首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the first models of Jupiter and Saturn to couple their evolution to both a radiative-atmosphere grid and to high-pressure phase diagrams of hydrogen with helium and other admixtures. We find that prior calculated phase diagrams in which Saturn's interior reaches a region of predicted helium immiscibility do not allow enough energy release to prolong Saturn's cooling to its known age and effective temperature. We explore modifications to published phase diagrams that would lead to greater energy release, and propose a modified H-He phase diagram that is physically reasonable, leads to the correct extension of Saturn's cooling, and predicts an atmospheric helium mass fraction Yatmos=0.185, in agreement with recent estimates. We also explore the possibility of internal separation of elements heavier than helium, and find that, alternatively, such separation could prolong Saturn's cooling to its known age and effective temperature under a realistic phase diagram and heavy element abundance (in which case Saturn's Yatmos would be solar but heavier elements would be depleted). In none of these scenarios does Jupiter's interior evolve to any region of helium or heavy-element immiscibility: Jupiter evolves homogeneously to the present day. We discuss the implications of our calculations for Saturn's primordial core mass.  相似文献   

2.
The discovery of a molecular oxygen atmosphere around Saturn's rings has important implications for the electrodynamics of the ring system. Its existence was inferred from the Cassini in situ detection of molecular oxygen ions above the rings during Saturn Orbit Insertion in 2004. Molecular oxygen is difficult to observe remotely, and theoretical estimates have yielded only a lower limit (Nn?1013 cm−2) to the O2 column density. Comparison with observations has previously concerned matching ion densities at spacecraft altitudes far larger than the scale height of the neutral atmosphere. This is further complicated by charged particle propagation effects in Saturn's offset magnetic field. In this study we adopt a complementary approach, by focusing on bulk atmospheric properties and using additional aspects of the Cassini observations to place an upper limit on the column density. We develop a simple analytic model of the molecular atmosphere and its photo-ionization and dissociation products, with Nn a free parameter. Heating of the neutrals by viscous stirring, cooling by collisions with the rings, and torquing by collisions with pickup ions are all included in the model. We limit the neutral scale height to h?3000 km using the INMS neutral density nondetection over the A ring. A first upper limit to the neutral column is derived by using our model to reassess O2 production and loss rates. Two further limits are then obtained from Cassini observations: corotation of the observed ions with the planet implies that the height-integrated conductivity of the ring atmosphere is less than that of Saturn's ionosphere; and the nondetection of fluorescent atomic oxygen over the rings constrains the molecular column from which it is produced via photo-dissociation. These latter limits are independent of production and loss rates and are only weakly dependent on temperature. From the three independent methods described, we obtain similar limits: Nn?2×1015 cm−2. The mean free path for collisions between neutrals thus cannot be very much smaller than the scale height.  相似文献   

3.
Anderson and Schubert [2007. Saturn's Gravitational field, internal rotation, and interior structure. Science 317, 1384-1387 (paper I)] proposed that Saturn's rotation period can be ascertained by minimizing the dynamic heights of the 100 mbar isosurface with respect to the geoid; they derived a rotation period of 10 h 32 m 35 s. We investigate the same approach for Jupiter to see if the Jovian rotation period is predicted by minimizing the dynamical heights of its isobaric (1 bar pressure level) surface using zonal wind data. A rotation period of 9 h 54 m 29.7 s is found. Further, we investigate the minimization method by fitting Pioneer and Voyager occultation radii for both Jupiter and Saturn. Rotation periods of 9 h 55 m 30 s and 10 h 32 m 35 s are found to minimize the dynamical heights for Jupiter and Saturn, respectively. Though there is no dynamical principle requiring the minimization of the dynamical heights of an isobaric surface, the successful application of the method to Jupiter lends support to its relevance for Saturn.We derive Jupiter and Saturn rotation periods using equilibrium theory to explain the difference between equatorial and polar radii. Rotation periods of 9 h 55 m 20 s and 10 h 31 m 49 s are found for Jupiter and Saturn, respectively. We show that both Jupiter's and Saturn's shapes can be derived using solid-body rotation, suggesting that zonal winds have a minor effect on the planetary shape for both planets.The agreement in the values of Saturn's rotation period predicted by the different approaches supports the conclusion that the planet's period of rotation is about 10 h 32 m.  相似文献   

