscosities around ∼2.5×105 Pa s or yield strengths ranging from 100 to 500 Pa. The second group includes small lava flows of the shield volcanoes and large leveed lava channels on the plains with viscosities below 103 Pa s, or yield strengths less than 200 Pa. When compared with other volcanic regions on Mars investigated with similar approaches, these latter values are, at present, the lowest inferred for martian lava flows. Several hypotheses for the formation of these lavas are discussed in the context of CEP given that low viscosity can be the result of (1) high temperature, (2) low crystal content, (3) low Si abundance of the liquid phase, and/or (4) the presence of dissolved volatiles. Two scenarios are considered. In the first one, it is demonstrated that low viscosity lavas (of low silica content) can be produced in the context proposed by Schumacher and Breuer [Schumacher, S., Breuer, D., 2007. Geophys. Res. Lett. 34. L12202] for recent volcanism. However, geochemical maps derived from GRS measurements do not provide support for anomalously low silica concentrations in this region. In the second scenario, a water-rich magma is proposed, although arguments in favor of a water-rich mantle source below the CEP are not available at the present time.  相似文献   

2.
Geological mapping of Elysium Planitia has led to the recognition of five major surface units, in addition to the three volcanic constructs Elysium Mons, Hecates Tholus, and Albor Tholus. These units are interpreted to be both volcanic and sedimentary or erosional in origin. The volcano Elysium Mons is seen to have dominated constructional activity within the whole region, erupting lava flows which extend up to 600km from the summit. A major vent system, covering an area in excess of 75 000 km2, is identified within the Elysium Fossae area. Forty-one sinuous channels are visible within Elysium Planitia; these channels are thought to be analogous to lunar sinuous rilles and their formation in this region of Mars is attributed to unusually high regional topographic slopes (up to ~ 1.7). Numerous circumferential graben are centered upon Elysium Mons. These graben, located at radial distances of 175, 205–225, and 330km from the summit, evidently post-dated the emplacement of the Elysium Mons lava flows but pre-dated the eruption of extensive flood lavas to the west of the volcano. A great diversity of channel types is observed within Elysium Fossae. The occurrences of streamlined islands and multiple floor-levels within some channels suggests a fluvial origin. Conversely, the sinuosity and enlarged source craters of other channels suggests a volcanic origin. Impact crater morphology, the occurrence of chaotic terrain, probable pyroclastic deposits upon Hecates Tholus and fluvial channels all suggest extensive volcano-ground ice interactions within this area.NASA Summer Intern.  相似文献   

3.
P.M. Schenk  R.R. Wilson 《Icarus》2004,169(1):98-110
Stereo and photoclinometry derived topography of shield-like volcanoes on Io indicate little relief (<3 km) and very low slopes (0.2° to 0.6°). Several shield volcanoes appear to be associated with broad rises of 1 to 3 km, but only 5 shield volcanoes have been identified with steep flank slopes (between 4° and 10°). These steep slopes are restricted to within 20-30 km of the summit, but where discernable, most of the lava flows observed on these edifices occur on the outer flanks where slopes are less than a degree. Despite their abundance, ionian shield volcanoes are among the flattest in the Solar System. The steepest volcanoes on Io are most comparable to large venusian shield volcanoes. Using simplistic Bingham rheologies we estimate the viscosity and yield strengths of ionian lavas. Yield strengths are estimated at 101-102 Pa, lower than most basaltic lavas. Viscosity estimates range from 103 to 105 Pa s, although these are probably upper limits. Actual values may have been as low as 100 Pa s. Viscosity is sensitive to flow velocity, which is poorly known on Io. The best constraint on flow velocity comes from observations of the 1997 Pillan eruption, which bracket the eruptive phase to 132 day maximum, and more probably less than 50 days. Low slopes, long run-out distances and our estimated rheologic properties are consistent with (but not proof of) a low silica, low viscosity, high temperature composition for ionian lavas, supporting arguments for low-silica lava compositions such as basalt or komatiite. We cannot eliminate sulfur on rheologic grounds, however.  相似文献   

