首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two contrasting marine sedimentary facies, the Haida Formation of sandy and argillaceous sediments and the conformably overlying Honna Formation of gravelly sediments were formed within different types of tectonic basins during mid- to Late Cretaceous time. The sediments of both formations were derived from the east. Sandstones from the two formations show characteristics of mature magmatic arc provenance and are classified as lithic and feldspathic arenites. However, the Honna sandstones are more feldspathic and less quartzose than the Haida sandstones. The Honna sandstones have many volcanic rock fragments (VRF) but the Haida sandstones do not. Feldspars of the VRF-rich Honna sandstones, however, do not seem to have been derived from the breakdown of volcanic rocks. The observed petrographic differences between the two formations can be ascribed to a process in which the volcanic cover and the basement rock denudation took place simultaneously in the source area during deposition of the Honna Formation.  相似文献   

2.
This study deals with petrography and provenance of the Neogene reservoir sandstones encountered in the Kailas Tila, Titas, Bakhrabad and Shahbazpur Gas Fields of Bengal Basin. Framework grains are sand-sized to silt-sized particles of mainly detrital origin. The most common detrital grains are quartz, feldspars, and rock fragments. Mica occurred as minor and non-opaque heavy minerals found as minor accessories. Among the main detrital framework grains, quartz constitutes 51–60%, feldspar 3–15%, lithic fragments 8–22%. Sandstones encountered in the studied wells have been classified as sublithic arenite, feldspathic arenite and lithic arenite in order of abundance. Different triangular plots reveal that the Neogene sandstones of the studied wells exhibit a quartzolithic composition, low feldspar, very low volcanic grains and abundant sedimentary and low grade metamorphic lithic clasts indicating that the sands were derived from quartzose recycled orogen province, such as a fold thrust province or a collision suture zone. This study suggests that either the eastern Himalayas or Indo-Burman Ranges might act as the source of the sandstones of the studied wells of the Bengal Basin.  相似文献   

3.
Geochemical analysis of sandstones from the Sardar Formation (from two stratigraphic successions) in east-central Iran were used for identification of geochemical characterization of sandstones, provenance and tectonic setting. Sandstones in the two lithostratigraphic successions have similar chemical compositions suggesting a common provenance. Bulk-rock geochemistry analysis of Carboniferous sandstones from Sardar Formation indicates that they are mainly quartz dominated and are classified as quartzarenites, sublitharenites and subarkoses, derived from acid igneous to intermediate igneous rocks. Discrimination function analysis indicates that the sandstones of Sardar Formation were derived from quartzose sedimentary provenance in a recycled orogenic setting. Also, major and trace elements in sandstones of Sardar Formation (e.g., K2O/Na2O vs. SiO2) indicate deposition in a stable passive continental margin (PM). Chemical index of alteration (CIA) for these rocks (> 65%) suggests a moderate to relatively high degree of weathering in the source area.  相似文献   

4.
位于特提斯喜马拉雅北亚带的江孜地区古近纪甲查拉组角度不整合于晚白垩世宗卓组之上,系该地区最高(时代最晚)海相地层。运用岩石学和地球化学方法对其进行分析研究结果表明该组物源区主要为近源再旋回造山带,岩屑的母岩类型主要是岩浆弧成因的中性、中酸性安山质火山岩。新生代以前,特提斯喜马拉雅属于印度板块的被动大陆边缘,从特提斯喜马拉雅南亚带向北亚带显示了一种从浅水陆棚到深水盆地的变化,在侏罗-白垩纪时其陆源碎屑物主要是成熟度极高的石英砂岩,所以甲查拉组的碎屑物质只能来源于当时的冈底斯弧地区,所获有限的古水流证据也指示了这一点。从欧亚大陆侵蚀下来的碎屑物质被带到原印度大陆地区沉积,暗示该区的特提斯洋壳已经完全消失,印度与欧亚大陆在特提斯喜马拉雅中、东部产生了初始的陆-陆碰撞,其碰撞的启动时间为甲查拉组开始沉积的65 M a±。  相似文献   