4.
《Planetary and Space Science》1999,47(10-11):1183-1200
Interior models of Jupiter and Saturn are calculated and compared in the framework of the three-layer assumption, which rely on the perception that both planets consist of three globally homogeneous regions: a dense core, a metallic hydrogen envelope, and a molecular hydrogen envelope. Within this framework, constraints on the core mass and abundance of heavy elements (i.e. elements other than hydrogen and helium) are given by accounting for uncertainties on the measured gravitational moments, surface temperature, surface helium abundance, and on the inferred protosolar helium abundance, equations of state, temperature profile and solid/differential interior rotation. Results obtained solely from static models matching the measured gravitational fields indicate that the mass of Jupiter’s dense core is less than 14 M (Earth masses), but that models with no core are possible given the current uncertainties on the hydrogen–helium equation of state. Similarly, Saturn’s core mass is less than 22 M but no lower limit can be inferred. The total mass of heavy elements (including that in the core) is constrained to lie between 11 and 42 M in Jupiter, and between 19 and 31 M in Saturn. The enrichment in heavy elements of their molecular envelopes is 1–6.5, and 0.5–12 times the solar value, respectively. Additional constraints from evolution models accounting for the progressive differentiation of helium (Hubbard WB, Guillot T, Marley MS, Burrows A, Lunine JI, Saumon D, 1999. Comparative evolution of Jupiter and Saturn. Planet. Space Sci. 47, 1175–1182) are used to obtain tighter, albeit less robust, constraints. The resulting core masses are then expected to be in the range 0–10 M, and 6–17 M for Jupiter and Saturn, respectively. Furthermore, it is shown that Saturn’s atmospheric helium mass mixing ratio, as derived from Voyager, Y=0.06±0.05, is probably too low. Static and evolution models favor a value of Y=0.11−0.25. Using, Y=0.16±0.05, Saturn’s molecular region is found to be enriched in heavy elements by 3.5 to 10 times the solar value, in relatively good agreement with the measured methane abundance. Finally, in all cases, the gravitational moment J6 of models matching all the constraints are found to lie between 0.35 and 0.38×10−4 for Jupiter, and between 0.90 and 0.98×10−4 for Saturn, assuming solid rotation. For comparison, the uncertainties on the measured J6 are about 10 times larger. More accurate measurements of J6 (as expected from the Cassini orbiter for Saturn) will therefore permit to test the validity of interior models calculations and the magnitude of differential rotation in the planetary interior.  相似文献   

5.
We present profiles of the line-of-sight (l.o.s.) ionospheric wind velocities in the southern auroral/polar region of Saturn. Our velocities are derived from the measurement of Doppler shifting of the H3+ν2Q(1,0) line at 3.953 microns. The data for this study were obtained using the facility high-resolution spectrometer CSHELL on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, during the night of February 6, 2003 (UT). The l.o.s. velocity profiles finally derived are consistent with an extended region of the upper atmosphere sub-corotating with the planet: the ion velocities in the inertial reference are only 1/3 of those expected for full planetary corotation. We discuss the results in the light of recent proposals for the kronian magnetosphere, and suggest that, in this region, Saturn's ion winds may be under solar wind control.  相似文献   