4.
Athabasca and Marte Valles lie on the Cerberus plains, between the young, lava-covered plains of Elysium Planitia and Amazonis Planitia. To test pre-MGS (Mars Global Surveyor) suggestions of extremely young volcanic and fluvial activity, we present the first crater counts from MGS imagery, at resolutions (∼2-20 m/pixel) much higher than previously available. The most striking result, based on morphologic relations as well as crater counts from different stratigraphic units, is to confirm quantitatively that these channel systems are much younger than most other major outflow channels. The general region has an average model age for lava and fluvial surfaces of ≤200 Myr, and has possibly seen localized water releases, interspersed with lava flows, within the past 20 Myr. The youngest lavas may be no more than a few megayears old. Access of lava and liquid brines to the surface may be favored by openings of the Cerberus Fossae fracture system, but, as shown in the new images, the fractures appear to have continued developing more recently than the most recent lavas or fluvial activity. The Cerberus Fossae system may be an analog to an early stage of Valles Marineris, and its youthful activity raises questions about regional tectonic history. Large-volume water delivery to the surface of young lava flows in recent martian history puts significant boundary conditions on the storage and history of water on Mars.  相似文献   

5.
New topographic maps of six large central volcanoes on Mars are presented and discussed. These features are Olympus Mons, Elysium Mons, Albor Tholus, Ceraunius Tholus, Uranius Tholus, and Uranius Patera. Olympus Mons has the general form of a terrestrial basaltic shield constructed almost entirely from lava flows; but with 20 to 23 km of relief it is far larger. Flank slopes average about 4°. A nominal density calculated from the shield volume and the local free-air gravity anomaly is so high that anomalously dense lithosphere probably underlies the shield. Uranius Patera is a similar feature of much lower present relief, about 2 km, but its lower flanks have been buried by later lava flood deposits. Elysium Mons has about 13 km of local relief and average slopes of 4.4°, not significantly steeper than those of Olympus Mons. Its upper flank slopes are significantly steeper than those of Olympus Mons. We suggest Elysium Mons is a shield volcano modified and steepened by a terminal phase of mixed volcanic activity. Alternatively, the volcano may be a composite cone. Albor Tholus is a partially buried 3-km-tall shield-like construct. Ceranius and Uranius Tholus are steeper cone-like features with relief of about 6 and 2 km, respectively. Slopes are within the normal range for terrestrial basaltic shields, however, and topographic and morphologic data indicate burial of lower flanks by plains forming lavas. These cones may be lava shield constructs modified by a terminal stage of explosive activity which created striking radial patterns of flank channels. Differences among these six volcanoes in flank slopes and surface morphology may be primarily consequences of different terminal phases of volcanic activity, which added little to the volume of any construct, and burial of shallow lower flanks by later geologic events. Additional topographic data for Olympus Mons, Arsia Mons, and Hadriaca Patera are described. The digital techniques used to extract topographiv data from Viking Orbiter stereo images are also described.  相似文献   

6.
We present results of our study of the rheologies and ages of lava flows in the Elysium Mons region of Mars. Previous studies have shown that the geometric dimensions of lava flows reflect rheological properties such as yield strength, effusion rate and viscosity. In this study the rheological properties of lava flows in the Elysium Mons region were determined and compared to the rheologies of the Ascraeus Mons lava flows. We also derived new crater size-frequency distribution measurements (CSFDs) for the Elysium lava flows to identify possible changes in the rheological properties with time. In addition, possible changes in the rheological properties with the distance from the caldera of Elysium Mons were analyzed.In total, 35 lava flows on and around Elysium Mons were mapped, and divided into three groups, lava flows on the flanks of Elysium Mons, in the plains between the three volcanoes Elysium Mons, Hecates and Albor Tholus and lava flows south of Albor Tholus. The rheological properties of 32 of these flows could be determined. Based on our morphometric measurements of each individual lava flow, estimates for the yield strengths, effusion rates, viscosities, and eruption duration of the studied lava flows were made. The yield strengths of the investigated lava flows range from ~3.8 × 102 Pa to ~1.5 × 104 Pa, with an average of ~3.0 × 103 Pa. These yield strengths are in good agreement with estimates for terrestrial basaltic lava flows. The effusion rates are on average ~747 m3 s?1, ranging from ~99 to 4450 m3 s?1. The viscosities are on average ~4.1 × 106 Pa s, with a range of 1.2 × 105 Pa s to 3.1 × 107 Pa s. The eruption durations of the flows were calculated to be between 6 and 183 days, with an average of ~51 days. The determined rheological properties are generally very similar to those of other volcanic regions on Mars, such as on Ascraeus Mons in the Tharsis region. Calculated yield strengths and viscosities point to a basaltic/andesitic composition of the lava flows, similar to basaltic or andesitic a’a lava flows on Earth.Absolute model ages of all 35 lava flows on Elysium Mons were derived from crater size-frequency distribution measurements (CSFD). The derived model ages show a wide variation from about 632 Ma to 3460 Ma. Crater size-frequency distribution measurements of the Elysium Mons caldera show an age of ~1640 Ma, which is consistent with the resurfacing age of Werner (2009). Significant changes of the rheologies with time could not be observed. Similarly, we did not observe systematic changes in ages with increasing distances of lava flows from the Elysium Mons caldera.  相似文献   

