首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the first computations of dust distributions in the vicinity of an active cometary nucleus, using a multidimensional Direct Simulation Monte Carlo Method (DSMC). The physical model is simplistic: spherical grains of a broad range of sizes are liberated by H2O sublimation from a selection of nonrotating sunlit spherical nuclei, and submitted to the nucleus gravity, the gas drag, and the solar radiation pressure. The results are compared to those obtained by the previously described Dust Multi-Fluid Method (DMF) and demonstrate an excellent agreement in the regions where the DMF is usable. Most importantly, the DSMC allows the discovery of hitherto unsuspected dust coma properties in those cases which cannot be treated by the DMF. This leads to a thorough reconsideration of the properties of the near-nucleus dust dynamics. In particular, the results show that (1) none of the three forces considered here can be neglected a priori, in particular not the radiation pressure; (2) hitherto unsuspected new families of grain trajectories exist, for instance trajectories leading from the nightside surface to the dayside coma; (3) a wealth of balistic-like trajectories leading from one point of the surface to another point exist; on the dayside, such trajectories lead to the formation of “mini-volcanoes.” The present model and results are discussed carefully. It is shown that (1) the neglected forces (inertia associated with a nucleus rotation, solar tidal force) are, in general, not negligible everywhere, and (2) when allowing for these additional forces, a time-dependent model will, in general, have to be used. The future steps of development of the model are outlined.  相似文献   

2.
E. Beer  M. Podolak 《Icarus》2008,195(1):340-347
We use the model of grain behavior in the coma developed by Beer et al. [Beer, E.H., Podolak, M., Prialnik, P., 2006. Icarus 180, 473-486] to compute the contribution of ice grains to the brightness of the coma. The motion of an ice grain along the comet-Sun axis is computed, taking into account gas drag, the gravity of the nucleus, and radiation pressure of sunlight. The sublimation of the grains is also included. We assume that the maximum distance that a grain travels along this axis is indicative of the size of the coma, and we compute the resultant brightness as a function of heliocentric distance. The results are then compared to observations.  相似文献   

3.
《Planetary and Space Science》1999,47(6-7):797-826
We investigate whether the modelling of the immediate vicinity of an active nucleus—currently unobservable—can, as the modelling of the outer, observable coma, be based on unrealistic simple assumptions such as those of nucleus and dust grains sphericity. We point out the inconsistency of models based on such assumptions, which, to manage compatibility with the observations, have to introduce additional assumptions that conflict with the previous ones, such as the existence of active areas of the nucleus. We argue that, while the outer coma models being phenomenological in nature, can perhaps tolerate such inconsistencies, the circumnuclear coma models must be predictive, having to obviate the lack of observational data, and therefore must exclude implausible and ad hoc assumptions, and advocate only well-understood physical processes and duly validated modelling methods. We describe the first steps of development of a predictive circumnuclear coma model, and present a set of results obtained with parameters fitted to comet P/Wirtanen, the target of the Rosetta mission, but of a quite general significance. Considering, first an inhomogeneous spherical nucleus with spherical dust grains, and then an aspherical homogeneous nucleus with spherical dust grains, we show that, in both cases (1) the surface temperature and initial gas parameters differ considerably from the Hertz–Knudsen values; (2) the near-surface gas and dust flows are not in general vertical, (3) the gas and dust density do not always monotonically decrease outwards, (4) the gas and dust velocity vary strongly from point to point, (5) shock structures are formed, which result in the formation of pseudo-jets of dust grains originating from various points of the surface. No simple method to distinguish between dust structures created by the surface inhomogeneity and by the surface orography is found. We show, for the first time, the deformation of the near-nucleus dust coma during a full rotation of an homogeneous, aspherical nucleus. We also show that identical active regions located at different points of an inhomogeneous spherical nucleus produce very different dust distributions, suggesting that the dust distribution is also strongly deformed during the rotation of such a nucleus. Finally, we consider, for the first time, a spherical homogeneous nucleus emitting aspherical dust grains. We show that, in such a case, the terminal grain velocity depends upon the shape, initial position, and even possibly upon the initial orientation of the grain at the surface, so that there cannot exist a precise relation between terminal velocity and dust grain mass. We conclude that, far from giving an approximate or average representation of the circumnuclear coma, the classical modelling approach yields in this region predictions that are in total conflict with the real behaviour of the gas and dust. As a most dramatic consequence, the use of this classical approach may have obscured completely the significance of the few direct and of the many indirect informations acquired hitherto on the nucleus activity.  相似文献   