6.
A time-dependent one-dimensional model of Saturn's ionosphere has been developed as an intermediate step towards a fully coupled Saturn Thermosphere-Ionosphere Model (STIM). A global circulation model (GCM) of the thermosphere provides the latitude and local time dependent neutral atmosphere, from which a globally varying ionosphere is calculated. Four ion species are used (H+, H+2, H+3, and He+) with current cross-sections and reaction rates, and the SOLAR2000 model for the Sun's irradiance. Occultation data from the Voyager photopolarimeter system (PPS) are adapted to model the radial profile of the ultraviolet (UV) optical depth of the rings. Diurnal electron density peak values and heights are generated for all latitudes and two seasons under solar minimum and solar maximum conditions, both with and without shadowing from the rings. Saturn's lower ionosphere is shown to be in photochemical equilibrium, whereas diffusive processes are important in the topside. In agreement with previous 1-D models, the ionosphere is dominated by H+ and H+3, with a peak electron density of ∼104 electrons cm−3. At low- and mid-latitudes, H+ is the dominant ion, and the electron density exhibits a diurnal maximum during the mid-afternoon. At higher latitudes and shadowed latitudes (smaller ionizing fluxes), the diurnal maximum retreats towards noon, and the ratio of [H+]/[H+3] decreases, with H+3 becoming the dominant ion at altitudes near the peak (∼1200-1600 km) for noon-time hours. Shadowing from the rings leads to attenuation of solar flux, the magnitude and latitudinal structure of which is seasonal. During solstice, the season for the Cassini spacecraft's encounter with Saturn, attenuation has a maximum of two orders of magnitude, causing a reduction in modeled peak electron densities and total electron column contents by as much as a factor of three. Calculations are performed that explore the parameter space for charge-exchange reactions of H+ with vibrationally excited H2, and for different influxes of H2O, resulting in a maximum diurnal variation in electron density much weaker than the diurnal variations inferred from Voyager's Saturn Electrostatic Discharge (SED) measurements. Peak values of height-integrated Pedersen conductivities at high latitudes during solar maximum are modeled to be ∼42 mho in the summer hemisphere during solstice and ∼18 mho during equinox, indicating that even without ionization produced by auroral processes, magnetosphere-ionosphere coupling can be highly variable.  相似文献   

7.
David Parry Rubincam 《Icarus》2006,184(2):532-542
Saturn's icy ring particles, with their low thermal conductivity, are almost ideal for the operation of the Yarkovsky effects (photon thrust due to temperature gradients across the ring particles). An extremely simple case of the Yarkovsky effects is examined here, in which orbital evolution is computed as though each particle travels around Saturn alone in a circular orbit, so that there are no collisions, shadowing, or irradiance from other particles; nor are resonances, tumbling, or micrometeoroid erosion considered. The orbital evolution for random spin orientations appears to be a competition between two effects: the seasonal Yarkovsky effect, which makes orbits contract, and the Yarkovsky-Schach effect, which makes orbits expand. There are values of the far infrared and visible particle albedos for which (working radially out from the planet) the along-track particle acceleration S is negative, then positive, and then negative again; the region for which S>0 is interpreted as a region where stable rings are possible. Typical timescales for centimeter-sized particles to travel half a Saturn radius are 107-108 yr. Collisions, shadowing, and resonances may lengthen the timescales, perhaps considerably. It is speculated here that the C ring may be depleted of particles because of the seasonal Yarkovsky effect, and small particles that are present in the C ring ultimately fall on Saturn, possibly creating a “Ring of Fire” as they enter the planet's atmosphere.  相似文献   

8.
A series of narrow-band images of Saturn was acquired on 7-11 February 2002 with an acousto-optic imaging spectrometer (AImS) at about 160 wavelengths between 500 and 950 nm. Our unique data set with high spectral agility and wide spectral coverage enabled us to extensively study the cloud structure and aerosol properties of Saturn's equatorial region at −10° latitude. Theoretical center-limb profiles based on twelve cloud models were fit to the observations at 23 wavelengths across the 619-, 727-, and 890-nm methane bands. A simultaneous multiwavelength multivariable fitting algorithm was adopted in varying up to 9 free parameters to efficiently explore the vast multidimensional parameter space, and a total of ∼12,000 initial conditions were tested. From the acceptable ranges of the model parameters, we obtained the following major conclusions: (1) the brightening of Saturn's equatorial region observed near 890 nm in February 2002 (I/F∼0.25 at the central meridian) results from high altitudes of a stratospheric haze layer (τ?∼0.05 above ∼0.04-bar level) and an upper tropospheric cloud (τ∼6 above ∼0.25-bar level), (2) if the upper tropospheric cloud is composed of ammonia ice particles and the Mie theory is applied, the mean particle size is larger than about 0.5 μm, (3) an optically thick cloud layer exists at a level of 0.5-2.2 bar below the upper cloud deck in Saturn's equatorial region. The ongoing observations by the Cassini spacecraft over wider spectral range and from various phase angles will further constrain Saturn's cloud structure and aerosol properties.  相似文献   

