首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A variety of Late Amazonian landforms on Mars have been attributed to the dynamics of ice-related processes. Evidence for large-scale, mid-latitude glacial episodes existing within the last 100 million to 1 billion years on Mars has been presented from analyses of lobate debris aprons (LDA) and lineated valley fill (LVF) in the northern and southern mid-latitudes. We test the glacial hypothesis for LDA and LVF along the dichotomy boundary in the northern mid-latitudes by examining the morphological characteristics of LDA and LVF surrounding two large plateaus, proximal massifs, and the dichotomy boundary escarpment north of Ismeniae Fossae (centered at 45.3°N and 39.2°E). Lineations and flow directions within LDA and LVF were mapped using images from the Context (CTX) camera, the Thermal Emission Imaging Spectrometer (THEMIS), and the High Resolution Stereo Camera (HRSC). Flow directions were then compared to topographic contours derived from the Mars Orbiter Laser Altimeter (MOLA) to determine the down-gradient components of LDA and LVF flow. Observations indicate that flow patterns emerge from numerous alcoves within the plateau walls, are integrated over distances of up to tens of kilometers, and have down-gradient flow directions. Smaller lobes confined within alcoves and superposed on the main LDA and LVF represent a later, less extensive glacial phase. Crater size-frequency distributions of LDA and LVF suggest a minimum (youngest) age of 100 Ma. The presence of ring-mold crater morphologies is suggestive that LDA and LVF are formed of near-surface ice-rich bodies. From these observations, we interpret LDA and LVF within our study region to result from formerly active debris-covered glacial flow, consistent with similar observations in the northern mid-latitudes of Mars. Glacial flow was likely initiated from the accumulation and compaction of snow and ice on plateaus and in alcoves within the plateau walls as volatiles were mobilized to the mid-latitudes during higher obliquity excursions. Together with similar analyses elsewhere along the dichotomy boundary, these observations suggest that multiple glacial episodes occurred in the Late Amazonian and that LDA and LVF represent significant reservoirs of non-polar ice sequestered below a surface lag for hundreds of millions of years.  相似文献   

2.
A fretted valley system on Mars located at the northern mid-latitude dichotomy boundary contains lineated valley fill (LVF) with extensive flow-like features interpreted to be glacial in origin. We have modeled this deposit using glacial flow models linked to atmospheric general circulation models (GCM) for conditions consistent with the deposition of snow and ice in amounts sufficient to explain the interpreted glaciation. In the first glacial flow model simulation, sources were modeled in the alcoves only and were found to be consistent with the alpine valley glaciation interpretation for various environments of flow in the system. These results supported the interpretation of the observed LVF deposits as resulting from initial ice accumulation in the alcoves, accompanied by debris cover that led to advancing alpine glacial landsystems to the extent observed today, with preservation of their flow texture and the underlying ice during downwasting in the waning stages of glaciation. In the second glacial flow model simulation, the regional accumulation patterns predicted by a GCM linked to simulation of a glacial period were used. This glacial flow model simulation produced a much wider region of thick ice accumulation, and significant glaciation on the plateaus and in the regional plains surrounding the dichotomy boundary. Deglaciation produced decreasing ice thicknesses, with flow centered on the fretted valleys. As plateaus lost ice, scarps and cliffs of the valley and dichotomy boundary walls were exposed, providing considerable potential for the production of a rock debris cover that could preserve the underlying ice and the surface flow patterns seen today. In this model, the lineated valley fill and lobate debris aprons were the product of final retreat and downwasting of a much larger, regional glacial landsystem, rather than representing the maximum extent of an alpine valley glacial landsystem. These results favor the interpretation that periods of mid-latitude glaciation were characterized by extensive plateau and plains ice cover, rather than being restricted to alcoves and adjacent valleys, and that the observed lineated valley fill and lobate debris aprons represent debris-covered residual remnants of a once more extensive glaciation.  相似文献   