4.
Extensive regions of low-density cometary comae are characterized by important deviations from the Maxwell-Boltzmann velocity distribution, i.e. breakdown of thermodynamic equilibrium. The consequences of this on the shapes of emission and absorption lines, and for the acceleration of solid bodies due to gas drag, have rarely been investigated.These problems are studied here to aid in the development of future coma models, and in preparation for observations of Comet 67P/Churyumov-Gerasimenko from the ESA Rosetta spacecraft. Two topics in particular, related to Rosetta, are preparation for in situ observations of water, carbon monoxide, ammonia, and methanol emission lines by the mm/sub-mm spectrometer MIRO, as well as gas drag forces on dust grains and on the Rosetta spacecraft itself.Direct Simulation Monte Carlo (DSMC) modeling of H2O/CO mixtures in spherically symmetric geometries at various heliocentric distances are used to study the evolution of the (generally non-Maxwellian) velocity distribution function throughout the coma. Such distribution functions are then used to calculate Doppler broadening profiles and drag forces.It is found that deviation from thermodynamic equilibrium indeed is commonplace, and already at 2.5 AU from the Sun the entire comet coma displays manifestations of such breakdown, e.g., non-equal partitioning of energy between kinetic and rotational modes, causing substantial differences between translational and rotational temperatures. We exemplify how deviations from thermodynamic equilibrium affect the properties of Doppler broadened line profiles. Upper limits on the size of liftable dust grains as well as terminal grain velocities are presented. Furthermore, it is demonstrated that the drag-to-gravity force ratio is likely to decrease with decreasing cometocentric distance, which may be of relevance both for Rosetta and for the lander probe Philae.  相似文献   

5.
S.M. Lederer  H. Campins  D.J. Osip 《Icarus》2009,199(2):477-843
We describe a 3-dimensional, time-dependent Monte Carlo model developed to analyze the chemical and physical nature of a cometary gas coma. Our model includes the necessary physics and chemistry to recreate the conditions applicable to Comet Hale-Bopp when the comet was near 1 AU from the Sun. Two base models were designed and are described here. The first is an isotropic model that emits particles (parents of the observed gases) from the entire nucleus; the second is a jet model that ejects parent particles solely from discrete active areas on the surface of the comet nucleus, resulting in coma jets. The two models are combined to produce the final model, which is compared with observations. The physical processes incorporated in both base models include: (1) isotropic ejection of daughter molecules (the observed gases) in the parent's frame of reference, (2) solar radiation pressure, (3) solar insolation effects, (4) collisions of daughter products with other molecules in the coma, and (5) acceleration of the gas in the coma. The observed daughter molecules are produced when a parent decays, which is represented by either an exponential decay distribution (photodissociation of the parent gas) or a triangular distribution (production from a grain extended source). Application of this model to the analysis the OH, C2 and CN gas jets observed in the coma of Comet Hale-Bopp is the focus of the accompanying paper [Lederer, S.M., Campins, H., Osip, D.J., 2008. Icarus, in press (this issue)].  相似文献   

6.
The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer and the Dust Impact Detection System onboard the Giotto spacecraft taken during the fly-by at Comet 1P/Halley in 1986. We also show that our model is in good agreement with contemporaneous measurements obtained by the International Ultraviolet Explorer, sounding rocket experiments, and various ground based observations.The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique (Tenishev, V., Combi, M., Davidsson, B. [2008]. Astrophys. J. 685, 659-677) by tracking trajectories of gas molecules and dust grains under the influence of the comet’s weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO) from the comet’s surface all the way out to 106 km.As a result we are able to further constrain cometary the gas production rates of CO (13%), CO2 (2.5%), and H2CO (1.5%) relative to water without invoking unknown extended sources.  相似文献   