9.
Thermal infrared spectra of Saturn from 10-1400 cm−1 at 15 cm−1 spectral resolution and a spatial resolution of 1°-2° latitude have been obtained by the Cassini Composite Infrared Spectrometer [Flasar, F.M., and 44 colleagues, 2004. Space Sci. Rev. 115, 169-297]. Many thousands of spectra, acquired over eighteen-months of observations, are analysed using an optimal estimation retrieval code [Irwin, P.G.J., Parrish, P., Fouchet, T., Calcutt, S.B., Taylor, F.W., Simon-Miller, A.A., Nixon, C.A., 2004. Icarus 172, 37-49] to retrieve the temperature structure and para-hydrogen distribution over Saturn's northern (winter) and southern (summer) hemispheres. The vertical temperature structure is analysed in detail to study seasonal asymmetries in the tropopause height (65-90 mbar), the location of the radiative-convective boundary (350-500 mbar), and the variation with latitude of a temperature knee (between 150 and 300 mbar) which was first observed in inversions of Voyager/IRIS spectra [Hanel, R., and 15 colleagues, 1981. Science 212, 192-200; Hanel, R., Conrath, B., Flasar, F.M., Kunde, V., Maguire, W., Pearl, J.C., Pirraglia, J., Samuelson, R., Cruikshank, D.P., Gautier, D., Gierasch, P.J., Horn, L., Ponnamperuma, C., 1982. Science 215, 544-548]. Uncertainties due to both the modelling of spectral absorptions (collision-induced absorption coefficients, tropospheric hazes, helium abundance) and the nature of our retrieval algorithm are quantified.Temperatures in the stratosphere near 1 mbar show a 25-30 K temperature difference between the north pole and south pole. This asymmetry becomes less pronounced with depth as the radiative time constant for the atmospheric response increases at deeper pressure levels. Hemispherically-symmetric small-scale temperature structures associated with zonal winds are superimposed onto the temperature asymmetry for pressures greater than 100 mbar. The para-hydrogen fraction in the 100-400 mbar range is greater than equilibrium predictions for the southern hemisphere and parts of the northern hemisphere, and less than equilibrium predictions polewards of 40° N.The temperature knee between 150-300 mbar is larger in the summer hemisphere than in the winter, smaller and higher at the equator, deeper and larger in the equatorial belts and small at the poles. Solar heating on tropospheric haze is proposed as a possible mechanism for this effect; the increased efficiency of ortho- to para-hydrogen conversion in the southern hemisphere is consistent with the presence of larger aerosols in the summer hemisphere, which we demonstrate to be qualitatively consistent with previous studies of Saturn's tropospheric aerosol distribution.  相似文献   

