首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a comparative study on molecular abundances in comets basedon millimetre/submillimetre observations made with the IRAM 30-m,JCMT, CSO and SEST telescopes. This study concerns a sample of 24comets (6 Jupiter-family, 3 Halley-family, 15 long-period) observedfrom 1986 to 2001 and 8 molecular species (HCN, HNC, CH3CN,CH3OH, H2CO, CO, CS, H2S). HCN was detected in all comets,while at least 2 molecules were detected in 19 comets. From the sub-sample of comets for which contemporary H2O productionrates are available, we infer that the HCN abundance relative to water variesfrom 0.08% to 0.25%. With respect to other species, HCN is the moleculewhich exhibits the lowest abundance variation from comet to comet. Therefore,production rates relative to that of HCN can be used for a comparative study ofmolecular abundances in the 19 comets. It is found that: CH3OH/HCN varies from ≤ 9 to 64; CO/HCN varies from ≤ 24 to 180; H2CO/HCN varies between 1.6 and 10; and H2S/HCN varies between 1.5 and 7.6. This study does not show any clear correlation between the relative abundancesand the dynamical origins of the comets, or their dust-to-gas ratios.  相似文献   

2.
We used the NIRSPEC instrument on the Keck-2 telescope atop Mauna Kea, HI to observe Comet C/2001 A2 (LINEAR) in a Target of Opportunity campaign on UT 2001 July 9.5, 10.5 August 4.4, 10.5. We measured seven organic parent volatiles (C2H6, C2H2, HCN, CH4, CO, CH3OH, H2CO) simultaneously with H2O. We obtained absolute production rates and relative abundances for parent volatiles, and also measured rotational temperatures for several of these species. The chemical composition of C/2001 A2 differs substantially from any comet we have observed to date. The abundances we measure (relative to H2O) for C2H6, C2H2, HCN, and CH3OH are enriched by a factor of ∼2 to 3 in C/2001 A2 compared with most comets in our database. Other molecular species were detected within the typical range of measured abundances. C/2001 A2 presented a unique opportunity to study the chemistry of a fragmenting comet where pristine areas are exposed to the Sun.  相似文献   

3.
E.L. Gibb  M.J. Mumma  M.A. DiSanti 《Icarus》2003,165(2):391-406
We detected CH4 in eight Oort cloud comets using high-dispersion (λλ∼2×104) infrared spectra acquired with CSHELL at NASA's IRTF and NIRSPEC at the W.M. Keck Observatory. The observed comets were C/1995 O1 (Hale-Bopp), C/1996 B2 (Hyakutake), C/1999 H1 (Lee), C/1999 T1 (McNaught-Hartley), C/1999 S4 (LINEAR), C/2000 WM1 (LINEAR), C/2001 A2 (LINEAR), and 153/P Ikeya-Zhang (C/2002 C1). We detected the R0 and R1 lines of the ν3 vibrational band of CH4 near 3.3 μm in each comet, with the exception of McNaught-Hartley where only the R0 line was measured. In order to obtain production rates, a fluorescence model has been developed for this band of CH4. We report g-factors for the R0 and R1 transitions at several rotational temperatures typically found in comet comae and relevant to our observations. Using g-factors appropriate to Trot as determined from HCN, CO and/or H2O and C2H6, CH4 production rates and mixing ratios are presented. Abundances of CH4/H2O are compared among our existing sample of comets, in the context of establishing their place of origin. In addition, CH4 is compared to native CO, another hypervolatile species, and no correlation is found among the comets observed.  相似文献   