3.
Joseph Levy  James W. Head 《Icarus》2010,209(2):390-404
Hypotheses accounting for the formation of concentric crater fill (CCF) on Mars range from ice-free processes (e.g., aeolian fill), to ice-assisted talus creep, to debris-covered glaciers. Based on analysis of new CTX and HiRISE data, we find that concentric crater fill (CCF) is a significant component of Amazonian-aged glacial landsystems on Mars. We present mapping results documenting the nature and extent of CCF along the martian dichotomy boundary over −30 to 90°E latitude and 20-80°N longitude. On the basis of morphological analysis we classify CCF landforms into “classic” CCF and “low-definition” CCF. Classic CCF is most typical in the middle latitudes of the analysis area (∼30-50°N), while a range of degradation processes results in the presence of low-definition CCF landforms at higher and lower latitudes. We evaluate formation mechanisms for CCF on the basis of morphological and topographic analyses, and interpret the landforms to be relict debris-covered glaciers, rather than ice-mobilized talus or aeolian units. We examine filled crater depth-diameter ratios and conclude that in many locations, hundreds of meters of ice may still be present under desiccated surficial debris. This conclusion is consistent with the abundance of “ring-mold craters” on CCF surfaces that suggest the presence of near-surface ice. Analysis of breached craters and distal glacial deposits suggests that in some locations, CCF-related ice was once several hundred meters higher than its current level, and has sublimated significantly during the most recent Amazonian. Crater counts on ejecta blankets of filled and unfilled craters suggests that CCF formed most recently between ∼60 and 300 Ma, consistent with the formation ages of other martian debris-covered glacial landforms such as lineated valley fill (LVF) and lobate debris aprons (LDA). Morphological analysis of CCF in the vicinity of LVF and LDA suggests that CCF is a part of an integrated LVF/LDA/CCF glacial landsystem. Instances of morphological continuity between CCF, LVF, and LDA are abundant. The presence of formerly more abundant CCF ice, coupled with the integration of CCF into LVF and LDA, suggests the possibility that CCF represents one component of the significant Amazonian mid-latitude glaciation(s) on Mars.  相似文献   

4.
Gareth A. Morgan 《Icarus》2009,202(1):39-59
The majority of martian valley networks are found on Noachian-aged terrain and are attributed to be the result of a ‘warm and wet’ climate that prevailed early in Mars' history. Younger valleys have been identified, though these are largely interpreted to be the result of localized conditions associated with the melting of ice from endogenic heat sources. Sinton crater, a 60 km diameter impact basin in the Deuteronilus Mensae region of the dichotomy boundary, is characterized by small anastomosing valley networks that are located radial to the crater rim. Large scale deposits, interpreted to be the remains of debris covered glaciers, have been identified in the area surrounding Sinton, and our observations have revealed the occurrence of an ice rich fill deposit within the crater itself. We have conducted a detailed investigated into the Sinton valley networks with all the available remote data sets and have dated their formation to the Amazonian/Hesperian boundary. The spatial and temporal association between Sinton crater and the valley networks suggest that the impact was responsible for their formation. We find that the energy provided by an asteroid impact into surficial deposits of snow/ice is sufficient to generate the required volumes of melt water needed for the valley formation. We therefore interpret these valleys to represent a distinct class of martian valley networks. This example demonstrates the potential for impacts to cause the onset of fluvial erosion on Mars. Our results also suggest that periods of glacial activity occurred throughout the Amazonian and into the Hesperian in association with variations in spin orbital parameters.  相似文献   

5.
Widespread deposits surrounding mesas, in craters and in valley systems are observed in the transition zone between the Elysium Rise and the Utopia Planitia Basin. They are characterized by their relatively high albedo, the presence of ring-mold crater (RMC) morphologies and their pitted surfaces, with textures ranging from lineations and fish-scale-patterns to widely distributed knobs. These deposits are interpreted to be modified ice-rich material in the form of degraded deposits of concentric crater fill (CCF), lineated valley fill (LVF) and lobate debris aprons (LDA). The degraded CCF deposits are observed from 31.2–40°N, 138–150°E over an elevation range of almost 9 km. This wide-ranging distribution demonstrates that degraded ice-rich deposits exist at every altitude and latitude in the study area, indicating that icy mantle materials were initially deposited over extensive areas and were stable over a long time period, allowing the deposits to coexist and interact with different processes under very different conditions. The degraded LDA deposits represent the largest unit of modified ice-rich material, with an area of ~15,700 km2, and are populated with a range of ring-mold crater morphologies that is interpreted to be related to a degradational sequence between previously described RMC and newly observed RMCs that appear to be more degraded. A distinctive frequency difference in the distribution of normal and degraded RMCs permits an evaluation of different degradation stages of the LDA deposits; we show how an RMC distribution can be used as a key tool for evaluation of altered LDA, LVF and CCF deposits. Taken together, these observations suggest that ice-rich material has played a major role in shaping the present-day landscape in the transition zone between the Elysium Rise and the Utopia Planitia Basin, and they provide a link for understanding Amazonian-aged degradation processes of ice-rich deposits in an area with no significant topographic relief.  相似文献   

6.
We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gállego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 ± 5 ka, 64 ± 11 ka, and 36 ± 3 ka (from glacial till) and 20 ± 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 ± 21 ka, 97 ± 16 ka, 61 ± 4 ka, 47 ± 4 ka, and 11 ± 1 ka, and in the Gállego River valley at 151 ± 11 ka, 68 ± 7 ka, and 45 ± 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and Heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 ± 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 ± 4 ka) and Gállego (68 ± 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to 1) global climate changes controlled by insolation, 2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and 3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian Peninsula. Our scenario of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.  相似文献   

