首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of Late Amazonian landforms on Mars have been attributed to the dynamics of ice-related processes. Evidence for large-scale, mid-latitude glacial episodes existing within the last 100 million to 1 billion years on Mars has been presented from analyses of lobate debris aprons (LDA) and lineated valley fill (LVF) in the northern and southern mid-latitudes. We test the glacial hypothesis for LDA and LVF along the dichotomy boundary in the northern mid-latitudes by examining the morphological characteristics of LDA and LVF surrounding two large plateaus, proximal massifs, and the dichotomy boundary escarpment north of Ismeniae Fossae (centered at 45.3°N and 39.2°E). Lineations and flow directions within LDA and LVF were mapped using images from the Context (CTX) camera, the Thermal Emission Imaging Spectrometer (THEMIS), and the High Resolution Stereo Camera (HRSC). Flow directions were then compared to topographic contours derived from the Mars Orbiter Laser Altimeter (MOLA) to determine the down-gradient components of LDA and LVF flow. Observations indicate that flow patterns emerge from numerous alcoves within the plateau walls, are integrated over distances of up to tens of kilometers, and have down-gradient flow directions. Smaller lobes confined within alcoves and superposed on the main LDA and LVF represent a later, less extensive glacial phase. Crater size-frequency distributions of LDA and LVF suggest a minimum (youngest) age of 100 Ma. The presence of ring-mold crater morphologies is suggestive that LDA and LVF are formed of near-surface ice-rich bodies. From these observations, we interpret LDA and LVF within our study region to result from formerly active debris-covered glacial flow, consistent with similar observations in the northern mid-latitudes of Mars. Glacial flow was likely initiated from the accumulation and compaction of snow and ice on plateaus and in alcoves within the plateau walls as volatiles were mobilized to the mid-latitudes during higher obliquity excursions. Together with similar analyses elsewhere along the dichotomy boundary, these observations suggest that multiple glacial episodes occurred in the Late Amazonian and that LDA and LVF represent significant reservoirs of non-polar ice sequestered below a surface lag for hundreds of millions of years.  相似文献   

2.
Eileen McGowan 《Icarus》2009,202(1):78-89
Many putative water-related features exist in the northern lowlands of Mars. These features may provide clues to the abundance and timing of water or ice that existed there in the past. The Cydonia Mensae and Southern Acidalia area was chosen as the study area owing to the abundance of two of these features: giant polygons and pitted cones. In addition a section of the Deuteronilus shoreline is located there. The abundance and close proximity of the features makes this area an excellent place to study the spatial relationships between these landforms, as well as the morphological characteristics of pitted cones. The features were mapped into a GIS for spatial analyses. The highest densities of pitted cones and giant polygons are adjacent but distinctly separated by a knobby ridge that is surrounded by the Deuteronilus putative shoreline. Pitted cones were measured and examined to determine if a classification by morphology is possible, but the results were inconclusive. Statistical tests on pit-to-cone diameter ratios and tests of surface temperatures of cone material suggest, but do not verify, a single cone origin. The various shapes, sizes, and putative ages of pitted cones may be attributed to temporal variation in emplacement and spatial variation in material properties. Among the possible scenarios put forth for pitted cone genesis on Mars two are likely candidates in Cydonia Mensae: (1) the sublimation of a cold-based glacier, and (2) a buried lens of methane and/or CO2 clathrates.  相似文献   