7.
Large amounts of particles ejected from the nucleus surface are present in the vicinity of the cometary nuclei when comets are near the Sun (at heliocentric distances ≤2 AU). The largest dust grains ejected may constitute a hazard for spatial vehicles. We tried to obtain the bounded orbits of those particles and to investigate their stability along several orbital periods. The model includes the solar and the cometary gravitational forces and the solar radiation pressure force. The nucleus is assumed to be spherical. The dust grains are also assumed to be spherical, and radially ejected. We include the effects of centrifugal forces owing to the comet rotation. An expression for the most heavy particles that can be lifted is proposed. Using the usual values adopted for the case of Halley’s comet, the largest grains that can be lifted have a diameter about 5 cm, and the term due to the rotation is negligible. However, that term increases the obtained value for the maximum diameter of the lifted grain in a significant amount when the rotation period is of the order of a few hours.  相似文献   

8.
The dayside near-nucleus comae formed by solar-driven sublimation from two different aspherical nuclei made of an homogeneous mixture of ice and dust are computed by (1) solving Navier-Stokes equations and (2) direct Monte Carlo simulations, for different nucleus sizes, heliocentric distances, and dust-to-ice mixing ratios. Excellent agreement between the two methods is found down to surprisingly low production rates; it is found that the limit of validity of the first method is not simply related to the coma rarefaction: a new dimensionless number is tentatively offered to characterize this limit. The present solutions show that the weak shocks always present in the fluid coma persist practically down to truly free-molecular conditions, excluding the observational discovery of a structureless coma. They also show that rarefied flow in the near-nucleus coma can have a quite complicated structure, in particular inside topographic depressions. As an example, coma recondensation on the sunlit flanks of a cavity was found to be possible. We compute, for the first time, a true collisionless coma and show that structures are still present in it but are confined to the immediate vicinity of the surface. Finally, we describe in detail the kinetic conditions in a rarefied water coma, i.e., the velocity distribution asymmetry and the rotational-translational nonequilibrium. The significance of the results for future missions to comets is outlined.  相似文献   

9.
T.A. Ellis 《Icarus》2008,194(1):357-367
Intensity profiles were obtained for the C2 and CN emission and blue continuum of Comet Bradfield (1987s), from observations obtained over a 10 week period starting shortly before perihelion. Model intensity profiles were produced and then fitted to the observed profiles, and used to put constraints on some of the dust and gas parameters. Most of these parameters, including the gas and dust outflow speeds from the cometary nucleus and the molecular lifetimes, were consistent with expected values. The best fitting models incorporate significant dust particle fragmentation and extended emission of CN from dust, both occurring in the inner coma. In addition, although there may have been enhancement of gas and dust emission on the sunward side of the cometary nucleus, it appears that the tailward side maintained a significant level of activity.  相似文献   

10.
A longstanding problem in thermophysical modeling of cometary nuclei has been to accurately formulate the boundary conditions at the nucleus/coma interface. A correct treatment of the problem, where the Knudsen layer gas just above the cometary surface (which is not in thermodynamic equilibrium) is modeled in parallel with the nucleus, is extremely time-consuming and has so far been avoided. Instead, simplifying assumptions regarding the coma properties are used, e.g., the surface gas density is assumed equal to zero or set to the local saturation value, and the coma backflux is neglected or given some realistic but approximate value. The resulting inaccuracy regarding the exchange of mass, energy, and momentum between the nucleus and the coma, may introduce significant errors in the calculated nucleus temperature profiles, gas production rates, and momentum transfer efficiencies. In this paper, we present a practical, accurate, and time-efficient tool which makes it possible to consider the nucleus and the innermost coma of a comet (the former assumed to consist of a porous mixture of crystalline water ice and dust) as a coupled, physically consistent system. The tool consists of interpolation tables for the surface gas density and pressure, the recondensing coma backflux, and the cooling energy flux due to diffusely scattered coma molecules. The tables cover a wide range of surface temperatures and sub-surface temperature profiles, and can be used to improve the boundary conditions used in thermophysical models. The interpolation tables have been obtained by calculating the transmission distribution functions of gas emerging from sublimating porous ice/dust mixtures with various temperature profiles, which then are used as source functions in a Direct Simulation Monte Carlo model of inelastic intermolecular collisions in the Knudsen layer.  相似文献   