7.
We use Viking and new MGS and Odyssey data to characterize the lobate deposits superimposed on aureole deposits along the west and northwest flanks of Olympus Mons, Mars. These features have previously been interpreted variously as landslide, pyroclastic, lava flow or glacial features on the basis of Viking images. The advent of multiple high-resolution image and topography data sets from recent spacecraft missions allow us to revisit these features and assess their origins. On the basis of these new data, we interpret these features as glacial deposits and the remnants of cold-based debris-covered glaciers that underwent multiple episodes of advance and retreat, occasionally interacting with extrusive volcanism from higher on the slopes of Olympus Mons. We subdivide the deposits into fifteen distinctive lobes. Typical lobes begin at a theater-like alcove in the escarpment at the base of Olympus Mons, interpreted to be former ice-accumulation zones, and extend outward as a tongue-shaped or fan-shaped deposit. The surface of a typical lobe contains (moving outward from the basal escarpment): a chaotic facies of disorganized hillocks, interpreted as sublimation till in the accumulation zone; arcuate-ridged facies characterized by regular, subparallel ridges and interpreted as the ridges of surface debris formed by the flow of underlying ice; and marginal ridges interpreted as local terminal moraines. Several lobes also contain a hummocky facies toward their margins that is interpreted as a distinctive type of sublimation till shaped by structural dislocations and preferential loss of ice. Blocky units are found extending from the escarpment onto several lobes; these units are interpreted as evidence of lava-ice interaction and imply that ice was present at a time of eruptive volcanic activity higher on the slopes of Olympus Mons. Other than minor channel-like features in association with lava-ice interactions, we find no evidence for the flow of liquid water in association with these lobate features that might suggest: (1) near-surface groundwater as a source for ice in the alcoves in the lobe source region at the base of the scarp, or (2) basal melting and drainage emanating from the lobes that might indicate wet-based glacial conditions. Instead, the array of features is consistent with cold-based glacial processes. The glacial interpretations outlined here are consistent with recent geological evidence for low-latitude ice-rich features at similar positions on the Tharsis Montes as well as with orbital dynamic and climate models indicating extensive snow and ice accumulation associated with episodes of increased obliquity during the Late Amazonian period of the history of Mars.  相似文献   

8.
Abundant evidence exists for glaciation being an important geomorphic process in the mid-latitude regions of both hemispheres of Mars, as well as in specific environments at near-equatorial latitudes, such as along the western flanks of the major Tharsis volcanoes. Detailed analyses of glacial landforms (lobate-debris aprons, lineated valley fill, concentric crater fill, viscous flow features) have suggested that this glaciation was predominantly cold-based. This is consistent with the view that the Amazonian has been continuously cold and dry, similar to conditions today. We present new data based on a survey of images from the Context Camera (CTX) on the Mars Reconnaissance Orbiter that some of these glaciers experienced limited surface melting, leading to the formation of small glaciofluvial valleys. Some of these valleys show evidence for proglacial erosion (eroding the region immediately in front of or adjacent to a glacier), while others are supraglacial (eroding a glacier’s surface). These valleys formed during the Amazonian, consistent with the inferred timing of glacial features based on both crater counts and stratigraphic constraints. The small scale of the features interpreted to be of glaciofluvial origin hindered earlier recognition, although their scale is similar to glaciofluvial counterparts on Earth. These valleys appear qualitatively different from valley networks formed in the Noachian, which can be much longer and often formed integrated networks and large lakes. The valleys we describe here are also morphologically distinct from gullies, which are very recent fluvial landforms formed during the last several million years and on much steeper slopes (∼20-30° for gullies versus ?10° for the valleys we describe). These small valleys represent a distinct class of fluvial features on the surface of Mars (glaciofluvial); their presence shows that the hydrology of Amazonian Mars is more diverse than previously thought.  相似文献   

