首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mercury has a near-zero obliquity, i.e. its spin axis is nearly perpendicular to its orbital plane. The value of the obliquity must be known precisely in order to constrain the size of the planet's core within the framework suggested by Peale [Peale, S.J., 1976. Nature 262, 765-766]. Rambaux and Bois [Rambaux, N., Bois, E., 2004. Astron. Astrophys. 413, 381-393] have suggested that Mercury's obliquity varies on thousand-year timescales due to planetary perturbations, potentially ruining the feasibility of Peale's experiment. We use a Hamiltonian approach (free of energy dissipation) to study the spin-orbit evolution of Mercury subject to secular planetary perturbations. We can reproduce an obliquity evolution similar to that of Rambaux and Bois [Rambaux, N., Bois, E., 2004. Astron. Astrophys. 413, 381-393] if we integrate the system with a set of initial conditions that differs from the Cassini state. However the thousand-year oscillations in the obliquity disappear if we use initial conditions corresponding to the equilibrium position of the Cassini state. This result indicates that planetary perturbations do not force short-period, large amplitude oscillations in the obliquity of Mercury. In the absence of excitation processes on short timescales, Mercury's obliquity will remain quasi-constant, suggesting that one of the important conditions for the success of Peale's experiment is realized. We show that interpretation of data obtained in support of this experiment will require a precise knowledge of the spin-orbit configuration, and we provide estimates for two of the critical parameters, the instantaneous Laplace plane orientation and the orbital precession rate from numerical fits to ephemeris data. Finally we provide geometrical relationships and a scheme for identifying the correct initial conditions required in numerical integrations involving a Cassini state configuration subject to planetary perturbations.  相似文献   

2.
The present obliquity of Mercury is very low (less than 0.1°), which led previous studies to always adopt a nearly zero obliquity during the planet’s past evolution. However, the initial orientation of Mercury’s rotation axis is unknown and probably much different than today. As a consequence, we believe that the obliquity could have been significant when the rotation rate of the planet first encountered spin-orbit resonances. In order to compute the capture probabilities in resonance for any evolutionary scenario, we present in full detail the dynamical equations governing the long-term evolution of the spin, including the obliquity contribution.The secular spin evolution of Mercury results from tidal interactions with the Sun, but also from viscous friction at the core-mantle boundary. Here, this effect is also regarded with particular attention. Previous studies show that a liquid core enhances drastically the chances of capture in spin-orbit resonances. We confirm these results for null obliquity, but we find that the capture probability generally decreases as the obliquity increases. We finally show that, when core-mantle friction is combined with obliquity evolution, the spin can evolve into some unexpected configurations as the synchronous or the 1/2 spin-orbit resonance.  相似文献   

3.
Matija ?uk 《Icarus》2011,211(1):97-100
The Moon has long been known to have an overall shape not consistent with expected past tidal forces. It has recently been suggested (Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652-655) that the present lunar moments of inertia indicate a past high-eccentricity orbit and, possibly, a past non-synchronous spin-orbit resonance. Here I show that the match between the lunar shape and the proposed orbital and spin states is much less conclusive than initially proposed. Garrick-Bethell et al. (Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652-655) spin and shape evolution scenarios also completely ignore the physics of the capture into such resonances, which require prior permanent deformation, as well as tidal despinning to the relevant resonance. If the early lunar orbit was eccentric, the Moon would have been rotating at an equilibrium non-synchronous rate determined by it eccentricity. This equilibrium supersynchronous rotation would be much too fast to allow a synchronous spin-orbit lock at e = 0.49, while the capture into the 3:2 resonance is possible only for a very constrained lunar eccentricity history and assuming some early permanent lunar tri-axiality. Here I show that large impacts in the early history of the Moon would have frequently disrupted this putative resonant rotation, making the rotation and eccentricity solutions of Garrick-Bethell et al. (Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652-655) unstable. I conclude that the present lunar shape cannot be used to support the hypothesis of an early eccentric lunar orbit.  相似文献   

4.
B. Levrard 《Icarus》2008,193(2):641-643
In a recent paper, Wisdom [Wisdom, J., 2008. Icarus, 193, 637-640] derived concise expressions for the rate of tidal dissipation in a synchronously rotating body for arbitrary orbital eccentricity and obliquity. He provided numerical evidence than the derived rate is always larger than in an asymptotic nonsynchronous rotation state at any obliquity and eccentricity. Here, I present a simple mathematical proof of this conclusion and show that this result still holds for any spin-orbit resonance.  相似文献   