5.
Siliciclastic sediments on the insular shelf of Puerto Rico are derived from a volcanic arc. The sands are feldspatholithic and subquartzose. They confirm predictions about sandstones of arc derivation in the following ways. The quartz content is low, usually less than 25 %. Feldspar is more abundant than quartz, but less so than lithic fragments. If mud rip-up clasts are excluded from the lithic suite, the ratio V/L (volcanic lithic grains to total unstable lithic grains) assumes values near 0.75. Most of the volcanic lithic grains have textures suggesting intermediate volcanics as source rocks. Ratios of plagioclase to total feldspar are high. Values of the parameter C/Q (stable lithic fragments to total lithic grains) are higher than expected for sandstones of volcanic provenance. Four compositionally and areally distinct assemblages of clay minerals are recognized. Clay suites characterized by major concentrations of both halloysite and smectite are found off the north-west coast. Sediments off the north-central and north-east coasts contain major concentrations of halloysite and lesser amounts of smectite, illite and chlorite. Major concentrations of kaolinite are present off the south-east coast. An assemblage of poorly crystallized smectite with lesser amounts of illite and chlorite occurs off the south-west and south-central coasts. Variation in the mineralogic composition of clays around the perimeter of the island reflects changes in the intensity of chemical weathering and the type of rock exposed in the immediate source area and, in instances, either early diagenetic alteration or, more likely, sorting within the clay fraction by currents on the shelf.  相似文献   

6.
Petrographic, geochemical, and scanning electron microscope analyses of the sandstone and mudstone units of the Upper Miocene Injana Formation are presented. Furthermore, microprobe analysis for amphiboles, pyroxenes, garnet, and chromian spinels as common heavy mineral species present is done to support other results for better understanding of the provenance history of the Injana Formation. The sandstones of the Injana Formation consist of terrigenous carbonate lithic fragments as common type of sedimentary rock fragments in addition to chert, argillaceous, and rare sandstone fragments. They also include metamorphic and igneous lithic fragments, quartz, feldspars, and mica and generally, the sandstones are lithic arenites and immature. Scanning electron microscopic analysis for the heavy minerals shows that they have been affected by dissolution due to chemical etching and mechanical abrasion through several surface texture generated either in arid and semihumid environment or in diagenetic environment. Clay mineralogy of the mudstone units indicates the presence of illite, chlorite, kaolinite, palygorskite, and illite–smectite mixed layers. Bulk-rock and mineral phase geochemistry in addition to petrographic data suggest the derivation of the Injana Formation from a nearby sources with contribution from igneous, metamorphic, and sedimentary provenance mainly from the high lands in the northeastern parts of Iraq which comprise mainly the Zagros mountains and the older sedimentary formations.  相似文献   

7.
Petrographical and geochemical studies of Silurian Niur sandstones, Derenjal Mountains, Central Iran, were carried out to infer their provenance and tectonic setting. Modal analysis data of 37 medium sand size and well-sorted samples revealed that most quartz is composed of monocrystalline grains with straight to slightly undulos extinction and about 3 % polycrystalline quartz has inclusions, such as rutile needles. The sandstones are classified as quartzarenite, sublitharenite, and subarkose types based on framework composition and geochemistry. Petrographic studies reveal that these sandstones contain quartz, feldspars, and fragments of sedimentary rocks. The detrital modes of these sandstones indicate that they were derived from recycled orogen and stable cratonic source. Major and trace element contents of them are generally depleted (except SiO2) relative to upper continental crust which is mainly due to the presence of quartz and absence of Al-bearing minerals. Modal composition (e.g., quartz, feldspar, and lithic fragments) and discrimination diagrams based on major elements, trace elements (Ti, La, Th, Sc, and Zr), and also such ratios as La/Sc, Th/Sc, La/Co, and Th/Co, in sandstones suggest a felsic igneous source rock and quartzose polycyclic sedimentary provenance in a passive continental margin setting. Furthermore, high Zr/Sc values in these sandstones are considered as a sign of recycling. We indicated paleo-weathering conditions by modal compositions, the CIA index and Al2O3?+?K2O?+?Na2O% vs. SiO2% bivariate for these sandstones. Based on these results, although recycling is important to increase the maturity of the Niur sandstones, humid climate conditions in the source area have played a decisive role.  相似文献   