9.
The Taurus-Littrow region (Apollo 17 landing area) is located in the northeastern quadrant of the Moon in the mountainous area on the southeastern rim of the Serenitatis basin. The highlands in the Taurus-Littrow region can be divided into three broad terrain types. (1)Littrow massifs - massive, 10-20 km diam, steep-sloped (20°–30°), highland blocks often bordered by linear graben-like valleys. (2)Littrow sculptured hills - a series of closely spaced 1-5 km diam domical hills occupying broad highland plateaus which have been cratered and block faulted. Sculptured hill units stretch along the eastern edge of Serenitatis from the Apollo 17 area north to Posidonius. (3)Vitruvius front and plateau - a long irregular but generally north-trending scarp (occasionally rising over 2 km above the surrounding terrain) and its associated uplifted plateau to the east. This terrain is composed of hills ranging from 2-7 km diam, whose morphology is intermediate between the sculptured hills and the massifs. It is concluded that the highland units in the Taurus-Littrow region are primarily related to the origin of the Serenitatis basin because of their marked similarity to more well-preserved basin-related deposits in the younger Imbrium and Orientale basins: (1) the massifs and sculptured terra are morphologically similar to the Imbrium basin-related Montes Alpes and Alpes Formation, (2) the relative geographic position of the Taurus-Littrow highlands and Montes Alpes/Alpes Formation is the same, forming the second ring and spreading distally, and (3) the structures are similar in orientation and development (e.g., massifs are related to radial and concentric structure; Alpes Formation/sculptured terra are not). Interpretation of the massifs and sculptured hills as Serenitatis impact-related deposits lessens the possible role of highland volcanism in the origin and evolution of the Taurus-Littrow terrain, although extensive pre-Serenitatis volcanism cannot be ruled out. The preserved morphology of the sculptured hills suggests that the thickness of post-Serenitatis large basin ejecta (from Imbrium, for instance) is small, compared to the total highland section. This implies that the primary contributions to the highland stratigraphy are from Serenitatis and pre-Serenitatis events. The highland surface, however, may be dominated by ejecta from the latest nearby large event (formation of the Imbrium basin). Structural elements mapped in the Taurus-Littrow area include lineaments, the Vitruvius structural front, two types of grabens, and scarps. The majority of lineaments, as well as some grabens, appear to be related to a dominant NW trend and subordinate N and NE trends. These trends are interpreted to be related to a more regional lunar grid pattern which formed in the area prior to the origin of the Serenitatis basin, causing distinct structural inhomogeneities in the highland terrain. The Serenitatis event produced radial and concentric structures predominantly influenced by this pre-existing trend. Younger grabens are generally circumferential to the Serenitatis basin and appear to be related to readjustment of Serenitatis-produced structures; those that are oblique to Serenitatis follow the pre-Serenitatis structural grain. No obvious structural elements can be correlated with the post-Serenitatis, Nectaris and Crisium basins. It is believed that the origin and hence the geographic concentration of the Littrow massifs is related to the fact that Serenitatis radials in the massif area coincide with lines of pre-existing structural weakness along a general lunar grid direction (NW). Pre-existing structurally weak lunar grid trends seem to have been structurally reactivated by Serenitatis radials, causing preferential uplift of large blocks in this area. Elsewhere in the region radials would be oblique to this direction. Since Serenitatis and Imbrium radials coincide in the massif area, the post-Serenitatis Imbrium event may have reactivated Serenitatis radial fractures, possibly rejuvenating the massif terrain. The geologic and tectonic history of the Taurus-Littrow highlands began prior to the origin of Serenitatis in Tectonic Interval I. The strong NW trending structural elements are believed to have formed as part of a global stress pattern (possibly shear) sometime during this period of probable crustal formation and fragmentation. Tectonic Interval II was initiated by the origin of the Serenitatis basin. The basic topography and morphology of the region and most large grabens resulted from this event and their orientations show that they were controlled at least in part by the pre-existing grid. No other large basins forming during this interval appear to have had a major effect on the area. Tectonic Interval III is dominated by the formation of narrow grabens following structural patterns circumferential to the Serenitatis basin and tangential to it where they coincide with pre-existing grid directions. Serenitatis isostatic rebound or early mare fill may have produced this stress system. The scarp in the vicinity of the Apollo 17 landing site is the youngest obvious structural element.  相似文献   

10.
Evidence has accumulated that non-polar portions of Mars have undergone significant periods of glaciation during the Amazonian Period. This evidence includes tropical mountain glacial deposits, lobate debris aprons, lineated valley fill, concentric crater fill, pedestal craters, and related landforms, some of which suggest that ice thicknesses exceeded a kilometer in many places. In some places, several lines of evidence suggest that ice is still preserved today in the form of relict debris-coved glaciers. The vast majority of deposit morphologies are analogous to those seen in cold-based glacial deposits on Earth, suggesting that little melting has taken place. Although these features have been broadly recognized, and their modes of ice accumulation and flow analyzed at several scales, they have not been analyzed and well-characterized globally despite their significance for understanding the evolution of the martian climate. A major outstanding question is the global extent of accumulation and flow of ice during periods of non-polar glaciation: As a mechanism to address this question, we outline two end-member scenarios to provide a framework for further discussion and analysis: (1) ice accumulation was mainly focused within individual craters and valleys and flow was largely local to regional in scale, and (2) ice accumulation was dominated by global latitudinal scale cold-based ice sheets, similar in scale to the Laurentide continental ice sheets on Earth. In order to assess these end members, we conducted a survey of ice-related features seen in Context Camera (CTX) images in each hemisphere and mapped evidence for flow directions within well-preserved craters in an effort to decipher orientation preferences that could help distinguish between these two hypotheses: regional/hemispheric glaciation or local accumulation and flow. These new crater data reveal a latitudinal-dependence on flow direction: at low latitudes in each hemisphere (<40–45°) cold, pole-facing slopes are strongly preferred sites for ice accumulation, while at higher latitudes (>40–45°), slopes of all orientations show signs of ice accumulation and ice-related flow. This latitudinal onset of concentric flow of ice within craters in each hemisphere correlates directly with the lowest latitudes at which typical pedestal craters have been mapped. Taken together, these observations demarcate an important latitudinal boundary that partitions each hemisphere into two zones: (1) poleward of ~45°, where net accumulation of ice is interpreted to have occurred on all surfaces, and (2) equatorward of ~45°, where net accumulation of ice occurred predominantly on pole-facing slopes. These results provide important constraints for deciphering the climatic conditions that characterized Mars during periods of extensive Amazonian non-polar glaciation.  相似文献   