10.
We present new and definitive results of Cassini plasma spectrometer (CAPS) data acquired during passage through Saturn's inner plasmasphere by the Cassini spacecraft during the approach phase of the Saturn orbit insertion period. This analysis extends the original analysis of Sittler et al. [2005. Preliminary results on Saturn's inner plasmasphere as observed by Cassini: comparison with Voyager. Geophys. Res. Lett. 32, L14S07, doi:10.1029/2005GL022653] to L∼10 along with also providing a more comprehensive study of the interrelationship of the various fluid parameters. Coincidence data are sub-divided into protons and water group ions. Our revised analysis uses an improved convergence algorithm which provides a more definitive and independent estimate of the spacecraft potential ΦSC for which we enforce the protons and water group ions to co-move with each other. This has allowed us to include spacecraft charging corrections to our fluid parameter estimations and allow accurate estimations of fluctuations in the fluid parameters for future correlative studies. In the appendix we describe the ion moments algorithm, and minor corrections introduced by not weighting the moments with sinθ term in Sittler et al. [2005] (Correction offset by revisions to instruments geometric factor). Estimates of the spacecraft potential and revised proton densities are presented. Our total ion densities are in close agreement with the electron densities reported by Moncuquet et al. [2005. Quasi-thermal noise spectroscopy in the inner magnetosphere of Saturn with Cassini/RPWS: electron temperatures and density. Geophys. Res. Lett. 32, L20S02, doi:10.1029/2005GL022508] who used upper hybrid resonance (UHR) emission lines observed by the radio and plasma wave science (RPWS) instrument. We show a positive correlation between proton temperature and water group ion temperature. The proton and thermal electron temperatures track each with both having a positive radial gradient. These results are consistent with pickup ion energization via Saturn's rotational electric field. We see evidence for an anti-correlation between radial flow velocity VR and azimuthal velocity Vφ, which is consistent with the magnetosphere tending to conserve angular momentum. Evidence for MHD waves is also present. We show clear evidence for outward transport of the plasma via flux tube interchange motions with the radial velocity of the flow showing positive radial gradient with functional dependence for 4<L<10 (i.e., if we assume to be diffusive transport then DLLD0L11 for fixed stochastic time step δt). Previous models with centrifugal transport have used DLLD0L3 dependence. The radial transport seems to begin at Enceladus’ L shell, L∼4, where we also see a minimum in the W+ ion temperature . For the first time, we are measuring the actual flux tube interchange motions in the magnetosphere and how it varies with radial distance. These observations can be used as a constraint with regard to future transport models for Saturn's magnetosphere. Finally, we evaluate the thermodynamic properties of the plasma, which are all consistent with the pickup process being the dominant energy source for the plasma.  相似文献   

11.
New measurements of the dynamical properties of the long-lived Saturn's anticyclonic vortex known as “Brown Spot” (BS), discovered during the Voyager 1 and 2 flybys in 1980-1981 at latitude 43.1° N, and model simulations using the EPIC code, have allowed us to constrain the vertical wind shear and static stability in Saturn's atmosphere (vertically from pressure levels from 10 mbar to 10 bars) at this latitude. BS dynamical parameters from Voyager images include its size as derived from cloud albedo gradient (6100 km East-West times 4300 km North-South), mean tangential velocity ( at 2400 km from center) and mean vorticity (4.0±1.5×10−5 s−1), lifetime >1 year, drift velocity relative to Voyager's System III rotation rate, mean meridional atmospheric wind profile at cloud level at its latitude and interactions with nearby vortices (pair orbiting and merging). An extensive set of numerical experiments have been performed to try to reproduce this single vortex properties and its observed mergers with smaller anticyclones by varying the vertical structure of the zonal wind and adjusting the static stability of the lower stratosphere and upper troposphere. Within the context of the EPIC model atmosphere, our simulations indicate that BS's drift velocity, longevity and merging behavior are very sensitive to these two atmospheric properties. The best results at the BS latitude occur for static stability conditions that use a Brunt-Väisäla frequency constant in the upper troposphere (from 0.5 to 10 bar) above 3.2×10−3 s−1 and suggest that the wind speed slightly decays below the visible cloud deck from ∼0.5 to 10 bar at a rate per scale height. Changing the vortex latitude within the band domain introduces latitude oscillations in the vortex but not a significant meridional migration. Simulated mergers always showed orbiting movements with a typical merging time of about three days, very close to the time-span observed in the interaction of real vortices. Although these results are not unique in view of the unknowns of Saturn's deep atmosphere, they serve to constrain realistically its structure for ongoing Cassini observations.  相似文献   