7.
The global martian volcanic evolutionary history   总被引:1,自引:0,他引:1  
Viking mission image data revealed the total spatial extent of preserved volcanic surface on Mars. One of the dominating surface expressions is Olympus Mons and the surrounding volcanic province Tharsis. Earlier studies of the global volcanic sequence of events based on stratigraphic relationships and crater count statistics were limited to the image resolution of the Viking orbiter camera. Here, a global investigation based on high-resolution image data gathered by the High-Resolution Stereo Camera (HRSC) during the first years of Mars Express orbiting around Mars is presented. Additionally, Mars Orbiter Camera (MOC) and Thermal Emission Imaging System (THEMIS) images were used for more detailed and complementary information. The results reveal global volcanism during the Noachian period (>3.7 Ga) followed by more focused vent volcanism in three (Tharsis, Elysium, and Circum-Hellas) and later two (Tharsis and Elysium) volcanic provinces. Finally, the volcanic activity became localized to the Tharsis region (about 1.6 Ga ago), where volcanism was active until very recently (200-100 Ma). These age results were expected from radiometric dating of martian meteorites but now verified for extended geological units, mainly found in the Tharsis Montes surroundings, showing prolonged volcanism for more than 3.5 billions years. The volcanic activity on Mars appears episodic, but decaying in intensity and localizing in space. The spatial and temporal extent of martian volcanism based on crater count statistics now provides a much better database for modelling the thermodynamic evolution of Mars.  相似文献   

8.
Determining absolute surface ages for bodies in the Solar System is, at present, only possible for Earth and Moon with radiometric dating for both bodies and biologic proxies such as fossils for Earth. Relative ages through cratering statistics are recognized as one of the most reliable proxies for relative ages, calibrated by lunar geologic mapping and Apollo program sample returns. In this work, we have utilized the Mars Reconnaissance Orbiter’s ConTeXt Camera’s images which provide the highest resolution wide-scale coverage of Mars to systematically crater-age-date the calderas of 20 of Mars’ largest volcanoes in order to constrain the length of time over which these volcanoes - and major volcanic activity on the planet, by extension - were active. This constitutes the largest uniform and comprehensive research on these features to date, eliminating unknown uncertainties by multiple researchers analyzing different volcanoes with varied data and methods. We confirm previous results that Mars has had active volcanism throughout most of its history although it varied spatially and temporally, with the latest large-scale caldera activity ending approximately 150 ma in the Tharsis region. We find a transition from explosive to effusive eruption style occurring in the Hesperian, at approximately 3.5 Ga ago, though different regions of the planet transitioned at different times. Since we were statistically complete in our crater counts to sizes as small as ∼60 m in most cases, we also used our results to study the importance of secondary cratering and its effects on crater size-frequency distributions within the small regions of volcanic calderas. We found that there is no “golden rule” for the diameters secondaries become important in crater counts of martian surfaces, with one volcano showing a classic field of secondaries ∼2 crater diameters from the center of its primary but not affecting the size-frequency distribution, and another clearly showing an influence but from no obvious primary.  相似文献   