11.
The mode of formation of gullies on Mars, very young erosional–depositional landforms consisting of an alcove, channel, and fan, is one of the most enigmatic problems in martian geomorphology. Major questions center on their ages, geographic and stratigraphic associations, relation to recent ice ages, and, if formed by flowing water, the sources of the water to cause the observed erosion/deposition. Gasa (35.72°S, 129.45°E), a very fresh 7-km diameter impact crater and its environment, offer a unique opportunity to explore these questions. We show that Gasa crater formed during the most recent glacial epoch (2.1–0.4 Ma), producing secondary crater clusters on top of the latitude-dependent mantle (LDM), interpreted to be a layered ice-dust-rich deposit emplaced during this glacial epoch. High-resolution images of a pre-Gasa impact crater ~100 km northeast of Gasa reveal that portions of the secondary-crater-covered LDM have been removed from pole-facing slopes in crater interiors near Gasa; gullies are preferentially located in these areas and channels feeding alcoves and fans can be seen to emerge from the eroding LDM layers to produce multiple generations of channel incision and fan lobes. We interpret these data to mean that these gullies formed extremely recently in the post-Gasa-impact time-period by melting of the ice-rich LDM. Stratigraphic and topographic relationships are interpreted to mean that under favorable illumination geometry (steep pole-facing slopes) and insolation conditions, melting of the debris-covered ice-rich mantle took place in multiple stages, most likely related to variations in spin-axis/orbital conditions. Closer to Gasa, in the interior of the ~18 km diameter LDM-covered host crater in which Gasa formed, the pole-facing slopes display two generations of gullies. Early, somewhat degraded gullies, have been modified by proximity to Gasa ejecta emplacement, and later, fresh appearing gullies are clearly superposed, cross-cut the earlier phase, and show multiple channels and fans, interpreted to be derived from continued melting of the LDM on steep pole-facing slopes. Thus, we conclude that melting of the ice-rich LDM is a major source of gully activity both pre-Gasa crater and post-Gasa crater formation. The lack of obscuration of Gasa secondary clusters formed on top of the LDM is interpreted to mean that the Gasa impact occurred following emplacement of the last significant LDM layers at these low latitudes, and thus near the end of the ice ages. This interpretation is corroborated by the lack of LDM within Gasa. However, Gasa crater contains a robustly developed set of gullies on its steep, pole-facing slopes, unlike other very young post-LDM craters in the region. How can the gullies inside Gasa form in the absence of an ice-rich LDM that is interpreted to be the source of water for the other adjacent and partly contemporaneous gullies? Analysis of the interior (floor and walls) of the host crater suggest that prior to the Gasa impact, the pole-facing walls and floor were occupied by remnant debris-covered glaciers formed earlier in the Amazonian, which are relatively common in crater interiors in this latitude band. We suggest that the Gasa impact cratering event penetrated into the southern portion of this debris-covered glacier, emplaced ejecta on top of the debris layer covering the ice, and caused extensive melting of the buried ice and flow of water and debris slurries on the host crater floor. Inside Gasa, the impact crater rim crest and wall intersected the debris-covered glacier deposits around the northern, pole-facing part of the Gasa interior. We interpret this exposure of ice-rich debris-covered glacial material in the crater wall to be the source of meltwater that formed the very well-developed gullies along the northern, pole-facing slopes of Gasa crater.  相似文献   