12.
Early ground-based and spacecraft observations suggested that the temperature of Saturn's main rings (A, B and C) varied with the solar elevation angle, B. Data from the composite infrared spectrometer (CIRS) on board Cassini, which has been in orbit around Saturn for more than five years, confirm this variation and have been used to derive the temperature of the main rings from a wide variety of geometries while B varied from near −24° to 0° (Saturn's equinox).Still, an unresolved issue in fully explaining this variation relates to how the ring particles are organized and whether even a simple mono-layer or multi-layer approximation describes this best. We present a set of temperature data of the main rings of Saturn that cover the ∼23°—range of B angles obtained with CIRS at low (α∼30°) and high (α≥120°) phase angles. We focus on particular regions of each ring with a radial extent on their lit and unlit sides. In this broad range of B, the data show that the A, B and C rings’ temperatures vary as much as 29-38, 22-34 and 18-23 K, respectively. Interestingly the unlit sides of the rings show important temperature variations with the decrease of B as well. We introduce a simple analytical model based on the well known Froidevaux monolayer approximation and use the ring particles’ albedo as the only free parameter in order to fit and analyze this data and estimate the ring particle's albedo. The model considers that every particle of the ring behaves as a black body and warms up due to the direct energy coming from the Sun as well as the solar energy reflected from the atmosphere of Saturn and on its neighboring particles. Two types of shadowing functions are used. One analytical that is used in the latter model in the case of the three rings and another, numerical, that is applied in the case of the C ring alone. The model lit side albedo values at low phase are 0.59, 0.50 and 0.35-0.38 for the A, B and C rings, respectively.  相似文献   

13.
Using ion-electron fluid parameters derived from Cassini Plasma Spectrometer (CAPS) observations within Saturn's inner magnetosphere as presented in Sittler et al. [2006a. Cassini observations of Saturn's inner plasmasphere: Saturn orbit insertion results. Planet. Space Sci., 54, 1197-1210], one can estimate the ion total flux tube content, NIONL2, for protons, H+, and water group ions, W+, as a function of radial distance or dipole L shell. In Sittler et al. [2005. Preliminary results on Saturn's inner plasmasphere as observed by Cassini: comparison with Voyager. Geophys. Res. Lett. 32(14), L14S04), it was shown that protons and water group ions dominated the plasmasphere composition. Using the ion-electron fluid parameters as boundary condition for each L shell traversed by the Cassini spacecraft, we self-consistently solve for the ambipolar electric field and the ion distribution along each of those field lines. Temperature anisotropies from Voyager plasma observations are used with (T/T)W+∼5 and (T/T)H+∼2. The radio and plasma wave science (RPWS) electron density observations from previous publications are used to indirectly confirm usage of the above temperature anisotropies for water group ions and protons. In the case of electrons we assume they are isotropic due to their short scattering time scales. When the above is done, our calculation show NIONL2 for H+ and W+ peaking near Dione's L shell with values similar to that found from Voyager plasma observations. We are able to show that water molecules are the dominant source of ions within Saturn's inner magnetosphere. We estimate the ion production rate SION∼1027 ions/s as function of dipole L using NH+, NW+ and the time scale for ion loss due to radial transport τD and ion-electron recombination τREC. The ion production shows localized peaks near the L shells of Tethys, Dione and Rhea, but not Enceladus. We then estimate the neutral production rate, SW, from our ion production rate, SION, and the time scale for loss of neutrals by ionization, τION, and charge exchange, τCH. The estimated source rate for water molecules shows a pronounced peak near Enceladus’ L shell L∼4, with a value SW∼2×1028 mol/s.  相似文献   