5.
The shaking of Mercury’s orbit by the planets forces librations in longitude in addition to those at harmonics of the orbital period that have been used to detect Mercury’s molten core. We extend the analytical formulation of Peale et al. (Peale, S.J., Margot, J.L., Yseboodt, M. [2009]. Icarus 199, 1-8) in order to provide a convenient means of determining the amplitudes and phases of the forced librations without resorting to numerical calculations. We derive an explicit relation between the amplitude of each forced libration and the moment of inertia parameter (B-A)/Cm. Far from resonance with the free libration period, the libration amplitudes are directly proportional to (B-A)/Cm. Librations with periods close to the free libration period of ∼12 years may have measurable (∼arcsec) amplitudes. If the free libration period is sufficiently close to Jupiter’s orbital period of 11.86 years, the amplitude of the forced libration at Jupiter’s period could exceed the 35 arcsec amplitude of the 88-day forced libration. We also show that the planetary perturbations of the mean anomaly and the longitude of pericenter of Mercury’s orbit completely determine the libration amplitudes.While these signatures do not affect spin rate at a detectable level (as currently measured by Earth-based radar), they have a much larger impact on rotational phase (affecting imaging, altimetry, and gravity sensors). Therefore, it may be important to consider planetary perturbations when interpreting future spacecraft observations of the librations.  相似文献   

6.
V. Mangano  F. Leblanc  C. Barbieri 《Icarus》2009,201(2):424-431
A long term plan of observations of the sodium exosphere of Mercury began in 2002 by using the high resolution echelle spectrograph SARG and a devoted sodium filter at the 3.5 m Galileo National Telescope (TNG) located in La Palma, Canary Islands. This program is meant to investigate the variations of the sodium exosphere appearance under different conditions of observations, namely Mercury's position along its orbit, phase angle and different solar conditions, as reported by previous observations in August 2002 and August 2003 [Barbieri, C., Verani, S., Cremonese, G., Sprague, A., Mendillo, M., Cosentino, R., Hunten, D., 2004. Planet. Space Sci. 52, 1169-1175; Leblanc, F., Barbieri, C., Cremonese, G., Verani, S., Cosentino, R., Mendillo, M., Sprague, A., Hunten, D., 2006. Icarus 185 (2), 395-402].Here we present the analysis of data taken in June 29th and 30th and in July 1st 2005, when Mercury's true anomaly angle (TAA) was in the range 124-130°. The spectra show particularly intense sodium lines with a distinctive peak in emission localized in the southern hemisphere at mid-latitudes. This seems to be a persistent feature related to consecutive favorable IMF conditions inducing localized enhancements of surface sodium density. The comparison with previous data taken by Potter et al. [Potter, A.E., Killen, R.M., Morgan, T.H., 2002. Meteorit. Planet. Sci. 37 (9), 1165-1172] evidences a surprising consistency of the anti-sunward component, which appears to remain constant regardless of the changing illumination and space weather conditions at Mercury.  相似文献   

7.
A planar, fixed-orbit model of the rotation of the planet Mercury is analyzed. The model includes only the solar torques on the planet's permanent asymmetry and its solar tidal bulge. For this model, it is shown that the zero of the averaged tidal torque corresponds to an asymptotically stable periodic solution of the second kind which, for two tidal torque representations, is close to the asymptotically stable equilibrium point corresponding to an exact 32 spin-orbit resonance. A conjecture that the current rotation state of Mercury is due to transfer from capture by the zero of the averaged tidal torque to 32 resonance capture with changes in the eccentricity of the planet's orbit is discussed briefly.  相似文献   