3.
Abundant evidence exists for glaciation being an important geomorphic process in the mid-latitude regions of both hemispheres of Mars, as well as in specific environments at near-equatorial latitudes, such as along the western flanks of the major Tharsis volcanoes. Detailed analyses of glacial landforms (lobate-debris aprons, lineated valley fill, concentric crater fill, viscous flow features) have suggested that this glaciation was predominantly cold-based. This is consistent with the view that the Amazonian has been continuously cold and dry, similar to conditions today. We present new data based on a survey of images from the Context Camera (CTX) on the Mars Reconnaissance Orbiter that some of these glaciers experienced limited surface melting, leading to the formation of small glaciofluvial valleys. Some of these valleys show evidence for proglacial erosion (eroding the region immediately in front of or adjacent to a glacier), while others are supraglacial (eroding a glacier’s surface). These valleys formed during the Amazonian, consistent with the inferred timing of glacial features based on both crater counts and stratigraphic constraints. The small scale of the features interpreted to be of glaciofluvial origin hindered earlier recognition, although their scale is similar to glaciofluvial counterparts on Earth. These valleys appear qualitatively different from valley networks formed in the Noachian, which can be much longer and often formed integrated networks and large lakes. The valleys we describe here are also morphologically distinct from gullies, which are very recent fluvial landforms formed during the last several million years and on much steeper slopes (∼20-30° for gullies versus ?10° for the valleys we describe). These small valleys represent a distinct class of fluvial features on the surface of Mars (glaciofluvial); their presence shows that the hydrology of Amazonian Mars is more diverse than previously thought.  相似文献   

4.
In the western sector of Nepenthes Mensae, Mars, there are some geomorphological features that could be related to a standing water sheet in the area, such as fluvial terraces, deltas and shorelines. A detailed analysis of these features reveals two variations in water level, probably related to tectonic processes, as suggested by the existence of a fissural volcano at this site.  相似文献   

5.
Ares Vallis is one of the greatest outflow channels of Mars. Using high-resolution images of recent missions to Mars (MGS, 2001 Odyssey, and Mars Express), we investigated Ares Vallis and its valley arms, taking advantage of 3-dimensional analysis performed using the high-resolution stereo capability of the Mars Express High Resolution Stereo Camera (HRSC). In our view, Ares Vallis is characterized by catastrophic flood landscapes partially superimposed by ice-related morphologies. Catastrophic flood landforms include erosional terraces, grooved terrains, streamlined uplands, giant bars, pendant bars, and cataract-like features. Ice-related morphologies include probable kame features, thermokarstic depressions, and patterned grounds. Our investigations outline that throughout the Hesperian age, Ares Vallis and its valley arms had been sculpted by several, time-scattered, catastrophic floods, originating from Iani, Hydaspis and Aram Chaos. Geomorphological evidence suggests that catastrophic floods were ice-covered, and that climatic conditions of Mars at this time were similar to those of the present day. At the end of each catastrophic flood, ice masses grounded, forming a thick stagnant dead-ice body. Each catastrophic flood was followed by a relatively brief period of warmer-wetter climatic conditions, originated as a consequence of catastrophic flooding. During such periods thermokarstic depressions originated, liquid water formed meandering channels, and ice-contact deposits were emplaced by ice-walled streams. Finally, the climate turned into cold-dry conditions similar to the present-day ones, and ice masses sublimated.  相似文献   

6.
A survey of THEMIS visible wavelength images in the Aeolis/Zephyria Plana region over the two western lobes of the equatorial Medusae Fossae Formation (MFF) shows ∼150 sinuous ridges having a variety of morphologies and contexts. To systematize investigation, we use a classification scheme including both individual ridge and ridge network types, as well as associations with impact craters and fan-shaped features. The morphology of the ridges, their location downslope from higher topography (e.g., crater rims and scarps), and their association with fan-shaped forms indicate that most sinuous ridges formed through overland aqueous flow. Analysis of observations by individual ridge type leads to interpretation of most of these sinuous ridges as inverted fluvial channels or floodplains and a few as possible eskers, with the origin of the remaining ridges under continuing investigation. About 15% of the sinuous ridges are associated with impact craters, but data analysis does not support a genetic relationship between the craters and the sinuous ridges. Instead, analysis of one sinuous ridge network associated with a crater indicates that the water source for the network was atmospheric in origin, namely, precipitation runoff. The broad areal distribution of these ∼150 ridges and the network morphologies, in particular the branched and subparallel types, suggest that an atmospheric water source is generally applicable to the population of sinuous ridges as a whole. This concentration of sinuous ridges is the largest single population of such landforms on Mars and among the youngest. These ridges are situated at a paleoscarp between Cerberus Palus and the Aeolis highlands, suggesting that the precipitation that formed them was orographic in origin. The ages of the equatorial MFF units in which this population of sinuous ridges is found imply that this orographic rain and/or snow fell during some period from the late Hesperian through the middle Amazonian.  相似文献   