9.
Martian cratering 8: Isochron refinement and the chronology of Mars   总被引:2,自引:0,他引:2  
William K. Hartmann 《Icarus》2005,174(2):294-320
This paper reviews and refines the technique of dating martian surfaces by using impact-crater isochrons (defined as size distributions of impact craters on undisturbed martian surfaces of specified ages). In the 1970s, this system identified not only abundant ancient martian volcanic surfaces, but also extensive lava plains with ages of a few 108 y-old; this dating was initially controversial but confirmed in the 1980s and 90s by martian meteorites. The present update utilizes updated estimates of the Mars/Moon cratering ratio (the most important calibration factor), improves treatment of gravity and impact velocity scaling effects, combines aspects of the crater size distribution data from earlier work by both Neukum and Hartmann, and for the first time applies a correction for loss of small meteoroids in the martian atmosphere from Popova et al. (2003, Meteorit. Planet. Sci. 38, 905-925). The updated isochrons are not radically different from the previous “2002 iteration” but fit observed data better and give somewhat older model ages for features dated from small craters (diameter D<100 m). Crater counts from young lava flows in various areas give good fits to the new isochrons over as much as 3 orders of magnitude in D, confirming the general isochron shape and giving crater retention ages in the range of some 106 to some 108 y, interpreted as lava flow ages. More complex, older units are also discussed. Uncertainties are greatest if only small craters (D?100 m) are used. Suggestions by other workers of gross uncertainties, due to local secondary craters and deposition/exhumation, are discussed; they do not refute our conclusions of significant volcanic, fluvial, and other geologic activity in the last few percent of martian geologic time or the importance of cratering as a tool for studying processes such as exhumation. Indeed, crater count data suggest certain very recent episodes of deposition, exhumation, and ice flow, possibly associated with obliquity cycles of ∼107 y timescale. Evidence from ancient surfaces suggests higher rates of volcanism, fluvial activity, glaciation, and other processes in Noachian/Hesperian time than in Amazonian time.  相似文献   

10.
Karl R. Blasius 《Icarus》1976,29(3):343-361
Mariner 9 images of the four great volcanic shields of the Tharsis region of Mars show many circular craters ranging in diameter from 100mm to 20 km. Previous attempts to date the volcanoes from their apparent impact crater densities yielded a range of results. The principal difficulty is sorting volcanic from impact craters for diameters ?1 km. Many of the observed craters are aligned in prominent linear and concentric patterns suggestive of volcanic origin. In this paper an attempt is made to date areas of shield surface, covered with high resolution images using only scattered small (?1 km) craters of probable impact origin. Craters of apparent volcanic origin are systematically excluded from the dating counts.The common measure of age, deduced for all surfaces studied, is a calculated “crater age” F′ defined as the number of craters equal to or larger than 1 km in diameter per 106km2. The conclusions reached from comparing surface ages and their geological settings are: (1) Lava flow terrain surfaces with ages, F′, from 180 to 490 are seen on the four great volcanoes. Summit surfaces of similar ages, F′ = 360 to 420, occur on the rims of calderas of Arsia Mons, Pavonis Mons, and Olympus Mons. The summit of Ascraeus Mons is possibly younger; F′ is calculated to be 180 for the single area which could be dated. (2) One considerably younger surface, F′ < 110, is seen on the floor of Arsia Mon's summit caldera. (3) Nearly crater free lava flow terrain surfaces seen on Olympus Mons are estimated to be less than half the age of a summit surface. The summit caldera floor is similarly young. (4) The pattern of surface ages on the volcanoes suggests that their eruption patterns are similar to those of Hawaiian basaltic shields. The youngest surfaces seem concentrated on the mid-to-lower flanks and within the summit calderas. (5) The presently imaged sample of shield surface, though incomplete, clearly shows a broad range of ages on three volcanoes—Olympus, Arsia, and Pavonis Mons.Estimated absolute ages of impact dated surfaces are obtained from two previously published estimates of the history of flux of impacting bodies on Mars. The estimated ranges of age for the observed crater populations are 0.5 to 1.2b.y. and 0.07 to 0.2b.y. Areas which are almost certainly younger, less than 0.5 or 0.07b.y., are also seen. The spans of surface age derived for the great shields are minimum estimates of their active lifetimes, apparently very long compared to those of terrestrial volcanoes.  相似文献   

11.
L.S. Crumpler  J.C. Aubele 《Icarus》1978,34(3):496-511
Analysis of Viking Orbiter data suggests that Arsia Mons, Pavonis Mons, and Ascreus Mons, three large shield volcanoes of the Tharsis volcanoes of Mars, have had similar evolutionary trends. Arsia Mons appears to have developed in the following sequence: (1) construction of a main shield volcano, (2) outbreak of parasitic eruption centers on the northeast and southwest flanks, (3) volcano-tectonic subsidence of the summit and formation of concentric fractures and grabens, possibly by evacuation of an underlying magma chamber during eruption of copious lavas from parasitic eruption centers on the northeast and southwest flanks, and (4) continued volcanism along a fissure or rift bisecting the main shield, resulting in flooding of the floor of the volcano-tectonic depression and inundation of the northeast and southwest flanks by voluminous lavas locally forming parasitic shields. In terms of this sequence Pavonis Mons has developed to stage (3) and Ascreus Mons has evolved to stage (2). This interpretation is supported by crater frequency-diameter distributions in the 0.1? to 3.0 km-diameter range.  相似文献   