8.
E. Nogueira  R. Gomes 《Icarus》2011,214(1):113-130
The origin of Neptune’s large, circular but retrograde satellite Triton has remained largely unexplained. There is an apparent consensus that its origin lies in it being captured, but until recently no successful capture mechanism has been found. Agnor and Hamilton (Agnor, C.B., Hamilton, D.P. [2006]. Nature 441, 192-194) demonstrated that the disruption of a trans-neptunian binary object which had Triton as a member, and which underwent a very close encounter with Neptune, was an effective mechanism to capture Triton while its former partner continued on a hyperbolic orbit. The subsequent evolution of Triton’s post-capture orbit to its current one could have proceeded through gravitational tides (Correia, A.C.M. [2009]. Astrophys. J. 704, L1-L4), during which time Triton was most likely semi-molten (McKinnon, W.B. [1984]. Nature 311, 355-358). However, to date, no study has been performed that considered both the capture and the subsequent tidal evolution. Thus it is attempted here with the use of numerical simulations. The study by Agnor and Hamilton (Agnor, C.B., Hamilton, D.P. [2006]. Nature 441, 192-194) is repeated in the framework of the Nice model (Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435, 459-461) to determine the post-capture orbit of Triton. After capture Triton is then subjected to tidal evolution using the model of Mignard (Mignard, F. [1979]. Moon Planets 20, 301-315; Mignard, F. [1980]. Moon Planets 23, 185-201). The perturbations from the Sun and the figure of Neptune are included. The perturbations from the Sun acting on Triton just after its capture cause it to spend a long time in its high-eccentricity phase, usually of the order of 10 Myr, while the typical time to circularise to its current orbit is some 200 Myr, consistent with earlier studies. The current orbit of Triton is consistent with an origin through binary capture and tidal evolution, even though the model prefers Triton to be closer to Neptune than it is today. The probability of capturing Triton in this manner is approximately 0.7%. Since the capture of Triton was at most a 50% event - since only Neptune has one, but Uranus does not - we deduce that in the primordial trans-neptunian disc there were some 100 binaries with at least one Triton-sized member. Morbidelli et al. (Morbidelli, A., Levison, H.F., Bottke, W.F., Dones, L., Nesvorný, D. [2009]. Icarus 202, 310-315) concludes there were some 1000 Triton-sized bodies in the trans-neptunian proto-planetary disc, so the primordial binary fraction with at least one Triton-sized member is 10%. This value is consistent with theoretical predictions, but at the low end. If Triton was captured at the same time as Neptune’s irregular satellites, the far majority of these, including Nereid, would be lost. This suggests either that Triton was captured on an orbit with a small semi-major axisa ? 50RN (a rare event), or that it was captured before the dynamical instability of the Nice model, or that some other mechanism was at play. The issue of keeping the irregular satellites remains unresolved.  相似文献   

9.
We consider a dissipative spin-orbit model where it is assumed that the orbit of the satellite is Keplerian, the obliquity is zero, and the dissipative effects depend linearly on the relative angular velocity. The measure of the basins of attraction associated to periodic and quasi-periodic attractors is numerically investigated. The results depend on the interaction among the physically relevant parameters, namely, the orbital eccentricity, the equatorial oblateness and the dissipative constant. In particular, it appears that, for astronomically relevant parameter values, for low eccentricities (as in the Moon’s case) about 96% of the initial data belong to the basin of attraction of the 1/1 spin-orbit resonance; for larger values of the eccentricities higher order spin-orbit resonances and quasi-periodic attractors become dominant providing a mechanism for explaining the observed state of Mercury into the 3/2 resonance.  相似文献   

10.
A mechanism capable of accounting for the large mean eccentricity (0.175) and inclination (7°.2) of Mercury is discussed. Provided the gravitational field of the rapidly rotating primordial Sun had a sufficiently large second degree harmonic (i.e., J2 ? order 10?3), subsequent solar spin down would drive the orbit of Mercury through two secular resonances with Venus, one involving the precession of the line of apsides, the other one involving the regression of the nodal line. Resonance passage generates contributions to the eccentricity and inclination that are proportional to the square root of the characteristic solar spin down time. We find that an initial solar rotation l period of P ? 512hr guarantees passage through resonance and that a spin down time of τ = Ω|dΩ/dt|?1 of order 106 years could have produced the observed eccentricity and inclination. Such a primordial rotation rate is comparable to the measured rotations of very young stars and the spin down time appears consistent with the time scale derived for magnetic braking of the Sun's rotation by an intense solar wind during a T-Tauri stage of solar evolution.  相似文献   