7.
This paper presents new, detailed analyses of small-scale morphologic and topographic characteristics of martian debris aprons that support Viking-based interpretations of debris aprons as ice-rich flow features derived from local uplands. Fifty-four debris apron complexes in the eastern Hellas region of Mars were examined using Mars Global Surveyor data sets, including Mars Orbiter Camera images and Mars Orbiter Laser Altimeter topographic profiles. Consistent patterns in a suite of small-scale surface textures and geomorphic features observed throughout the population reflect a history of viscous flow and surface degradation through wind ablation and loss of contained ice. A wide variety of shapes seen in topographic profile reveal variations in distribution of contained ice and different stages of apron development and degradation. The results of this study provide new evidence consistent with multiple models of apron formation, including rock glacier, debris-covered glacier, and ice-rich landslide models. Typical eastern Hellas debris aprons formed from a series of large-scale events, emplacing debris that was enriched initially or later by ground ice, complemented by small-scale mass wasting of multiple styles and postemplacement flow of apron masses.  相似文献   

8.
Several types of spatially associated landforms in the southern Utopia Planitia highland-lowland boundary (HLB) plain appear to have resulted from localized geologic activity, including (1) fractured rises, (2) elliptical mounds, (3) pitted cones with emanating lobate materials, and (4) isolated and coalesced cavi (depressions). Stratigraphic analysis indicates these features are Hesperian or younger and may be associated with resurfacing that preferentially destroyed smaller (<8 km diameter) impact craters. Based on landform geomorphologies and spatial distributions, the documented features do not appear to be specifically related to igneous or periglacial processes or the back-wasting and erosion of the HLB scarp. We propose that these features are genetically related to and formed by sedimentary (mud) diapirs that ascended from zones of regionally confined, poorly consolidated, and mechanically weak material. We note morphologic similarities between the mounds and pitted cones of the southern Utopia boundary plain and terrestrial mud volcanoes in the Absheron Peninsula, Azerbaijan. These analogs provide a context for understanding the geological environments and processes that supported mud diapir-related modification of the HLB. In southern Utopia, mud diapirs near the Elysium volcanic edifice may have resulted in laccolith-like intrusions that produced the fractured rises, while in the central boundary plain mud diapirs could have extruded to form pitted cones, mounds, and lobate flows, perhaps related to compressional stresses that account for wrinkle ridges. The removal of material a few kilometers deep by diapiric processes may have resulted in subsidence and deformation of surface materials to form widespread cavi. Collectively, these inferences suggest that sedimentary diapirism and mud volcanism as well as related surface deformations could have been the dominant Hesperian mechanisms that altered the regional boundary plain. We discuss a model in which detritus would have accumulated thickly in the annular spaces between impact-generated structural rings of Utopia basin. We envision that these materials, and perhaps buried ejecta of Utopia basin, contained volatile-rich, low-density material that could provide the source material for the postulated sedimentary diapirs. Thick, water-rich, low-density sediments buried elsewhere along the HLB and within the lowland plains may account for similar landforms and resurfacing histories.  相似文献   

9.
Gullies are extremely young erosional/depositional systems on Mars that have been carved by an agent that was likely to have been comprised in part by liquid water [Malin, M.C., Edgett, K.S., 2000. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330-2335; McEwen, A.S. et al., 2007. A closer look at water-related geologic activity on Mars. Science 317, 1706-1709]. The strong latitude and orientation dependencies that have been documented for gullies require (1) a volatile near the surface, and (2) that insolation is an important factor for forming gullies. These constraints have led to two categories of interpretations for the source of the volatiles: (1) liquid water at depth beneath the melting isotherm that erupts suddenly (“groundwater”), and (2) ice at the surface or within the uppermost layer of soil that melts during optimal insolation conditions (“surface/near-surface melting”). In this contribution we synthesize global, hemispheric, regional and local studies of gullies across Mars and outline the criteria that must be met by any successful explanation for the formation of gullies. We further document trends in both hemispheres that emphasize the importance of top-down melting of recent ice-rich deposits and the cold-trapping of atmospherically-derived H2O frost/snow as important components in the formation of gullies. This provides context for the incorporation of high-resolution multi-spectral and hyper-spectral data from the Mars Reconnaissance Orbiter that show that (1) cold-trapping of seasonal H2O frost occurs at the alcove/channel-level on contemporary Mars; (2) gullies are episodically active systems; (3) gullies preferentially form in the presence of deposits plausibly interpreted as remnants of the Late Amazonian emplacement of ice-rich material; and (4) gully channels frequently emanate from the crest of alcoves instead of the base, showing that alcove generation is not necessarily a product of undermining and collapse at these locations, a prediction of the groundwater model. We interpret these various lines of evidence to mean that the majority of gullies on Mars are explained by the episodic melting of atmospherically emplaced snow/ice under spin-axis/orbital conditions characteristic of the last several Myr.  相似文献   