11.
We present results from CCD observations of Comet 2P/Encke acquired at Steward Observatory's 2.3 m Bok Telescope on Kitt Peak. The observations were carried out in October 2002 when the comet was near aphelion. Rotational lightcurves in B-, V-, and R-filters were acquired over two nights of observations, and analysed to study the physical and color properties of the nucleus. The average apparent R-filter magnitude across both nights corresponds to a mean effective radius of 3.95±0.06 km, and this value is similar to that found for the V- and B-filters. Taking the observed brightness range, we obtain a/b?1.44±0.06 for the semi-axial ratio of Encke's nucleus. Applying the axial ratio to the R-filter photometry gives nucleus semi-axes of [3.60±0.09]×[5.20±0.13] km, using the empirically-derived albedo and phase coefficient. No coma or tail was seen despite deep imaging of the comet, and flux limits from potential unresolved coma do not exceed a few percent of the total measured flux, for standard coma models. This is consistent with many other published data sets taken when the comet was near aphelion. Our data includes the first detailed time series multi-color measurements of a cometary nucleus, and significant color variations were seen on October 3, though not repeated on October 4. The average color indices across both nights are: (VR)=0.39±0.06 and (BV)=0.73±0.06 (). We analysed the R-filter time-series photometry using the method of Harris et al. [Harris, A.W., Young, J.W., Bowell, E., Martin, L.J., Millis, R.L., Poutanen, M., Scaltriti, F., Zappala, V., Schober, H.J., Debehogne, H., Zeigler, K.W., 1989. Icarus 77, 171-186] to constrain the rotation period of the comet's nucleus, and find that a period of ∼11.45 h will satisfy the data, however the errors bars are large. We have successfully linked our data with the September 2002 data from Fernández et al. [Fernández, Y.R., Lowry, S.C., Weissman, P.R., Mueller, B.E.A., Samarasinha, N.H., Belton, M.J.S., Meech, K.J., 2005. Icarus 175, 194-214]—taken just 2-3 weeks before the current data set—and we show that a rotation period of just over 11 h works extremely well for the combined data set. The resulting best-fit period is 11.083±0.003 h, consistent with the Fernández et al. value.  相似文献   

12.
We present an analysis of the observations of the Deep Impact event performed by the OSIRIS narrow angle camera aboard the Rosetta spacecraft over two weeks, in an effort to characterize the cometary dust grains ejected from the nucleus of Comet 9P/Tempel 1. We adopt a Monte Carlo approach to generate calibrated synthetic images, and a linear combination of them is fitted to the calibrated images so as to determine the physical parameters of the dust cloud. Our model considers spherical olivine particles with a density of 3780 kg m−3. It incorporates constraints on the direction of the cone of emission coming from additional images obtained at Pic du Midi observatory, and constraints on the dust terminal velocities coming from the physics of the impact. We find that the slope of the differential dust size distribution of grains with radii <20 μm (β>0.008) is 3.1±0.3, a value typical of cometary dust tails. This shows that there is no evidence in our data for an enhancement in sub-micron particles in the ejecta compared to the typical dust distribution of active comets. We estimate the mass of particles with radii <1.4 μm (β>0.14) to be 1.5±0.2×105 kg. These particles represent more than 80% of the cross-section of the observed dust cloud. The mass carried by larger particles depends whether the gas significantly increases the kinetic energy of the grains in the inner coma; it lies in the range 1-14×106 kg for particles with radii <100 μm (β>0.002). We obtain the distribution of terminal velocities reached by the dust after the dust-gas interaction which is very well constrained between 10 and 600 m s−1. It is characterized by Gaussian with a maximum at about 190 m s−1 and a width at half maximum of 150 m s−1.  相似文献   