11.
S.J. Peale 《Icarus》2005,178(1):4-18
An analysis based on the direct torque equations including tidal dissipation and a viscous core-mantle coupling is used to determine the damping time scales of O(105) years for free precession of the spin about the Cassini state and free libration in longitude for Mercury. The core-mantle coupling dominates the damping over the tides by one to two orders of magnitude for the plausible parameters chosen. The short damping times compared with the age of the Solar System means we must find recent or on-going excitation mechanisms if such free motions are found by the current radar experiments or the future measurement by the MESSENGER and BepiColombo spacecraft that will orbit Mercury. We also show that the average precession rate is increased by about 30% over that obtained from the traditional precession constant because of a spin-orbit resonance induced contribution by the C22 term in the expansion of the gravitational field. The C22 contribution also causes the path of the spin during the precession to be slightly elliptical with a variation in the precession rate that is a maximum when the obliquity is a minimum. An observable free precession will compromise the determination of obliquity of the Cassini state and hence of C/MMR2 for Mercury, but a detected free libration will not compromise the determination of the forced libration amplitude and thus the verification of a liquid core.  相似文献   

12.
On the basis of tidal despinning timescale arguments, Peale showed in 1977 that the majority of irregular satellites (with unknown rotation states) are expected to reside close to their initial (fast) rotation states. Here we investigate the problem of the current typical rotation states among all known satellites from a viewpoint of dynamical stability. We explore location of the known planetary satellites on the (ω0e) stability diagram, where ω0 is an inertial parameter of a satellite and e is its orbital eccentricity. We show that most of the satellites with unknown rotation states cannot rotate synchronously, because no stable synchronous 1:1 spin-orbit state exists for them. They rotate either much faster than synchronously (those tidally unevolved) or, what is much less probable, chaotically (tidally-evolved objects or captured slow rotators).  相似文献   

13.
F. Leblanc  J.Y. Chaufray 《Icarus》2011,216(2):551-559
Helium is one of the first elements clearly identified in the lunar exosphere (Hoffman, J.H., Hodges, R.R., Johnson, F.S., Evans, D.E. [1973]. Proc. Lunar Sci. Conf. 3, 2865–2875). Apollo 17 measured the He density at the surface during four lunations. It confirmed the expected day to night asymmetry of the He exosphere with a maximum density near the dawn terminator on the nightside. Few years later, the first detection of Mercury’s He exosphere was successfully obtained by Mariner 10 (Broadfoot, A.L., Shemansky, D.E., Kumar, S. [1976]. Geophys. Res. Lett. 3, 577–580). These observations highlighted similar global distribution of the He exosphere at Mercury and at the Moon, but also significant differences that have never been convincingly explained.In this paper, we model the He exosphere at the Moon and Mercury with the same approach. The energy accommodation of the exospheric He particles interacting with the surface can be roughly constrained using Apollo 17 and Mariner 10 measurements. Neither a low energy accommodation, as suggested by Shemansky and Broadfoot (Shemansky, D.E., Broadfoot, A.L. [1977]. Rev. Geophys. 15, 491–499), nor a full energy accommodation, as suggested by Hodges (Hodges Jr., R.R. [1975]. The Moon, 14, 139–157), can fit all the observations. These observations and their modeling suggest a diurnal variation of the energy distribution of the He ejected from the surface that cannot be explained satisfactorily by any of the present theories on the gas–surface interaction in surface-bounded exospheres.  相似文献   

14.
The paper develops a hamiltonian formulation describing the coupled orbital and spin motions of a rigid Mercury rotation about its axis of maximum moment of inertia in the frame of a 3:2 spin orbit resonance; the (ecliptic) obliquity is not constant, the gravitational potential of mercury is developed up to the second degree terms (the only ones for which an approximate numerical value can be given) and is reduced to a two degree of freedom model in the absence of planetary perturbations. Four equilibria can be calculated, corresponding to four different values of the (ecliptic) obliquity. The present situation of Mercury corresponds to one of them, which is proved to be stable. We introduce action-angle variables in the neighborhood of this stable equilibrium, by several successive canonical transformations, so to get two constant frequencies, the first one for the free spin-orbit libration, the other one for the 1:1 resonant precession of both nodes (orbital and rotational) on the ecliptic plane. The numerical values obtained by this simplified model are in perfect agreement with those obtained by Rambaux and Bois [Astron. Astrophys. 413, 381–393]. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Mercury is observed in a stable Cassini’s state, close to a 3:2 spin-orbit resonance, and a 1:1 node resonance. This present situation is not the only possible mathematical stable state, as it is shown here through a simple model limited to the second-order in harmonics and where Mercury is considered as a rigid body. In this framework, using a Hamiltonian formalism, four different sets of resonant angles are computed from the differential Hamiltonian equations, and each of them corresponds to four values of the obliquity; thanks to the calculation of the corresponding eigenvalues, their linear stability is analyzed. In this simplified model, two equilibria (one of which corresponding to the present state of Mercury) are stable, one is unstable, and the fourth one is degenerate. This degenerate status disappears with the introduction of the orbit (node and pericenter) precessions. The influence of these precession rates on the proper frequencies of the rotation is also analyzed and quantified, for different planetary models.  相似文献   