10.
Evolution and depositional environments of the Eberswalde fan delta, Mars   总被引:2,自引:0,他引:2  
The Eberswalde crater and its contributing basins have been analyzed in detail in order to reconstruct the geological evolution of the water-related landforms with particular focus on the Eberswalde delta-like feature. Based on a complex strata organization characterized by a topset-foreset-bottomset geometry, typical of delta progradation on Earth, we interpret the Eberswalde feature to be a fan delta associated with a lacustrine system. Depositional sub-environments have been recognized and mapped and the sedimentary processes discussed. A sequence stratigraphy approach has been used to evaluate the system, which we interpret to result from three depositional sequences. These sequences suggest relative water level fluctuations and a longer trend over time towards decreasing water content inside the basin.  相似文献   

11.
A fretted valley system on Mars located at the northern mid-latitude dichotomy boundary contains lineated valley fill (LVF) with extensive flow-like features interpreted to be glacial in origin. We have modeled this deposit using glacial flow models linked to atmospheric general circulation models (GCM) for conditions consistent with the deposition of snow and ice in amounts sufficient to explain the interpreted glaciation. In the first glacial flow model simulation, sources were modeled in the alcoves only and were found to be consistent with the alpine valley glaciation interpretation for various environments of flow in the system. These results supported the interpretation of the observed LVF deposits as resulting from initial ice accumulation in the alcoves, accompanied by debris cover that led to advancing alpine glacial landsystems to the extent observed today, with preservation of their flow texture and the underlying ice during downwasting in the waning stages of glaciation. In the second glacial flow model simulation, the regional accumulation patterns predicted by a GCM linked to simulation of a glacial period were used. This glacial flow model simulation produced a much wider region of thick ice accumulation, and significant glaciation on the plateaus and in the regional plains surrounding the dichotomy boundary. Deglaciation produced decreasing ice thicknesses, with flow centered on the fretted valleys. As plateaus lost ice, scarps and cliffs of the valley and dichotomy boundary walls were exposed, providing considerable potential for the production of a rock debris cover that could preserve the underlying ice and the surface flow patterns seen today. In this model, the lineated valley fill and lobate debris aprons were the product of final retreat and downwasting of a much larger, regional glacial landsystem, rather than representing the maximum extent of an alpine valley glacial landsystem. These results favor the interpretation that periods of mid-latitude glaciation were characterized by extensive plateau and plains ice cover, rather than being restricted to alcoves and adjacent valleys, and that the observed lineated valley fill and lobate debris aprons represent debris-covered residual remnants of a once more extensive glaciation.  相似文献   

12.
New Mars Reconnaissance Orbiter HiRise and CRISM imagery of polar layered terrain of Mars reveals striking similarities to icy debris fans along the base of steep escarpments in Alaska formed in high-latitude periglacial environments. Process and morphologic observations of a deglaciating site in the Wrangell Mountains reveal a complex suite of supraglacial processes involved in the construction of icy debris fans. Snow, ice, and sediment are delivered to the fans from degradation of an upper-level icecap. Alaskan icy debris fans were studied during an 8-day reconnaissance mission in July 2006. We directly observed 289 major depositional events dominated by dry snow/ice avalanches, but also including icy debris flows, rockfalls, small jokulhlaups, and glacial calving. Small fans with larger catchments receive episodic icy debris flows triggered by outburst flows that mobilize rockfall sediment temporarily stored in catchments above the fan apex. Large fans with smaller catchments have better linkage to the upper icecap, providing a direct pathway for frequent large avalanches. The large, avalanche-dominated fans thicken rapidly from an overabundance of snow/ice supply to the point where they become hybrid fan-glaciers. Surficial geology evolves rapidly in this high-latitude environment through both depositional events and solar-driven albedo changes that occur daily. Ground penetrating radar surveys show that subsurface sedimentary architecture and fan evolution is similar to the active surface processes and deposits observed on the fans. Direct field observations of active geomorphic processes provide unique insights on the pace and nature of high-latitude landscape evolution during climate changes on both planets.  相似文献   