12.
We examine gravity, topography, and magnetic field data along the well-preserved Martian dichotomy boundary between 105° and 180°E to better understand the origin and modification of the dichotomy boundary. Admittance modeling indicates bottom-loading for the Amenthes region (105–135°E) with crustal and elastic thickness estimates of 15–40 km, and 15–35 km and top-loading for the Aeolis region (145–180°E) with crustal and elastic thickness estimates of 10–20 km and 10–15 km, respectively. There is a general trend from bottom-loading in the west, to top-loading in the east. The bottom-loading signature near Amenthes may reflect its proximity to the Isidis basin or a broad valley southeast of Isidis. Surface volcanic deposits may produce the top-loading seen at Aeolis. Additional processes such as erosion and faulting have clearly affected the dichotomy and may contribute to the loading signature. Low elastic thickness estimates are consistent with loading in the Noachian, when heat flow was high. Significant Bouguer and isostatic gravity anomalies in these areas indicate substantial variations in the crustal density structure. Crater age dating indicates that major surface modification occurred early in the Noachian, and the small elastic thickness estimates also suggest that subsurface modification occurred in the Noachian. Magnetic and gravity anomalies show comparable spatial scales (several hundred kilometers). The similarity in scale and the constant ratio of the amplitudes of the isostatic and Bouguer gravity to the magnetic anomalies along the dichotomy suggest a common origin for the anomalies. Igneous intrusion and/or local thinning or thickening of the crust, possibly with a contribution from hydrothermal alteration, are the most likely mechanisms to create the observed anomalies.  相似文献   

13.
The crustal dichotomy of Mars describes the topographic division between the young plains in the northern hemisphere and the old terrain in the southern hemisphere. The highland-lowland boundary separates the younger plains from the older, high-standing terrain and consists of three geologically-distinct regions: the Tharsis Province, the chaotic terrain, and the fretted terrain (which includes gradational boundary types)-all are characterised by tensional tectonics. This paper presents new geological evidence that shows the topographic division at the fretted terrain formed in the late Noachian-early Hesperian time period: the same time period in which the Tharsis Province and chaotic terrain formed, and fracturing of a southern-hemisphere-type surface beneath the northern plains occurred. These are inherent features of the crustal dichotomy, indicating it must have also formed during the late Noachian-early Hesperian time period. An analogy is made between the northern lowlands and sedimentary basins on Earth: both are basin like and are surrounded by provinces that have been subjected to pronounced tensional tectonics. This paper uses the White and McKenzie model (1989a) to propose that a lithospheric-stretching event on Mars, in the late Noachian-early Hesperian time period, produced the crustal dichotomy; the Tharsis Province formed by uplift (over a sub-surface hotspot) and gave rise to lithospheric stretching, and the northern lowlands formed by subsidence (over normal asthenospheric temperatures). Detachment faults, operating from the Tharsis Province and around northern lowlands, allowed structural equilibrium and large lithospheric extensions to be attained during this period: they also defined the geometry of the lowlands. The proposal is supported with calculations used to estimate the amount of subsidence that can be achieved in this way.  相似文献   

14.
A large number of candidate open-basin lakes (low-lying regions with both inlet valleys and an outlet valley) have been identified and mapped on Mars and are fed by valley network systems that were active near the Noachian–Hesperian boundary. The nature of processes that modified the open-basin lake interiors subsequent to lacustrine activity, and how frequently sedimentary deposits related to lacustrine activity remain exposed, has not been extensively examined. An analysis of 226 open-basin lakes was undertaken to identify evidence for: (1) exposed deposits of possible lacustrine origin and (2) post-lacustrine-activity processes that may have modified or resurfaced open-basin lakes. Spectroscopic data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument were analyzed over identified exposed open-basin lake deposits to assess the mineralogy of these deposits. Particular attention was paid to the possible detection of any component of aqueous alteration minerals (e.g. phyllosilicates, hydrated silica, zeolites) or evaporites (e.g. carbonates, sulfates, chlorides) associated with these exposed deposits. The aim of this paper is to act as a broad survey and cataloguing of the types of lacustrine and post-lacustrine deposits that are present within these 226 paleolake basins. Results of the morphologic classification indicate that 79 open-basin lakes (~35% of the population) contain exposed deposits of possible lacustrine origin, identified on the basis of fan/delta deposits, layered deposits and/or exposed floor material of apparent lacustrine origin. Additionally, all 226 open-basin lakes examined appear to have been at least partially resurfaced subsequent to their formation by several processes, including volcanism, glacial and periglacial activity, impact cratering and aeolian activity. Results from the analysis of CRISM data show that only 10 (~29% of the 34 deposits with CRISM coverage) of the exposed open-basin lake deposits contain positively identified aqueous alteration minerals, with one deposit also containing evaporites. The identified hydrated and evaporite minerals include Fe/Mg-smectite, kaolinite, hydrated silica and carbonate, with Fe/Mg-smectite the most commonly identified mineral. These results indicate that hydrated and evaporite minerals are not as commonly associated with lacustrine deposits on Mars as they are on Earth. This suggests in situ alteration and mineral precipitation, a common source of such minerals in terrestrial lakes, was not a major process occurring in these paleo-lacustrine systems, and that the observed minerals are likely to be present as transported material within the lacustrine deposits. The lack of widespread in situ alteration also suggests that either the water chemistry in these paleolake systems was not conducive to aqueous alteration and mineral precipitation, or that the open-basin lake systems were relatively short-lived.  相似文献   