4.
We investigated the parent volatile composition of the Oort cloud Comet C/2000 WM1 (LINEAR) on 23-25 November 2001, using the Near Infrared Echelle Spectrograph on the Keck II telescope. Flux-calibrated spectra, absolute production rates, and mixing ratios are presented for H2O, HCN, CH4, C2H2, C2H6, H2CO, CH3OH and CO. Compared with “organics-normal” comets, WM1 is moderately depleted in HCN, CH4 and CH3OH, and is even more depleted in C2H2 and CO. Its composition is thus intermediate to comets that are severely depleted in their organic volatile composition and those that exhibit “normal” organic volatile abundances. We argue that WM1 may have formed closer to the young Sun than “organics-normal” comets, but at greater distance than the severely depleted comets, before its ejection to the Oort cloud. The mixing ratios of the above-listed organic volatiles agree day-by-day for 23-25 November 2001. Thus, there is no evidence of macroscopic heterogeneity in chemistry of this comet’s nucleus at the achieved measurement accuracy. As the first comet to show moderate organic depletion in parent volatiles, WM1 represents an important addition to the emerging taxonomic classification based on chemical composition.  相似文献   

5.
T.Y Brooke  H.A Weaver  G Chin  S.J Kim 《Icarus》2003,166(1):167-187
High resolution infrared spectra of Comet C/1995 O1 (Hale-Bopp) were obtained during 2-5 March 1997 UT from the NASA Infrared Telescope Facility on Mauna Kea, Hawaii, when the comet was at r≈1.0 AU from the Sun pre-perihelion. Emission lines of CH4, C2H6, HCN, C2H2, CH3OH, H2O, CO, and OH were detected. The rotational temperature of CH4 in the inner coma was Trot=110±20 K. Spatial profiles of CH4, C2H6, and H2O were consistent with release solely from the nucleus. The centroid of the CO emission was offset from that of the dust continuum and H2O. Spatial profiles of the CO lines were much broader than those of the other molecules and asymmetric. We estimate the CO production rate using a simplified outflow model: constant, symmetric outflow from the peak position. A model of the excitation of CO that includes optical depth effects using an escape probability method is presented. Optical depth effects are not sufficient to explain the broad spatial extent. Using a parent+extended-source model, the broad extent of the CO lines can be explained by CO being produced mostly (∼90% on 5 March) from an extended source in the coma. The CO rotational temperature was near 100 K. Abundances relative to H2O (in percent) were 1.1±0.3 (CH4), 0.39±0.10 (C2H6), 0.18±0.04 (HCN), 0.17±0.04 (C2H2), 1.7±0.5 (CH3OH), and 37-41 (CO, parent+extended source). These are roughly comparable to those obtained for other long-period comets also observed in the infrared, though CO appears to vary.  相似文献   

6.
C/2006 P1 McNaught is a dynamically new comet from the Oort cloud that passed very close to the Sun, driving overall volatile production rates up to about 1031 molecules s−1. Post-perihelion observations were obtained in a target-of-opportunity campaign using the CSHELL instrument at the NASA Infrared Telescope Facility atop Mauna Kea, Hawaii, on UT 2007 January 27 and 28. Eight parent volatiles (H2O, CH4, C2H2, C2H6, HCN, CO, NH3, H2CO) and two daughter fragments (OH and NH2) were detected, enabling the determination of a rotational temperature and production rate for H2O on UT January 27 and absolute and relative production rates for all the detected parent species on UT January 28. The chemical composition measured in the coma suggests that this close perihelion passage stripped off processed outer surface layers, likely exposing relatively fresh primordial material during these observations. The post-perihelion abundances we measure for CO and CH4 (relative to H2O) are slightly depleted while C2H2, NH2 and possibly NH3 are enhanced when compared to the overall comet population. Measured abundances for other detected molecular species were within the range typically observed in comets.  相似文献   