13.
The presence of pingos on Mars has been hypothesized since the period of the Viking mission. In fact, a diverse range of pingo-like features has been found at various martian sites including Elysium, Chryse and Utopia Planitiae in the northern lowlands. Due to the morphology and the geological setting, some of those features were interpreted in different ways, creating some controversies, as happened in Athabasca Valles. This reflects the complexity of interpreting these features by remote sensing and multiple plausible interpretations of the same feature. With the objective of identifying new possible pingos or rootless cones on Mars, we selected a study area in Utopia Planitia (10-55° N, 210-260° W) where the presence of both features is possible due to its geological history (volcanic and hydrological). We analyzed more than 2100 Mars Orbiter Camera (MOC)-narrow angle images in addition to Viking, Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) images, together with Mars Orbiter Laser Altimeter (MOLA)-derived Digital Elevation Models (DEMs) with a Geographic Information System (GIS). We found in 94 MOC-narrow angle images dome, cone, and ring-shaped features. We analyzed them from morphological and morphometrical points of view in order to compare them with relevant features on Mars and Earth. We tested different possible origins for those features following the approach of multiple working hypotheses. We conclude that the dome, cone, and ring-shaped features could be pingos, which is in agreement with their geological settings. Regarding the driving heat source for the formation of the purported pingos, we propose the existence of a heat source, possibly a magma chamber, underneath the surface of the Utopia basin. Together with possible climatic shifts, the past activities of the heat source may have caused melting of ground ice. The pingo growth due to freezing of the water would have occurred during the following cold climatic conditions.  相似文献   

14.
We studied north Tyrrhena Terra, an approximately 39,000 km2 area, located in the transition region straddling the Amenthes and Mare Tyrrhenum Mars Chart quadrangles 14 and 22, respectively. The study area comprises ancient terrains with infilled craters, ridges and valleys. Interpretation of orbiter data of ancient terrains is inherently difficult, but valuable information can be obtained using multiple datasets and analyzing various geological features. Using data from the High Resolution Stereo Camera on board Mars Express, complemented by Mars Global Surveyor MOLA DEM and MOC Narrow Angle datasets, we observed and interpreted surface morphologies at a scale suitable for geologic investigation. Morphometric examination of a 31 km diameter large impact crater indicated that tectonism and volcanism were responsible for its morphologic modification. Small impact crater depth/diameter relationships indicated that smooth surfaces of valleys are composed of highly consolidated material. Surface cracks and lobate fronts further suggested that the rocks are volcanic. Examination of tectonic features revealed that in the study area: a dominant NW-SE fabric is related to a ridge/bench-scarp-valley repetition consistent with synthetic and antithetic normal faulting; a NNW-SSE lineament represents the surface expression of normal faulting post-dating all other tectonic features. A weak NE-SW fabric is observable as small sublinear depressions, and at the contact between units internal to one large crater. One 20 km diameter crater in the study area was interpreted to be a caldera, infilled by thick volcanic rock layers. Identification of wrinkle ridges further indicated that thick layered lava flows infilled the main depressions of the study area. The available evidence suggests that the study area underwent multiple episodes of extension and volcanism.  相似文献   