14.
15.
We present the first 3-dimensional self-consistent calculations of the response of Saturn's global thermosphere to different sources of external heating, giving local time and latitudinal changes of temperatures, winds and composition at equinox and solstice. Our calculations confirm the well-known finding that solar EUV heating alone is insufficient to produce Saturn's observed low latitude thermospheric temperatures of 420 K. We therefore carry out a sensitivity study to investigate the thermosphere's response to two additional external sources of energy, (1) auroral Joule heating and (2) empirical wave heating in the lower thermosphere. Solar EUV heating alone produces horizontal temperature variations of below 20 K, which drive horizontal winds of less than 20 m/s and negligible horizontal changes in composition. In contrast, Joule heating produces a strong dynamical response with westward winds comparable to the sound speed on Saturn. Joule heating alone, at a total rate of 9.8 TW, raises polar temperatures to around 1200 K, but values equatorward of 30° latitude, where observations were made, remain below 200 K due to inefficient meridional energy transport in a fast rotating atmosphere. The primarily zonal wind flow driven by strong Coriolis forces implies that energy from high latitudes is transported equatorward mainly by vertical winds through adiabatic processes, and an additional 0.29-0.44 mW/m2 thermal energy are needed at low latitudes to obtain the observed temperature values. Strong upwelling increases the H2 abundances at high latitudes, which in turn affects the H+3 densities. Downwelling at low latitudes helps increase atomic hydrogen abundances there.  相似文献   

16.
The global distribution of phosphine (PH3) on Jupiter and Saturn is derived using 2.5 cm−1 spectral resolution Cassini/CIRS observations. We extend the preliminary PH3 analyses on the gas giants [Irwin, P.G.J., and 6 colleagues, 2004. Icarus 172, 37-49; Fletcher, L.N., and 9 colleagues, 2007a. Icarus 188, 72-88] by (a) incorporating a wider range of Cassini/CIRS datasets and by considering a broader spectral range; (b) direct incorporation of thermal infrared opacities due to tropospheric aerosols and (c) using a common retrieval algorithm and spectroscopic line database to allow direct comparison between these two gas giants.The results suggest striking similarities between the tropospheric dynamics in the 100-1000 mbar regions of the giant planets: both demonstrate enhanced PH3 at the equator, depletion over neighbouring equatorial belts and mid-latitude belt/zone structures. Saturn's polar PH3 shows depletion within the hot cyclonic polar vortices. Jovian aerosol distributions are consistent with previous independent studies, and on Saturn we demonstrate that CIRS spectra are most consistent with a haze in the 100-400 mbar range with a mean optical depth of 0.1 at 10 μm. Unlike Jupiter, Saturn's tropospheric haze shows a hemispherical asymmetry, being more opaque in the southern summer hemisphere than in the north. Thermal-IR haze opacity is not enhanced at Saturn's equator as it is on Jupiter.Small-scale perturbations to the mean PH3 abundance are discussed both in terms of a model of meridional overturning and parameterisation as eddy mixing. The large-scale structure of the PH3 distributions is likely to be related to changes in the photochemical lifetimes and the shielding due to aerosol opacities. On Saturn, the enhanced summer opacity results in shielding and extended photochemical lifetimes for PH3, permitting elevated PH3 levels over Saturn's summer hemisphere.  相似文献   

17.
Icy grains and satellites orbiting in Saturn's magnetosphere are immersed in a plasma that sputters their surfaces. This limits the lifetime of the E-ring grains and ejects neutrals that orbit Saturn until they are ionized and populate its magnetosphere. Here we re-evaluate the sputtering rate of ice in Saturn's inner magnetosphere using the recent Cassini data on the plasma ion density, temperature and composition [Sittler Jr., E.C., et al., 2007a. Ion and neutral sources and sinks within Saturn's inner magnetosphere: Cassini results. Planet. Space Sci. 56, 3-18.] and a recent summary of the relevant sputtering data for ice [Famá, M., Shi, J., Baragiola, R.A., 2008. Sputtering of ice by low-energy ions. Surf. Sci. 602, 156-161.]. Although the energetic (>10 keV) ion component at Saturn is much smaller than was assumed to be the case after Voyager [Jurac, S., Johnson, R.E., Richardson, J.D., Paranicas, C., 2001a. Satellite sputtering in Saturn's magnetosphere. Planet. Space Sci. 49, 319-326; Jurac, S., Johnson, R.E., Richardson, J.D., 2001b. Saturn's E ring and production of the neutral torus. Icarus 149, 384-396.], we show that the sputtering rates are sensitive to the temperature of the thermal plasma and are still robust, so that sputtering likely determines the lifetime of the grains in Saturn's tenuous E-ring.  相似文献   