13.
This work is dedicated to the application to 67P/Churyumov-Gerasimenko of a new quasi-3D approach for non-spherically shaped comet nuclei with the aim to interpret the current activity of the comet in terms of initial characteristics and to predict shape and internal stratification evolution of the nucleus. The model is applied to differently shaped nuclei taking into account the characteristics of Comet 67P/Churyumov-Gerasimenko deduced from observations. We focus our attention on the combined effects that shapes and obliquity have on the comet surface and sub-surface evolution. We discuss the results in terms of activity, local dust mantle formation and disruption, erosion of the surface and internal stratigraphy.The results show that differently shaped nuclei can have different internal structures leading to different activity patterns and behaviors. Our calculations have shown that local variations in the dust and gas fluxes can be induced by the nucleus shape. The distribution of “active” areas on Comet 67P/Churyumov-Gerasimenko is different because of different shapes, reflecting the illumination conditions on the surface. These shapes can influence the structure of the inner coma, but the coma far away from the nucleus is only marginally affected by the nucleus shape. However, different comet behaviors can arise from differently shaped comet nuclei, especially in terms of local activity, surface and sub-surface characteristics and properties. The water flux local distribution is the most influenced by the shape as it is directly linked to the illumination. Irregular shapes have large shadowing effects that can result in activity patterns on the comet surface.The effects of different pole directions are discussed to see the relations with the nucleus activity and internal structure. It is shown that the orientation of the rotation axis plays a strong role on the surface evolution of 67P/Churyumov-Gerasimenko, determining seasonal effects on the fluxes. The activity of the comet changes greatly with the nucleus obliquity leading to pre-post-perihelion differences in the activity and seasonal effects. The effects of the dust deposition and crust formation on the cometary activity have also been simulated and are discussed with respect to 67P/Churyumov-Gerasimenko observations. The dust mantling is also strongly obliquity dependent, with different surface distributions of the dust-covered regions according to the different comet pole orientations. Finally, we show that our model can reproduce the fluxes behavior near perihelion in terms of amplitude and asymmetry, and we estimate 20% of the illuminated surface to be active.  相似文献   

14.
R. Vasundhara 《Icarus》2009,204(1):194-208
The pre-Deep Impact images of Comet Tempel-1 obtained at the Indian Astronomical Observatory are used to investigate the morphology of the dust coma of the comet. We show that the trajectory of a cometary grain under the influence of solar radiation pressure is a reliable diagnostic to estimate its initial velocity. Four main active regions at mean latitudes +45° ± 5°(D), 0° ± 5° (E),−30° ± 5°(A) and−60° ± 5°(F) are found to explain the morphology of the dust coma in the ground-based and published images obtained by the High Resolution Instrument(HRI) cameras aboard the Deep Impact flyby spacecraft. From a χ2 fit of the intensity distribution in the observed and the simulated images, we derive the fraction of the productivity of the active vents to the total dust emission of the comet to be 27%. Of this the southern source alone accounts for 19.8%. The grains are found to be ejected with a velocity distribution with an upper limit of 70 ± 7 m s−1. However, the broad region ‘A’ appears to eject slower grains with an upper limit of 24 ± 2.5 m s−1. This source, that is active throughout the cycle is likely to be driven by CO2 sublimation. We compute the dependence of the percentage contribution of the southern source on the heliocentric distance and show that this ratio varies over the apparition and reaches a maximum at around 260 days before perihelion. The published images of the nucleus of Comet Tempel-1 show significant departure from sphericity. Therefore, the torque exerted by the enhanced activity of the southern region may be significant enough to produce changes in the rotational state of the nucleus before each perihelion passage.  相似文献   

15.
We pursue our program of comparative simulations of the cometary gas coma by the two most advanced techniques available: (1) numerical solution of Navier-Stokes equations coupled to the Boltzman equation in the surface boundary layer, and (2) direct Monte-Carlo simulation. Here, we consider two different spherical but compositionally inhomogeneous nuclei, at three very different levels of gas production. The results show the same excellent agreement between the two methods in a domain adjacent to the surface as found precedingly, practically down to free-molecular conditions. A wealth of coma density patterns with non-intuitive structure is obtained. Some of these structures appear even under free-molecular effusion from the surface. The physical origin of all structures is discussed, and their evolution with changing gas production is studied. The computed comae are compared to those computed by various authors precedingly. Intercomparison of the present results demonstrates that differing inhomogeneity patterns may lead to similar structures in the gas coma. Comparison between these structures and those created by homogeneous, aspherical surfaces shows that it is not possible to guess from empirical rules which one of the two processes is responsible for the creation of a given structure. The implications for the interpretation of future high resolution images, or of future in situ mass spectrometric samplings of the near-nucleus gas coma are discussed.  相似文献   