15.
The Amazonian period of Mars has been described as static, cold, and dry. Recent analysis of high-resolution imagery of equatorial and mid-latitude regions has revealed an array of young landforms produced in association with ice and liquid water; because near-surface ice in these regions is currently unstable, these ice-and-water-related landforms suggest one or more episodes of martian climate change during the Amazonian. Here we report on the origin and evolution of valley systems within a degraded crater in Noachis Terra, Asimov Crater. The valleys have produced a unique environment in which to study the geomorphic signals of Amazonian climate change. New high-resolution images reveal Hesperian-aged layered basalt with distinctive columnar jointing capping interior crater fill and providing debris, via mass wasting, for the surrounding annular valleys. The occurrence of steep slopes (>20°), relatively narrow (sheltered) valleys, and a source of debris have provided favorable conditions for the preservation of shallow-ice deposits. Detailed mapping reveals morphological evidence for viscous ice flow, in the form of several lobate debris tongues (LDT). Superimposed on LDT are a series of fresh-appearing gullies, with typical alcove, channel, and fan morphologies. The shift from ice-rich viscous-flow formation to gully erosion is best explained as a shift in martian climate, from one compatible with excess snowfall and flow of ice-rich deposits, to one consistent with minor snow and gully formation. Available dating suggests that the climate transition occurred >8 Ma, prior to the formation of other small-scale ice-rich flow features identified elsewhere on Mars that have been interpreted to have formed during the most recent phases of high obliquity. Taken together, these older deposits suggest that multiple climatic shifts have occurred over the last tens of millions of years of martian history.  相似文献   

16.
Valley networks observed on the martian surface are found mostly on Noachian-aged highlands units, but a few occur on younger volcanic edifices. Enigmatically, they do not occur on all younger volcanoes of similar age or location. Using new data, we reanalyze the radially arrayed valleys on the flanks of Hecates Tholus, a Hesperian-aged shield volcano, and test the hypothesis that these valleys might have formed via basal melting of summit snowpack. We find that magmatic intrusions with reasonable geometries provide sufficient heat flux to cause basal melting of snowpack, with the resulting meltwater interpreted to be responsible for incision of the observed valleys. Valley morphology is similar to valleys observed adjacent to seasonally melting Antarctic Dry Valley glaciers formed on comparable slopes, supporting the hypothesis of a snowmelt origin. These relatively young valley networks are thus plausibly interpreted to form under circumstances in which summit snow accumulation was melted during one or more episodes of high localized heat flux.  相似文献   

17.
We have documented the surface characteristics and degradational history of a population of 65 lobate debris aprons in the Tempe Terra/Mareotis fossae region of Mars. These aprons were compared to other martian debris aprons to evaluate similarities and differences among different populations, which can provide insight into the dominant controls on apron development. Tempe/Mareotis debris aprons, found at the bases of isolated or clustered massifs, escarpments, and crater interior walls, were studied using Viking Orbiter, Mars Global Surveyor, and Mars Odyssey datasets in a GIS database. Six textures related to degradation of apron surfaces are identified in MOC images, and they are divided into two groups: an upper-surface group and a lower-surface group. Degradation occurs within an inferred smooth, upper surface mantle of ice and debris, producing a sequence of pitted, ridge and valley, and knobby textures of the upper-surface group. Where upper-surface materials have been removed, smooth and ridged textures of the lower-surface group are exposed. Degradation to various depths may expose lower-surface materials, which may consist of the main apron mass, remnants of mantling deposits, or both. A combination of geologic processes may have caused the degradation, including ice sublimation, ice melt, and eolian activity. Apron surfaces have lower maximum thermal inertias and mean surface temperatures than adjacent plains surfaces, which may be explained by the trapping of unconsolidated materials in low-lying pits and valleys formed by surface degradation or from the disruption of crusts on degraded portions of apron surfaces. One feature observed only on Tempe/Mareotis debris aprons are broad ridges, which mimic the shape of massif bases for tens of kilometers. We propose these to be constructional features that could have formed during cycles of increased debris production. Apron morphometric parameters including area, volume, slope, thickness, relief, and H/L, were compiled and the results show that Tempe/Mareotis aprons have average surface areas, volumes, and frontal thicknesses that are ∼2-3 times smaller than eastern Hellas aprons. Within the Tempe/Mareotis population escarpment-related aprons are larger than massif-related aprons, suggesting that aprons with larger source areas have potentially greater volatile accumulation, translating into longer apron travel distances and lower H/L values.  相似文献   