12.
Laura Kerber  James W. Head 《Icarus》2010,206(2):669-684
The Medusae Fossae Formation (MFF), covering about 2.1 × 106 km2 (with an estimated volume of 1.4 × 106 km3) and straddling the equatorial region of Mars east of Tharsis, has historically been mapped and dated as Amazonian in age. Analysis of the MFF using a range of new observations from recent mission data at multiple resolutions reveals evidence that the formation is older than previously hypothesized, with parts of the MFF having formed in the Hesperian and parts having been reworked and reformed throughout the Amazonian, up to the present. Ancient outcroppings of the MFF, edged with jagged yardangs, became a “mold” for embaying Hesperian-aged lavas. The erosion of the MFF left solidified lava “casts” in the embaying lava unit. This lava edge morphology permits the identification of ancient contacts between the MFF and Hesperian-aged lava terrain. Additionally, the flanking fan of the Hesperian-aged Apollinaris Patera volcano embays the formation at its foot, indicating that parts of the MFF were formed in the Hesperian. Erosion has erased and inverted many of the superposed craters in the region, showing that very young Amazonian ages derived from impact crater size-frequency distributions are resurfacing ages, and not emplacement ages. We find abundant evidence that the formation is extremely mobile and continuously reworked. We conclude that a significant part of the MFF may have originally been emplaced in the Hesperian. These observations place new constraints on the mode of origin of the MFF.  相似文献   

13.
I. Romeo  D.L. Turcotte 《Icarus》2009,203(1):13-19
The areas of volcanic units on Venus have been measured on the 1:5000000 geological maps published by NASA/USGS. These data were used to obtain a frequency-area distribution. The cumulative frequency-area distribution of 1544 specific occurrence of units cover six orders of magnitude from the largest unit (30 × 106 km2) to the smallest (20 km2). The probability distribution function has been calculated. The medium and large volcanic units correlate well with a power-law (fractal) relation for the dependence of frequency on area with a slope of −1.83. There are fewer small units than the expected values provided by the power-law relation. Our measurements cover 21.02% of the planetary surface, 3.59% of the study area was found to be tessera terrain and is excluded from this study of volcanism. The measurements were restricted to areas where geological maps have been published. The analysis was performed on two independent areas of the planet, with a complete coverage of published maps. In both areas the largest volcanic unit covers a significant portion of the surface (58.75% and 63.64%, respectively). For the total measured volcanic units (excluding tessera), these two largest units (that could correspond to the same unit or not) cover the 61.18% and they are stratigraphically superimposed on older volcanic units which cover 3.37% of the area. The remaining area (35.45%) is occupied by younger volcanic units stratigraphically superimposed on the large volcanic unit(s). These results are based on the independent mapping of a large number of geologists with different ideas about the geodynamical evolution of Venus and different criteria for geological mapping. Despite this fact, the presence of these very large units is incompatible with the equilibrium resurfacing models, because their generation at different ages would destroy the crater randomness. Our frequency-area distribution of the mapped volcanic units supports a catastrophic resurfacing due to the emplacement of the largest unit(s) followed by a decay of volcanism. Our data for the frequency-area distribution of volcanic units provide new support for catastrophic resurfacing models. It is difficult to make our observations compatible with equilibrium, steady-state resurfacing models.  相似文献   