16.
We report the detection of Comet 67P/Churyumov-Gerasimenko's dust trail and nucleus in 24 μm Spitzer Space Telescope images taken February 2004. The dust trail is not found in optical Palomar images taken June 2003. Both the optical and infrared images show a distinct neck-line tail structure, offset from the projected orbit of the comet. We compare our observations to simulated images using a Monte Carlo approach and a dynamical model for comet dust. We estimate the trail to be at least one orbit old (6.6 years) and consist of particles of size ?100 μm. The neck-line is composed of similar sized particles, but younger in age. Together, our observations and simulations suggest grains 100 μm and larger in size dominate the total mass ejected from the comet. The radiometric effective radius of the nucleus is 1.87±0.08 km, derived from the Spitzer observation. The Rosetta spacecraft is expected to arrive at and orbit this comet in 2014. Assuming the trail is comprised solely of 1 mm radius grains, we compute a low probability (∼10−3) of a trail grain impacting with Rosetta during approach and orbit insertion.  相似文献   

17.
In this paper we analyze the dynamical behavior of large dust grains in the vicinity of a cometary nucleus. To this end we consider the gravitational field of the irregularly shaped body, as well as its electric and magnetic fields. Without considering the effect of gas friction and solar radiation, we find that there exist grains which are static relative to the cometary nucleus; the positions of these grains are the stable equilibria. There also exist grains in the stable periodic orbits close to the cometary nucleus. The grains in the stable equilibria or the stable periodic orbits won’t escape or impact on the surface of the cometary nucleus. The results are applicable for large charge dusts with small area-mass ratio which are near the cometary nucleus and far from the Solar. It is found that the resonant periodic orbit can be stable, and there exist stable non-resonant periodic orbits, stable resonant periodic orbits and unstable resonant periodic orbits in the potential field of cometary nuclei. The comet gravity force, solar gravity force, electric force, magnetic force, solar radiation pressure, as well as the gas drag force are all considered to analyze the order of magnitude of these forces acting on the grains with different parameters. Let the distance of the dust grain relative to the mass centre of the cometary nucleus, the charge and the mass of the dust grain vary, respectively, fix other parameters, we calculated the strengths of different forces. The motion of the dust grain depends on the area-mass ratio, the charge, and the distance relative to the comet’s mass center. For a large dust grain (> 1 mm) close to the cometary nucleus which has a small value of area-mass ratio, the comet gravity is the largest force acting on the dust grain. For a small dust grain (< 1 mm) close to the cometary nucleus with large value of area-mass ratio, both the solar radiation pressure and the comet gravity are two major forces. If the a small dust grain which is close to the cometary nucleus have the large value of charge, the magnetic force, the solar radiation pressure, and the electric force are all major forces. When the large dust grain is far away from the cometary nucleus, the solar gravity and solar radiation pressure are both major forces.  相似文献   