18.
Amazonian-aged fan-shaped deposits extending to the northwest of each of the Tharsis Montes in the Tharsis region on Mars have been interpreted to have originated from mass-wasting, volcanic, tectonic and/or glacial processes. We use new data from MRO, MGS, and Odyssey to characterize these deposits. Building on recent evidence for cold-based glacial activity at Pavonis Mons and Arsia Mons, we interpret the smaller Ascraeus fan-shaped deposit to be of glacial origin. Our geomorphological assessment reveals a number of characteristics indicative of glacial growth and retreat, including: (1) a ridged facies, interpreted to be composed of drop moraines emplaced during episodic glacial advance and retreat, (2) a knobby facies, interpreted to represent vertical downwasting of the ice sheet, and (3) complex ridges showing a cusp-like structure. We also see evidence of volcano-ice interactions in the form of: (1) an arcuate inward-facing scarp, interpreted to have formed by the chilling of lava flows against the glacial margin, (2) a plateau feature, interpreted to represent a subglacial eruption, and (3) knobby facies superimposed on flat-topped flows with leveed channels, interpreted to be subglacial inflated lava flows that subsequently drained and are covered by glacial till. We discuss the formation mechanisms of these morphologies during cold-based glacial activity and concurrent volcanism. On the basis of a Mid- to Late-Amazonian age (250-380 Ma) established from crater size-frequency distribution data, we explore the climatic implications of recent glaciation at low latitudes on Mars. GCM results show that increased insolation to the poles at high obliquities (>45°) forces sublimation of polar ice, which is transported to lower latitudes and deposited on the flanks of the Tharsis Montes. We assess how local orographic effects, the mass balance of the glacier, and the position of equilibrium line altitudes, all played a role in producing the observed geomorphologies. In doing so, we outline a glacial history for the evolution of the Ascraeus Mons fan-shaped deposit and compare its initiation, growth and demise with those of Arsia Mons and Pavonis Mons.  相似文献   

19.
On Earth, glacial and periglacial features are common in areas of cold climate. On Mars, the temperature of the present-day surface is appropriate for permafrost, and the presence of water is suspected from data relating to the outgassing of the planet, from remote-sensing measurements over the polar caps and elsewhere on the Martian surface, and from recognition of fluvial morphological features such as channels. These observations and the possibility that ice could be in equilibrium with the atmosphere in the high latitudes north and south of ±40° latitude suggest that glacial and periglacial features should exist on the planet. Morphological studies based mainly on Viking pictures indicate many features that can be attributed to the action of ice. Among these features are extensive talus aprons; debris avalanches; flows that resemble glaciers or rock glaciers; ridges that look like moraines; various types of patterned ground, scalloped scarps, and chaotically collapsed terrain that could be attributed to thermokarst processes; and landforms that may reflect the interaction of volcanism and ice.  相似文献   

20.
The morphology of fluvial valleys on Mars provides insight into surface and subsurface hydrology, as well as to Mars’ past climate. In this study, Naktong Vallis and its tributaries were examined from high-resolution stereoscopic camera (HRSC) images, thermal emission imaging system (THEMIS) daytime IR images, and mars orbiter laser altimeter (MOLA) data. Naktong Vallis is the southern part of a very large fluvial basin composed by Mamers, Scamander, and Naktong Vallis with a total length of 4700 km, and is one of the largest fluvial system on Mars. Naktong Vallis incised along its path a series of smooth intercrater plains. Naktong's main valley cut smooth plains during the Early Hesperian period, estimated ~3.6–3.7 Gyr, implying a young age for the valley when compared to usual Noachian-aged valley networks. Branching valleys located in degraded terrains south of the main Naktong valley have sources inside a large plateau located at more than 2000 m elevation. Connections between these valleys and Naktong Vallis have been erased by the superimposition of late intercrater plains of Early to Late Hesperian age, but it is likely that this plateau represents the main source of water. Small re-incisions of these late plains show that there was at least one local reactivation. In addition, valley heads are often amphitheatre-shaped. Despite the possibility of subsurface flows, the occurrence of many branching valleys upstream of Naktong's main valley indicate that runoff may have played an important role in Naktong Vallis network formation. The importance of erosional landforms in the Naktong Vallis network indicates that fluvial activity was important and not necessarily lower in the Early Hesperian epoch than during the Noachian period. The relationships between overland flows and sapping features suggest a strong link between the two processes, rather than a progressive shift from surface to subsurface flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号