16.
We consider the hypothesis that the layering observed on the surface of Comet 9P/Tempel 1 from the Deep Impact spacecraft and identified on other comet nuclei imaged by spacecraft (i.e., 19P/Borrelly and 81P/Wild 2) is ubiquitous on Jupiter family cometary nuclei and is an essential element of their internal structure. The observational characteristics of the layers on 9P/Tempel 1 are detailed and considered in the context of current theories of the accumulation and dynamical evolution of cometary nuclei. The works of Donn [Donn, B.D., 1990. Astron. Astrophys. 235, 441-446], Sirono and Greenberg [Sirono, S.-I., Greenberg, J.M., 2000. Icarus 145, 230-238] and the experiments of Wurm et al. [Wurm, G., Paraskov, G., Krauss, O., 2005. Icarus 178, 253-263] on the collision physics of porous aggregate bodies are used as basis for a conceptual model of the formation of layers. Our hypothesis is found to have implications for the place of origin of the JFCs and their subsequent dynamical history. Models of fragmentation and rubble pile building in the Kuiper belt in a period of collisional activity (e.g., [Kenyon, S.J., Luu, J.X., 1998. Astron. J. 115, 2136-2160; 1999a. Astron. J. 118, 1101-1119; 1999b. Astrophys. J. 526, 465-470; Farinella, P., Davis, D.R., Stern, S.A., 2000. In: Mannings, V., Boss, A.P., Russell, S.S. (Eds.), Protostars and Planets IV. Univ. of Arizona Press, Tucson, pp. 1255-1282; Durda, D.D., Stern, S.J., 2000. Icarus 145, 220-229]) following the formation of Neptune appear to be in conflict with the observed properties of the layers and irreconcilable with the hypothesis. Long-term residence in the scattered disk [Duncan, M.J., Levison, H.F., 1997. Science 276, 1670-1672; Duncan, M., Levison, H., Dones, L., 2004. In: Festou, M., Keller, H.U., Weaver, H.A. (Eds.), Comets II. Univ. of Arizona Press, Tucson, pp. 193-204] and/or a change in fragmentation outcome modeling may explain the long-term persistence of primordial layers. In any event, the existence of layers places constraints on the environment seen by the population of objects from which the Jupiter family comets originated. If correct, our hypothesis implies that the nuclei of Jupiter family comets are primordial remnants of the early agglomeration phase and that the physical structure of their interiors, except for the possible effects of compositional phase changes, is largely as it was when they were formed. We propose a new model for the interiors of Jupiter family cometary nuclei, called the talps or “layered pile” model, in which the interior consists of a core overlain by a pile of randomly stacked layers. We discuss how several cometary characteristics—layers, surface texture, indications of flow, compositional inhomogeneity, low bulk density low strength, propensity to split, etc., might be explained in terms of this model. Finally, we make some observational predictions and suggest goals for future space observations of these objects.  相似文献   

17.
At present, approximately 1500 asteroids are known to evolve inside or sticked to the exterior 1:2 resonance with Mars at a ? 2.418 AU, being (142) Polana the largest member of this group. The effect of the forced secular modes superposed to the resonance gives rise to a complex dynamical evolution. Chaotic diffusion, collisions, close encounters with massive asteroids and mainly orbital migration due to the Yarkovsky effect generate continuous captures to and losses from the resonance, with a fraction of asteroids remaining captured over long time scales and generating a concentration in the semimajor axis distribution that exceeds by 20% the population of background asteroids. The Yarkovsky effect induces different dynamics according to the asteroid size, producing an excess of small asteroids inside the resonance. The evolution in the resonance generates a signature on the orbits, mainly in eccentricity, that depends on the time the asteroid remains captured inside the resonance and on the magnitude of the Yarkovsky effect. The greater the asteroids, the larger the time they remain captured in the resonance, allowing greater diffusion in eccentricity and inclination. The resonance generates a discontinuity and mixing in the space of proper elements producing misidentification of dynamical family members, mainly for Vesta and Nysa-Polana families. The half-life of resonant asteroids large enough for not being affected by the Yarkovsky effect is about 1 Gyr. From the point of view of taxonomic classes, the resonant population does not differ from the background population and the excess of small asteroids is confirmed.  相似文献   