18.
We report on Cassini Imaging Science Subsystem (ISS) data correlated with Radio and Plasma Wave Science (RPWS) observations, which indicate lightning on Saturn. A rare bright cloud erupt at ∼35° South planetocentric latitude when radio emissions (Saturn Electrostatic Discharges, or SEDs) occur. The cloud consisting of few consecutive eruptions typically lasts for several weeks, and then both the cloud and the SEDs disappear. They may reappear again after several months or may stay inactive for a year. Possibly, all the clouds are produced by the same atmospheric disturbance which drifts West at 0.45 °/day. As of March 2007, four such correlated visible and radio storms have been observed since Cassini Saturn Orbit Insertion (July 2004). In all four cases the SEDs are periodic with roughly Saturn's rotation rate (h10m39), and show correlated phase relative to the times when the clouds are seen on the spacecraft-facing side of the planet, as had been shown for the 2004 storms in [Porco, C.C., and 34 colleagues, 2005. Science 307, 1243-1247]. The 2000-km-scale storm clouds erupt to unusually high altitudes and then slowly fade at high altitudes and spread at low altitudes. The onset time of individual eruptions is less than a day during which time the SEDs reach their maximum rates. This suggests vigorous atmospheric updrafts accompanied by strong precipitation and lightning. Unlike lightning on Earth and Jupiter, where considerable lightning activity is known to exist, only one latitude on Saturn has produced lightning strong enough to be detected during the two and a half years of Cassini observations. This may partly be a detection issue.  相似文献   

19.
20.
We have undertaken an analysis of the Voyager photopolarimeter (PPS) stellar occultation data of Saturn's A ring. The Voyager PPS observed the bright star δ Scorpii as it was occulted by Saturn's main rings during the spacecraft flyby of the Saturn system in 1981. The occultation measurement produced a ring profile with radial resolution of approximately 100 m, and radial structure is evident in the profile down to the resolution limit. We have applied an autoregressive technique to the data for estimating the power spectrum as a function of radius, which has allowed us to identify 40 spiral density waves in Saturn's A ring, associated with the strongest torques due to forcing from the moons. The majority of the detected waves are observed to disperse linearly in regions beginning a few kilometers from the resonance location. We have used the dispersion behavior for those waves to calculate local surface mass densities in the vicinity of each wave. We find that the inner three-quarters of the A ring (up to the beginning of the Encke gap) has an average surface mass density of , while the outer region has an average surface mass density of . The two regions have different mean surface mass densities with a significance of approximately 0.999993, as estimated with a T-statistic, which corresponds to about 4.5σ. While the mean optical depth of the A ring increases slightly with increasing distance from Saturn, we find that it is not significantly correlated with the surface mass density; the two quantities having a linear Pearson's correlation coefficient of rcorr≈−0.03. The variation of mass density, independent of PPS optical depth, is consistent with previous conjectures that the particle size distribution and composition are not constant across the entire A ring, particularly in the very outer portion. We estimate the mass of Saturn's A ring from our surface mass density estimates as 4.9×1021 gm, or 8.61×10−9 of the mass of Saturn, roughly equivalent to the mass of a 110-km diameter icy satellite. This mass is almost 25% smaller than estimates from previous studies, but is well within the expected errors of the derived mass densities. We also identified three previously unstudied features which exhibit linear dispersion. The strongest of these features is tentatively identified as the Janus 13:11 density wave. The other two features do not fall near any known satellite resonances and may represent density waves created by previously undetected satellites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号