15.
In the western hemisphere of Mars Amazonian volcanism from Arsia Mons produced the smooth surfaces of Daedalia Planum and masks older rocks. Close to the southern termination of Daedalia Planum basement rocks are exposed in which are preserved craters that escaped or were only partially filled by this most recent volcanism. Pickering Crater is an approximately 130 km diameter crater. The youngest lavas flowed into this crater from Daedalia Planum by way of a NW rim breach, covering its western part. East of a well-defined flow front an older lava sequence with a distinctive platy surface and derived from a more proximal unestablished source to the northeast is exposed. Several units are identified within this sequence on the basis of surface texture, which is more subdued in progressively older rocks. Only local mapping of the flow front boundaries of these units is possible because of incomplete coverage by high resolution imagery. During emplacement of the older lavas a NE-SW striking en echelon graben system and parallel smaller troughs and dikes formed under inferred regional NW-SE extension. A much earlier strike-slip regime pre-dating the lavas exposed in the crater floor is postulated, based on the highly fretted nature of the rim of Pickering Crater and an elongated smaller crater to its northeast, approximately 40 km long in the NE-SW direction. The rims of these craters contrast with that of a smoother rimmed impact crater in the southeast that was excavated subsequent to strike-slip deformation but prior to the emplacement of platy surfaced lavas.  相似文献   

16.
The discovery of gullies on Mars suggests liquid water activity near the surface of the planet in recent times. Since liquid water is unstable under the present-day P-T martian conditions, the formation mechanisms of the gullies, and the source of the putative water, have been a matter of debate for the last years. To provide new insights into these matters, we have approached the problem studying the gullies in relation to their regional setting. A major point in our study relates to the geographic orientation of gullies, an aspect that has been previously regarded as a crucial matter in different models, and has profound implications regarding their origin. We present a comprehensive and detailed survey of the Gorgonum-Newton region, and a study of the Dao and Nirgal Vallis regions. The survey was carried out with the aid of 965 high-resolution MOC images (752 for Gorgonum-Newton, 102 for Nirgal Vallis and 111 for Dao Vallis regions), and MOLA-derived DEMs. We found that gullies display a clear regional pattern, geographically and topographically consistent with a decreasing regional slope. We interpret the results in terms of the existence of several groundwater flow systems operating at different scales, which ultimately may have led to gully formation by seepage at the slopes of craters and canyons. We suggest that aquifers discharging at gully systems may have recharged from the surface, in response to the melting of young partially eroded ice-rich deposits.  相似文献   

17.
Candidate examples of impact melt flows and debris flows have been identified at Tooting crater, an extremely young (<2 Myr), 29 km diameter impact crater in Amazonis Planitia, Mars. Using HiRISE and CTX images, and stereo-derived digital elevation models derived from these images, we have studied the rim and interior wall of Tooting crater to document the morphology and topography of several flow features in order to constrain the potential flow formation mechanisms. Four flow types have been identified; including possible impact melt sheets and three types of debris flows. The flow features are all located within 2 km of the rim crest on the southern rim or lie on the southern interior wall of the crater ∼1500 m below the rim crest. Extensive structural failure has modified the northern half of the crater inner wall and we interpret this to have resulted in the destruction of any impact melt emplaced, as well as volatile-rich wall rock. The impact melt flows are fractured on the meter to decameter scale, have ridged, leveed lobes and flow fronts, and cover an area >6 km × 5 km on the southern rim. The debris flows are found on both the inner wall and rim of the crater, are ∼1-2 km in length, and vary from a few tens of meters to >300 m in width. These flows exhibit varying morphologies, from a channelized, leveed flow with arcuate ridges in the channel, to a rubbly flow with a central channel but no obvious levees. The flows indicate that water existed within the target rocks at the time of crater formation, and that both melt and fluidized sediment was generated during this event.  相似文献   