7.
Radio spectroscopic observations of Comet 19P/Borrelly were performed during the 1994 apparition and at, and near, the time of the Deep Space 1 flyby in 2001. HCN, CS, CH3OH, and H2CO were detected using the 30-m telescope of the Institut de Radioastronomie Millimétrique and the James Clerk Maxwell Telescope, and their production rates relative to water are estimated to be 0.06-0.11, 0.07, 1.7, and 0.4%, respectively. Only upper limits are derived for H2S and CO. The upper limit for CO/H2O (<15%) is not very constraining, while the upper limit for the H2S/H2O ratio of 0.45% is near the bottom of the range of values measured for other comets. Observations of the OH radical at the Nançay radio telescope provide water production rates a few weeks before the 1994 and 2001 perihelia. Observations of the 110-101 water line at 557 GHz with the Odin satellite yield a water production rate of (2.5±0.5)×1028 s−1 on September 22, 2001, at the time of the Deep Space 1 encounter, and (3.3±0.6)×1028 s−1 averaged over the September 22-24, 2001 period. The line shapes are asymmetric and blueshifted by V0∼−0.18 km s−1 for the best observed HCN lines recorded one week after perihelion. The HCN line shapes, and the similar OH and HCN velocity shifts over the September-November 1994 and August-September 2001 periods, favor anisotropic outgassing towards the Sun. Strong outgassing directed along the primary dust jet seen on visible images is not excluded by the HCN line shapes, but unrealistically high gas expansion velocities are required to explain the line shapes in that case.  相似文献   

8.
The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer and the Dust Impact Detection System onboard the Giotto spacecraft taken during the fly-by at Comet 1P/Halley in 1986. We also show that our model is in good agreement with contemporaneous measurements obtained by the International Ultraviolet Explorer, sounding rocket experiments, and various ground based observations.The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique (Tenishev, V., Combi, M., Davidsson, B. [2008]. Astrophys. J. 685, 659-677) by tracking trajectories of gas molecules and dust grains under the influence of the comet’s weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO) from the comet’s surface all the way out to 106 km.As a result we are able to further constrain cometary the gas production rates of CO (13%), CO2 (2.5%), and H2CO (1.5%) relative to water without invoking unknown extended sources.  相似文献   

9.
NASA's Deep Space 1 mission flew by Comet 19P/Borrelly on September 22, 2001.We present observations of molecular species obtained with the 30-m telescope of theInstitut de Radioastronomie Millimétrique (IRAM) and the Nançay radio telescopeat and near the time of this flyby. OH, HCN, and CS production rates were measured,while upper limits were deduced for CO, H2CO and H2S.  相似文献   

10.
We investigated comets active at large heliocentric distances using observations obtained at the 6-m BTA telescope (SAO RAS, Russia). Long-slit and photometric modes of the focal reducer SCORPIO were used. Two of the comets, 29P/Schwassmann-Wachmann 1 (SW1) and C/2002 VQ94 (LINEAR) were observed to be emission rich. Detection of CO+ and N+2 emissions in the comae of these comets is evidence that they were formed in the outer regions of the Solar System or in a pre-solar interstellar cloud in a low temperature environment with T?25 K. The ratio of N+2/CO+ is equal to 0.011 and 0.027 for SW1 and LINEAR, respectively. Comet LINEAR is the most distant object in the Solar System (7.332 AU) for which CO+ and N+2 are measured. The photometric maximum of the isolated CO+ coma in Comet LINEAR is shifted by 1.4 arcsec (7.44×103 km) relative to the photometric maximum of the dust coma. This shift deviates from the sunward direction by 63 degrees.  相似文献   