14.
Wudalianchi volcanic field, located in northeast China, consists of 14 Quaternary volcanoes with each volcano as a steep-sided scoria cone surrounded by gently sloping lava flows. Each cone is topped with a bowl-shaped or funnel-shaped crater. The volcanic cones are constructed by the accumulation of tephra and other ejecta. In this paper, their geologic features have been investigated and compared with some Martian volcanic features at Ascraeus Mons volcanoes observed on images obtained from High-Resolution Imaging Science Experiments (HiRISE), Mars Orbiter Camera (MOC), Context Imager (CTX) and Thermal Emission Imaging System (THEMIS). The results show that both Wudalianchi and Ascraeus Mons volcanoes are basaltic, share similar eruptive and geomorphologic features and eruptive styles, and have experienced multiple eruptive phases, in spite of the significant differences in their dimension and size. Both also show a variety of eruptive styles, such as fissure and central venting, tube-fed and channel-fed lava flows, and probably pyroclastic deposits. Three volcanic events are recognized at Ascraeus Mons, including an early phase of shield construction, a middle eruptive phase forming a low lava shield, and the last stage with aprons mantling both NE and SW flanks. We suggest that magma generation at both Wudalianchi and Ascraeus Mons might have been facilitated by an upwelling mantle plume or upwelling of asthenospheric mantle, and a deep-seated fault zone might have controlled magma emplacement and subsequent eruptions in Ascraeus Mons as observed in the Wudalianchi field, where the volcanoes are constructed along the northeast-striking faults. Fumarolic cones produced by water/magma interaction at the Wudalianchi volcanic field may also serve as an analogue for the pseudocraters identified at Isidis and Cerberus Planitia on Mars, suggesting existence of frozen water in the ground on Mars during Martian volcanic eruptions.  相似文献   

15.
Emplacement of the youngest flood lava on Mars: A short, turbulent story   总被引:1,自引:0,他引:1  
Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision.  相似文献   

16.
The 174 km diameter Terby impact crater (28.0°S-74.1°E) located on the northern rim of the Hellas basin displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared data for mineralogical mapping, and topography for geometry. The geometry of layered deposits was consistent with that of sediments that settled mainly in a sub-aqueous environment, during the Noachian period as determined by crater counts. To the north, the thickest sediments displayed sequences for fan deltas, as identified by 100 m to 1 km long clinoforms, as defined by horizontal beds passing to foreset beds dipping by 6-10° toward the center of the Terby crater. The identification of distinct sub-aqueous fan sequences, separated by unconformities and local wedges, showed the accumulation of sediments from prograding/onlapping depositional sequences, due to lake level and sediment supply variations. The mineralogy of several layers with hydrated minerals, including Fe/Mg phyllosilicates, supports this type of sedimentary environment. The volume of fan sediments was estimated as >5000 km3 (a large amount considering classical martian fan deltas such as Eberswalde (6 km3)) and requires sustained liquid water activity. Such a large sedimentary deposition in Terby crater is characteristic of the Noachian/Phyllosian period during which the environment favored the formation of phyllosilicates. The latter were detected by spectral data in the layered deposits of Terby crater in three distinct layer sequences. During the Hesperian period, the sediments experienced strong erosion, possibly enhanced by more acidic conditions, forming the current morphology with three mesas and closed depressions. Small fluvial valleys and alluvial fans formed subsequently, attesting to late fluvial processes dated as late Early to early Late Hesperian. After this late fluvial episode, the Terby impact crater was submitted to aeolian processes and permanent cold conditions with viscous flow features. Therefore, the Terby crater displays, in a single location, geologic features that characterize the three main periods of time on Mars, with the presence of one of the thickest sub-aqueous fan deposits reported on Mars. The filling of Terby impact crater is thus one potential “reference geologic cross-section” for Mars stratigraphy.  相似文献   

17.
A classification of over 200 lunar mare domes shows that they have two major modes of occurrence: (1) low, flat, generally circular structures with convex shapes, slopes less than about 5°, and displaying summit craters, and (2) irregular structures often adjacent to highland regions and rarely containing summit craters. On the basis of morphologic and morphometric similarities, the first mode of occurrence appears to be analogous to small terrestrial shield volcanoes, and to represent primary volcanic constructs, while the second class of domes appears to result from secondary volcanic effects (flooding of highland material to produce kipukas and draping of lavas to produce irregular dome-like topography).Domes comparable to small shield volcanoes generally range from 3–17 km in diameter and up to several hundred meters in height and occur predominantly in groupings in the lunar equatorial region in northeast Tranquillitatis (Cauchy area), between Kepler and Copernicus (Hortensius area), and in the Marius Hills. In the Marius Hills, domes generally lack summit craters and have a rough surface texture formed in part by superposed cones and steep-sided flows. Elsewhere, domes representing volcanic sources are smooth-surfaced and usually contain a summit crater. These features are similar in general morphology to small terrestrial lava shields. They are generally intermediate in volume, slope, and height between small shields of terrestrial basaltic plains (such as the Snake River Plains) and larger Icelandic shields. Summit craters on lunar domes are considerably larger than craters on terrestrial shields of comparable diameters, apparently due to a combination of factors, including vent enlargement during extrusion, possibly higher lunar extrusion rates, different amounts of collapse, and impact erosion.Most vent-related domes appear to be associated with, and are thus approximately the same age as, surrounding lava plains, although relationships in specific areas have not yet been established. On the basis of age ranges of mare deposits established by Apollo samples, mare vent-related domes formed over an approximately one billion year period starting about 3.7 b.y. ago. Extrusion rates were apparently relatively low compared to the very high values characteristic of flows associated with major lunar sinuous rilles and terrestrial flood basalts, but may have been relatively high compared to similar terrestrial shields. Large shield volcanoes equivalent to the terrestrial Hawaiian-type or to the martian edifices such as Olympus Mons, do not occur on the Moon. Lack of these features may be due to the low viscosities and high effusion rates typical of many lunar eruptions and the lack of continuous eruptions from single sources.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