18.
We explore the origin and orbital evolution of the Kuiper belt in the framework of a recent model of the dynamical evolution of the giant planets, sometimes known as the Nice model. This model is characterized by a short, but violent, instability phase, during which the planets were on large eccentricity orbits. It successfully explains, for the first time, the current orbital architecture of the giant planets [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461], the existence of the Trojans populations of Jupiter and Neptune [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465], and the origin of the late heavy bombardment of the terrestrial planets [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469]. One characteristic of this model is that the proto-planetary disk must have been truncated at roughly 30 to 35 AU so that Neptune would stop migrating at its currently observed location. As a result, the Kuiper belt would have initially been empty. In this paper we present a new dynamical mechanism which can deliver objects from the region interior to ∼35 AU to the Kuiper belt without excessive inclination excitation. In particular, we show that during the phase when Neptune's eccentricity is large, the region interior to its 1:2 mean motion resonance becomes unstable and disk particles can diffuse into this area. In addition, we perform numerical simulations where the planets are forced to evolve using fictitious analytic forces, in a way consistent with the direct N-body simulations of the Nice model. Assuming that the last encounter with Uranus delivered Neptune onto a low-inclination orbit with a semi-major axis of ∼27 AU and an eccentricity of ∼0.3, and that subsequently Neptune's eccentricity damped in ∼1 My, our simulations reproduce the main observed properties of the Kuiper belt at an unprecedented level. In particular, our results explain, at least qualitatively: (1) the co-existence of resonant and non-resonant populations, (2) the eccentricity-inclination distribution of the Plutinos, (3) the peculiar semi-major axis—eccentricity distribution in the classical belt, (4) the outer edge at the 1:2 mean motion resonance with Neptune, (5) the bi-modal inclination distribution of the classical population, (6) the correlations between inclination and physical properties in the classical Kuiper belt, and (7) the existence of the so-called extended scattered disk. Nevertheless, we observe in the simulations a deficit of nearly-circular objects in the classical Kuiper belt.  相似文献   

19.
Tidal evolution of Mimas, Enceladus, and Dione   总被引:2,自引:0,他引:2  
Jennifer Meyer  Jack Wisdom 《Icarus》2008,193(1):213-223
The tidal evolution through several resonances involving Mimas, Enceladus, and/or Dione is studied numerically with an averaged resonance model. We find that, in the Enceladus-Dione 2:1 e-Enceladus type resonance, Enceladus evolves chaotically in the future for some values of k2/Q. Past evolution of the system is marked by temporary capture into the Enceladus-Dione 4:2 ee-mixed resonance. We find that the free libration of the Enceladus-Dione 2:1 e-Enceladus resonance angle of 1.5° can be explained by a recent passage of the system through a secondary resonance. In simulations with passage through the secondary resonance, the system enters the current Enceladus-Dione resonance close to tidal equilibrium and thus the equilibrium value of tidal heating of 1.1(18,000/QS) GW applies. We find that the current anomalously large eccentricity of Mimas can be explained by passage through several past resonances. In all cases, escape from the resonance occurs by unstable growth of the libration angle, sometimes with the help of a secondary resonance. Explanation of the current eccentricity of Mimas by evolution through these resonances implies that the Q of Saturn is below 100,000. Though the eccentricity of Enceladus can be excited to moderate values by capture in the Mimas-Enceladus 3:2 e-Enceladus resonance, the libration amplitude damps and the system does not escape. Thus past occupancy of this resonance and consequent tidal heating of Enceladus is excluded. The construction of a coherent history places constraints on the allowed values of k2/Q for the satellites.  相似文献   

20.
S.J. Peale 《Icarus》1978,36(2):240-244
If Hyperion's radius is near the upper limit of recent estimates, and tidal dissipation in Hyperion is reasonably well represented by a frequency-independent Q ? 2–300, finding Hyperion rotating in the 3:2 spin-orbit resonance like Mercury would imply a primordial origin for the Titan-Hyperion 4:3 orbital resonance. Independent of this test, observation of Hyperion's spin rate will place an upper bound on the average tidal effective Q for the satellite as a function of its assumed initial angular velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号