18.
A survey of craters in the vicinity of Newton Basin, using high-resolution images from Mars Global Surveyor and Mars Odyssey, was conducted to find and analyze examples of gullies and arcuate ridges and assess their implications for impact crater degradation processes. In the Phaethontis Quadrangle (MC-24), we identified 225 craters that contain these features. Of these, 188 had gullies on some portion of their walls, 118 had arcuate ridges at the bases of the crater walls, and 104 contained both features, typically on the same crater wall. A major result is that the pole-facing or equator-facing orientation of these features is latitude dependent. At latitudes >44° S, equator-facing orientations for both ridges and gullies are prevalent, but at latitudes <44° S, pole-facing orientations are prevalent. The gullies and arcuate ridges typically occupy craters between ∼2 and 30 km in diameter, at elevations between −1 and 3 km. Mars Orbiter Laser Altimeter (MOLA) elevation profiles indicate that most craters with pole-facing arcuate ridges have floors sloping downward from the pole-facing wall, and some of these craters show asymmetry in crater rim heights, with lower pole-facing rims. These patterns suggest viscous flow of ice-rich materials preferentially away from gullied crater walls. Clear associations exist between gullies and arcuate ridges, including (a) geometric congruence between alcoves and sinuous arcs of arcuate ridges and (b) backfilling of arcuate ridges by debris aprons associated with gully systems. Chronologic studies suggest that gullied walls and patterned crater floor deposits have ages corresponding to the last few high obliquity cycles. Our data appear consistent with the hypothesis that these features are associated with periods of ice deposition and subsequent erosion associated with obliquity excursions within the last few tens of millions of years. Arcuate ridges may form from cycles of activity that also involve gully formation, and the ridges may be in part due to mass-wasted, ice-rich material transported downslope from the alcoves, which then interacts with previously emplaced floor deposits. Most observed gullies may be late-stage features in a degradational cycle that may have occurred many times on a given crater wall.  相似文献   

19.
We have found sorted stone circles and polygons near the equator of Mars, using new 25 cm/pixel NASA HiRISE (High Resolution Imaging Science Experiment) images. The sorted circles occur in geologically recent catastrophic flood deposits in the equatorial Elysium Planitia region, and are diagnostic of periglacial processes: sorted polygons do not form from volcanic activity, as has been suggested for non-sorted polygons in this region. These landforms indicate that (i) a long-lived, geologically recent, active cryoturbation layer of ground ice was present in the regolith, (ii) there was some degree of freeze-thaw, and thus (iii) there were sustained period(s), likely within the last 10 Ma, in which the martian climate was 40 to 60 K warmer than current models predict.  相似文献   

20.
Joseph Levy  James W. Head 《Icarus》2010,209(2):390-404
Hypotheses accounting for the formation of concentric crater fill (CCF) on Mars range from ice-free processes (e.g., aeolian fill), to ice-assisted talus creep, to debris-covered glaciers. Based on analysis of new CTX and HiRISE data, we find that concentric crater fill (CCF) is a significant component of Amazonian-aged glacial landsystems on Mars. We present mapping results documenting the nature and extent of CCF along the martian dichotomy boundary over −30 to 90°E latitude and 20-80°N longitude. On the basis of morphological analysis we classify CCF landforms into “classic” CCF and “low-definition” CCF. Classic CCF is most typical in the middle latitudes of the analysis area (∼30-50°N), while a range of degradation processes results in the presence of low-definition CCF landforms at higher and lower latitudes. We evaluate formation mechanisms for CCF on the basis of morphological and topographic analyses, and interpret the landforms to be relict debris-covered glaciers, rather than ice-mobilized talus or aeolian units. We examine filled crater depth-diameter ratios and conclude that in many locations, hundreds of meters of ice may still be present under desiccated surficial debris. This conclusion is consistent with the abundance of “ring-mold craters” on CCF surfaces that suggest the presence of near-surface ice. Analysis of breached craters and distal glacial deposits suggests that in some locations, CCF-related ice was once several hundred meters higher than its current level, and has sublimated significantly during the most recent Amazonian. Crater counts on ejecta blankets of filled and unfilled craters suggests that CCF formed most recently between ∼60 and 300 Ma, consistent with the formation ages of other martian debris-covered glacial landforms such as lineated valley fill (LVF) and lobate debris aprons (LDA). Morphological analysis of CCF in the vicinity of LVF and LDA suggests that CCF is a part of an integrated LVF/LDA/CCF glacial landsystem. Instances of morphological continuity between CCF, LVF, and LDA are abundant. The presence of formerly more abundant CCF ice, coupled with the integration of CCF into LVF and LDA, suggests the possibility that CCF represents one component of the significant Amazonian mid-latitude glaciation(s) on Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号