18.
G. Hulme 《Icarus》1976,27(2):207-213
A new technique for the interpretation of lava flow morphology was applied to a lava flow on Olympus Mons. The yield stress of the flowing lava was determined subject to uncertainties in the estimates of the slope of Olympus Mons. The lava is most probably more silicic than the basaltic lavas of the Hawaiian shield volcanoes and its effusion rate appears to have been greater than those of typical Hawaiian flows.  相似文献   

19.
Volcanism has been a major process during most of the geologic history of Mars. Based on data collected from terrestrial basaltic eruptions, we assume that the volatile content of martian lavas was typically ∼0.5 wt.% water, ∼0.7 wt.% carbon dioxide, ∼0.14 wt.% sulfur dioxide, and contained several other important volatile constituents. From the geologic record of volcanism on Mars we find that during the late Noachian and through the Amazonian volcanic degassing contributed ∼0.8 bar to the martian atmosphere. Because most of the outgassing consisted of greenhouse gases (i.e., CO2 and SO2) warmer surface temperatures resulting from volcanic eruptions may have been possible. Our estimates suggest that ∼1.1 × 1021 g (∼8 ± 1 m m−2) of juvenile water were released by volcanism; slightly more than half the amount contained in the north polar cap and atmosphere. Estimates for released CO2 (1.6 × 1021 g) suggests that a large reservoir of carbon dioxide is adsorbed in the martian regolith or alternatively ∼300 cm cm−2 of carbonates may have formed, although these materials would not occur readily in the presence of excess SO2. Up to ∼120 cm cm−2 (2.2 × 1020 g) of acid rain (H2SO4) may have precipitated onto the martian surface as the result of SO2 degassing. The hydrogen flux resulting from volcanic outgassing may help explain the martian atmospheric D/H ratio. The amount of outgassed nitrogen (∼1.3 mbar) may also be capable of explaining the martian atmospheric 15N/14N ratio. Minor gas constituents (HF, HCl, and H2S) could have formed hydroxyl salts on the surface resulting in the physical weathering of geologic materials. The amount of hydrogen fluoride emitted (1.82 × 1018 g) could be capable of dissolving a global layer of quartz sand ∼5 mm thick, possibly explaining why this mineral has not been positively identified in spectral observations. The estimates of volcanic outgassing presented here will be useful in understanding how the martian atmosphere evolved over time.  相似文献   

20.
Abstract— The possibility of volcanism on Mercury has been a topic of discussion since Mariner 10 returned images of half the planet's surface showing widespread plains material. These plains could be volcanic or lobate crater ejecta. An assessment of the mechanics of the ascent and eruption of magma shows that it is possible to have widespread volcanism, no volcanism on the surface whatsoever, or some range in between. It is difficult to distinguish between a lava flow and lobate crater ejecta based on morphology and morphometry. No definite volcanic features have been identified on Mercury. However, known lunar volcanic features cannot be identified in images with similar resolutions and viewing geometries as the Mariner 10 dataset. Examination of high‐resolution, low Sun angle Mariner 10 images reveals several features which are interpreted to be flow fronts; it is unclear if these are volcanic flows or ejecta flows. This analysis implies that a clear assessment of volcanism on Mercury must wait for better data. MESSENGER (MErcury: Surface, Space ENvironment, GEochemistry, Ranging) will take images with viewing geometries and resolutions appropriate for the identification of such features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号