18.
The European Space Agency (ESA) Rosetta spacecraft (Schulz, R., Alexander, C., Boehnhardt, H., Glassmeier, K.H. (Eds.) [2009]. “ROSETTA - ESA”) will encounter Comet 67P/Churyumov-Gerasimenko in 2014 and spend the next 18 months in the vicinity of the comet, permitting very high spatial and spectral resolution observations of the coma and nucleus. During this time, the heliocentric distance of the comet will change from ∼3.5 AU to ∼1.3 AU, accompanied by an increasing temperature of the nucleus and the development of the coma. The Microwave Instrument for the Rosetta Orbiter (MIRO) will observe the ground-state rotational transition (110-101) of H216O at 556.936 GHz, the two isotopologues H217O and H218O and other molecular transitions in the coma during this time (Gulkis, S. et al., [2007]. MIRO: Microwave Instrument for Rosetta Orbiter. Space Sci. Rev. 128, 561-597).The aim of this study is to simulate the water line spectra that could be obtained with the MIRO instrument and to understand how the observed line spectra with various viewing geometries can be used to study the physical conditions of the coma and the water excitation processes throughout the coma. We applied an accelerated Monte Carlo method to compute the excitations of the seven lowest rotational levels (101, 110, 212, 221, 303, 312, and 321) of ortho-water using a comet model with spherically symmetric water outgassing, density, temperature and expansion velocity at three different heliocentric distances 1.3 AU, 2.5 AU, and 3.5 AU. Mechanisms for the water excitation include water-water collisions, water-electron collisions, and infrared pumping by solar radiation.Synthetic line spectra are calculated at various observational locations and directions using the MIRO instrument parameters. We show that observations at varying viewing distances from the nucleus and directions have the potential to give diagnostic information on the continuum temperature and water outgassing rates at the surface of the nucleus, and the gas density, expansion velocity, and temperature of the coma as a function of distance from the nucleus. The gas expansion velocity and temperature affect the spectral line width and frequency shift of the line from the rest frequency, while the gas density (which is directly related to the outgassing rate) and the line excitation temperature determine the antenna temperature of the absorption and emission signal in the line profile.  相似文献   

19.
The H2CO production rates measured in Comet C/1995 O1 (Hale-Bopp) from radio wavelength observations [Biver, N., and 22 colleagues, 2002a. Earth Moon Planets 90, 5-14] showed a steep increase with decreasing heliocentric distance. We studied the heliocentric evolution of the degradation of polyoxymethylene (formaldehyde polymers: (CH2O)n, also called POM) into gaseous H2CO. POM decomposition can indeed explain the H2CO density profile measured in situ by Giotto spacecraft in the coma of Comet 1P/Halley, which is not compatible with direct release from the nucleus [Cottin, H., Bénilan, Y., Gazeau, M.-C., Raulin, F., 2004. Icarus 167, 397-416]. We show that the H2CO production curve measured in Comet C/1995 O1 (Hale-Bopp) can be accurately reproduced by this mechanism with a few percents by mass of solid POM in grains. The steep heliocentric evolution is explained by the thermal degradation of POM at distances less than 3.5 AU. This study demonstrates that refractory organics present in cometary dust can significantly contribute to the composition of the gaseous coma. POM, or POM-like polymers, might be present in cometary grains. Other molecules, like CO and HNC, might also be produced by a similar process.  相似文献   

20.
Comet 1996 B2 (Hyakutake) displayed strong evidence for break-up, with a prominent antisunward dust spike and fragments traveling antisunward for many days after an eruptive event in late March 1996. Because of its high orbital inclination and rapid southward motion after perihelion, its post-perihelion activity was not well monitored from the ground. The SWAN all-sky Lyman-alpha camera on the SOHO spacecraft was ideally placed for long-term monitoring of the hydrogen coma of Comet Hyakutake both before and after perihelion. The SWAN images were analyzed with a new time-resolved model (TRM) that provides daily averages of the water production rate and an estimate of the hydrogen atom lifetime (dominated by charge exchange with solar wind protons) during extended periods throughout the apparition. A long-term variation of water production rate of , where r is the heliocentric distance in AU was found. The daily average values of the production rate covered the March 19 outburst and two more outbursts seen in the April before perihelion, which had progressively shorter durations at respectively smaller heliocentric distances. The long-term variation of the production rate was found to be consistent with the seasonal effect predicted by the jet rotation model of Schleicher and Woodney [2003. Analyses of dust coma morphology of Comet Hyakutake (1996 B2) near perigee: Outburst behavior, jet motion, source region locations, and the nucleus pole orientation. Icarus 162, 190-213] when added to a more steady source that is about two-thirds of the maximum of the jet source. The seasonal effect in their model found the dust jet source largely not illuminated after perihelion, coinciding with somewhat reduced overall activity and the absence of outbursts and fragmentation. The locations of the dust jets appear to be responsible for the outbursts and fragmentation before perihelion. The erratic behavior of the pre-perihelion jet sources as contrasted with the smoother variation from the rest of the surface after perihelion indicates there is a strong heterogeneity in the physical make-up of active areas on the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号