11.
The apparition of Comet C/1996 B2 (Hyakutake) offered an unexpected and rare opportunity to probe the inner atmosphere of a comet with high spatial resolution and to investigate with unprecedented sensitivity its chemical composition. We present observations of over 30 submillimeter transitions of HCN, H13CN, HNC, HNCO, CO, CH3OH, and H2CO in Comet Hyakutake carried out between 1996 March 18 and April 9 at the Caltech Submillimeter Observatory. Detections of the H13CN (4–3) and HNCO (160,16–150,15) transitions represent the first observations of these species in a comet. In addition, several other transitions, including HCN (8–7), CO (4–3), and CO (6–5) are detected for the first time in a comet as is the hyperfine structure of the HCN (4–3) line. The observed intensities of the HCN (4–3) hyperfine components indicate a line center optical depth of 0.9 ± 0.2 on March 22.5 UT. The HCN/HNC abundance ratio in Comet Hyakutake at a heliocentric distance of 1 AU is similar to that measured in the Orion extended ridge— a warm, quiescent molecular cloud. The HCN/H13CN abundance ratio implied by our observations is 34 ± 12, similar to that measured in giant molecular clouds in the galactic disk but significantly lower than the Solar System12C/13C ratio. The low HCN/H13CN abundance ratio may be in part due to contamination by an SO2line blended with the H13CN (4–3) line. In addition, chemical models suggest that the HCN/H13CN ratio can be affected by fractionation during the collapse phase of the protosolar nebula; hence a low HCN/H13CN ratio observed in a comet is not inconsistent with the solar system12C/13C isotopic ratio. The abundance of HNCO relative to water derived from our observations is (7 ± 3) × 10−4. The HCN/HNCO abundance ratio is similar to that measured in the core of Sagittarius B2 molecular cloud. Although a photo-dissociative channel of HNCO leads to CO, the CO produced by HNCO is a negligible component of cometary atmospheres. Production rates of HCN, CO, H2CO, and CH3OH are presented. Inferred molecular abundances relative to water are typical of those measured in comets at 1 AU from the Sun. The exception is CO, for which we derive a large relative abundance of 30%. The evolution of the HCN production rate between March 20 and March 30 suggests that the increased activity of the comet was the cause of the fragmentation of the nucleus. The time evolution of the H2CO emission suggests production of this species from dust grains.  相似文献   

12.
The nucleus of Comet C/2001 A2 (LINEAR) split several times during its recent apparition, presenting an unusual opportunity to search for chemical differences in freshly exposed material. We conducted this search using NIRSPEC at the W.M. Keck Observatory on four dates in 2001: 9.5 and 10.5 July and 4.4 and 10.5 August. We detected the R0 and R1 lines of the ν3 vibrational band of CH4 near 3.3 μm on all dates. The R2 line was detected on 4.4 and 10.5 August. When we compare production rates of CH4 to H2O, we find evidence of a significant enhancement in August relative to that found in July. H2CO was securely detected via its ν1 and ν5 bands on 9.5 July. On 10.5 July, H2CO emission was much weaker, and its mixing ratio had dropped by a factor of about four. The mixing ratios for other detected volatile species did not change significantly over the course of the observations. We discuss the implications of this evidence for chemical heterogeneity in the nucleus of Comet C/2001 A2.  相似文献   

13.
Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s−1. Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H2O with Odin from June to August 2005. The peak of outgassing was found to be around between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH3OH and H2S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73±0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the “natural” outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH3OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H2O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈5000±2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas.  相似文献   

14.
We measured the chemical composition of Comet C/2007 W1 (Boattini) using the long-slit echelle grating spectrograph at Keck-2 (NIRSPEC) on 2008 July 9 and 10. We sampled 11 volatile species (H2O, OH, C2H6, CH3OH, H2CO, CH4, HCN, C2H2, NH3, NH2, and CO), and retrieved three important cosmogonic indicators: the ortho-para ratios of H2O and CH4, and an upper-limit for the D/H ratio in water. The abundance ratios of almost all trace volatiles (relative to water) are among the highest ever observed in a comet. The comet also revealed a complex outgassing pattern, with some volatiles (the polar species H2O and CH3OH) presenting very asymmetric spatial profiles (extended in the anti-sunward hemisphere), while others (e.g., C2H6 and HCN) showed particularly symmetric profiles. We present emission profiles measured along the Sun-comet line for all observed volatiles, and discuss different production scenarios needed to explain them. We interpret the emission profiles in terms of release from two distinct moieties of ice, the first being clumps of mixed ice and dust released from the nucleus into the sunward hemisphere. The second moiety considered is very small grains of nearly pure polar ice (water and methanol, without dark material or apolar volatiles). Such grains would sublimate only very slowly, and could be swept into the anti-sunward hemisphere by radiation pressure and solar-actuated non-gravitational jet forces, thus providing an extended source in the anti-sunward hemisphere.  相似文献   

15.
The recent availability of bright comets has given us an excellent opportunity to study cometary chemistry. Comet Hale-Bopp (1995 O1)gave us the particularly rare opportunity to study a bright and active comet for almost two years. Our program concentrated on millimeter-wave observations of sulfur-bearing molecules in an effort to understand the total sulfur budget of the comet. Using the National Radio Astronomy Observatory 12-m telescope on Kitt Peak we monitored both the long and short-term variations in H2S, CS, and OCS, as well as observing H2CS and SO. This was the first observation of H2CS in any comet (Figure 1). Additionally, we mapped CS with the BIMA interferometer. Variations in the line profiles and changes in line intensity as large as a factor of two were seen in day to day observations of both H2S and CS. An example for H2S is shown in Figure 2. This is the first time we can attempt to study the entire group of sulfur-bearing molecules. Models of the sulfur coma have thus far largely been based on observations of the daughter products CS and atomic sulfur made over the last 18 years using the International Ultraviolet Explorer (IUE) satellite, coupled with radio observations of CS and H2S in several recent comets. Four new sulfur-bearing species have been observed in comets Hale-Bopp and Hyaku take, three of them parent species. The high resolution maps in CS will also allow spatial information to be included in the sulfur model for the first time. C/Hale-Bopp is the first comet in which so many sulfur species have been observed. Analysis of the abundances of these species in comparison to the total atomic sulfur observed should reveal whether or not we can now account for all of the primary sulfur sources in comets. Perhaps the most interesting question that these observations raised was why C/Hale-Bopp appeared to contain so much more SO and SO2 (as observed by others) than any other comet. This spurred the discovery that the UV fluorescence models of these species were incorrect (S. J. Kim, this issue). Analysis of the data and modeling of the sulfur budget are still underway. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The H2CO production rates measured in Comet C/1995 O1 (Hale-Bopp) from radio wavelength observations [Biver, N., and 22 colleagues, 2002a. Earth Moon Planets 90, 5-14] showed a steep increase with decreasing heliocentric distance. We studied the heliocentric evolution of the degradation of polyoxymethylene (formaldehyde polymers: (CH2O)n, also called POM) into gaseous H2CO. POM decomposition can indeed explain the H2CO density profile measured in situ by Giotto spacecraft in the coma of Comet 1P/Halley, which is not compatible with direct release from the nucleus [Cottin, H., Bénilan, Y., Gazeau, M.-C., Raulin, F., 2004. Icarus 167, 397-416]. We show that the H2CO production curve measured in Comet C/1995 O1 (Hale-Bopp) can be accurately reproduced by this mechanism with a few percents by mass of solid POM in grains. The steep heliocentric evolution is explained by the thermal degradation of POM at distances less than 3.5 AU. This study demonstrates that refractory organics present in cometary dust can significantly contribute to the composition of the gaseous coma. POM, or POM-like polymers, might be present in cometary grains. Other molecules, like CO and HNC, might also be produced by a similar process.  相似文献   

17.
We present results and analysis of imaging polarimetric observations of Comet 2P/Encke. The observations were carried out at the 2-m RCC telescope of the Bulgarian National Astronomical Observatory on December 13, 1993 and on January 14, 1994, at phase angles 51.1° and 80.5°, respectively. A wide-band red filter 6940/790 Å was used. This filter is transparent for the continuum and the weak emission bands of NH2 and H2O+. There is a sunward dust fan with well-defined polarization, which peaks at≈13% in the image obtained on January 14, 1994. Along the sunward fan the degree of polarization decreases progressively. Outside of the fan the coma displays a low polarization of ≈3%. We suggest that this low polarization is caused by the NH2 emission in the pass-band of the red wide-band filter. Assuming a spherically symmetric NH2 coma we are able to correct the observed polarization for this effect. The correction leads to an increase of the observed polarization by 1 to 4% at distances 10,000 and 1500 km from the nucleus. A rough estimate shows that the polarization in the near nucleus region of Comet Encke is similar to that for the dusty comets. Even after correction the polarization of Comet Encke's dust fan is significantly less that the polarization observed in dusty comets. The reasons influencing the distribution of dust polarization in the coma are discussed. More polarimetric and colorimetric observations of the dust in Comet Encke on its return in 2003 are needed.  相似文献   

18.
Biver  N.  Bockelée-Morvan  D.  Colom  P.  Crovisier  J.  Germain  B.  Lellouch  E.  Davies  J. K.  Dent  W. R. F.  Moreno  R.  Paubert  G.  Wink  J.  Despois  D.  Lis  D. C.  Mehringer  D.  Benford  D.  Gardner  M.  Phillips  T. G.  Gunnarsson  M.  Rickman  H.  Winnberg  A.  Bergman  P.  Johansson  L. E. B.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):5-11
C/1995 O1 (Hale-Bopp) has been observed on a regular basis since August 1995 at millimetre and submillimetre wavelengths using IRAM, JCMT, CSO and SEST radio telescopes. The production rates of eight molecular species (CO, HCN, CH3OH, H2CO,H2S, CS, CH3CN,HNC) have been monitored as a function of heliocentric distance(rh from 7 AU pre-perihelion to 4 AU post-perihelion. As comet Hale-Bopp approached and receded from the Sun, these species displayed different behaviours. Far from the Sun, the most volatile species were found in general relatively more abundant in the coma. In comparison to other species, HNC, H2CO and CS showed a much steeper increase of the production rate with decreasing rh. Less than 1.5 AU from the Sun, the relative abundances were fairly stable and approached those found in other comets near 1 AU. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about10 K at 7 AU to 110 K around perihelion. The expansion velocity of the gaseous species, derived from the line shapes, also increased with a law close torh 3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We investigated three comets, which are active at large heliocentric distances, using observations obtained at the 6-m BTA telescope (SAO RAS, Russia) in the photometric mode of the focal reducer SCORPIO. The three comets, 29P/Schwassmann-Wachmann 1, C/2003 WT42 (LINEAR), and C/2002 VQ94 (LINEAR), were observed after their perihelion passages at heliocentric distances between 5.5 and 7.08 AU. The dust production rates in terms of Afρ was measured for these comets. Using the retrieved values, an average dust production rate was derived under different model assumptions. A tentative calculation of the total mass loss of the comet nucleus within a certain observation period was executed. We calculated the corresponding thickness of the depleted uppermost layer where high-volatile ices completely sublimated. The results obtained in our study strongly support the idea that the observed activity of Comet SW1 requires a permanent demolition of the upper surface layers.  相似文献   

20.
The Deep Impact mission succeeded in excavating inner materials from the nucleus of Comet 9P/Tempel 1 on 2005 July 04 (at 05:52 UT). Comet 9P/Tempel 1 is one of Jupiter family short period comets, which might originate in the Kuiper belt region in the solar nebula. In order to characterize the comet and to support the mission from the ground-based observatory, optical high-dispersion spectroscopic observations were carried out with the echelle spectrograph (UVES) mounted on the 8-m telescope VLT (UT2) before and after the Deep Impact event. Ortho-to-para abundance ratios (OPRs) of cometary ammonia were determined from the NH2 emission spectra. The OPRs of ammonia on July 3.996 UT and 4.997 UT were derived to be 1.28±0.07 (nuclear spin temperature: Tspin=24±2 K) and 1.26±0.08 (Tspin=25±2 K), respectively. There is no significant change between before and after the impact. Actually, most materials ejected from the impact site could have moved away from the nucleus on July 4.997 UT, about 17 h after the impact. However, a small fraction of the ejected materials might remain in the slit of UVES instrument at that time because an excess of about 20% in the NH2 emission flux is observed above the normal activity level was found [Manfroid, J., Hutsemékers, D., Jehin, E., Cochran, A.L., Arpigny, C., Jackson, W.M., Meech, K.J., Schulz, R., Zucconi, J.-M., 2007. Icarus. This issue]. If the excess of NH2 on July 04.997 UT was produced from icy materials excavated by the Deep Impact, then an upper-limit of the ammonia OPR would be 1.75 (Tspin>17 K) for those materials. On the other hand, the OPR of ammonia produced from the quiescent sources was similar to that of the Oort cloud comets observed so far. This fact may imply that physical conditions where cometary ices formed were similar between Comet 9P/Tempel 1 and the Oort cloud comets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号