8.
藏南古错地区上侏罗统上部和下白垩统沉积相?   总被引:3,自引:0,他引:3       下载免费PDF全文
基于野外剖面和室内沉积学研究,对古错地区侏罗纪末期-早白垩世地层进行详细描述和修订,识别出6种主要岩相类型:红褐色(风化色)石英砾岩、灰色-黄绿色岩屑砾岩、灰白色石英砂岩、灰色-黄绿色岩屑砂岩、灰色-黄绿色长石岩屑砂岩、灰色、深灰色、黑色页岩。发现粒序层理、水平层理、平行层理、板状交错层理、丘状交错层理等层理构造、波痕和槽模层面构造、重荷模和砂岩岩墙变形构造以及侵蚀面构造、叠瓦状构造、硬底、结核等沉积构造和生物遗迹。识别出三角洲(包括三角洲前缘亚相和前三角洲亚相)和陆棚(包括受风暴影响的陆棚相亚相和深水陆棚相亚相)两类沉积相,其中三角洲前缘亚相进一步划分为水下分流河道、分流河口砂坝和远砂坝等微相。建立了侏罗纪末期-早白垩世沉积相序及其演化,并在此基础上分析了沉积环境变化。  相似文献   

9.
The provenance of the Upper Cretaceous Nubia sandstones from four vertical sections along Qena-Safaga and Qena-Quseir roads in central Eastern Desert of Egypt was investigated based on their modal composition and geochemical data. The Nubia sandstone samples are abundant in quartz content with low feldspar and lithic fragments. Their average modal composition (Q94.2F1.3R4.5) classifies them as quartz arenites with subordinate quartz wackes which is consistent with geochemistry data. The average CIA, CIW, PIA, and Th/U ratio values revealed that the intensity of weathering in the studied areas was similar, varying from moderate to intensive weathering, and may reflect low-relief and warm humid climatic conditions in the source area. The ICV (<?1) and SiO2/Al2O3 ratio (>?5) indicate that the Nubia sandstones are texturally and mineralogically mature. The petrographical and geochemical analyses suggest that the Nubia sandstones were mainly derived from felsic (granitic) and/or recycled sand sources. The major element-based multidimensional tectonic discrimination diagrams suggested the Nubia sandstones were deposited in a passive continental margin of a syn-rift basin. This result agreed with the general geology of central Eastern Desert of Egypt during the Upper Cretaceous.  相似文献   

10.
We have studied the petrography and the bulk-rock geochemistry of arenites and mudstones of the Cenomanian Peruc–Korycany Formation to characterize their provenance and sedimentary history, as well as the influence of weathering, hydraulic sorting, and recycling of the source rocks. The Peruc–Korycany Formation contains sedimentary facies reflecting both meandering- and braided-river systems and shallow-marine systems. Differences in the three depositional settings did not cause distinctly different modifications of the framework compositions of the arenites. The sand from the fluvial systems is very mature (Qm98F0Lt2). These fluvial arenites were subsequently modified by shallow-marine processes; reworking produced very slight decreases in the abundance of lithic fragments and polycrystalline quartz grains. The Cenomanian strata of the Bohemian Cretaceous Basin were derived dominantly from metasedimentary and crystalline rocks of the Palaeozoic Teplà-Barrandian and Cadomian Moldanubian units, respectively. Periods of low tectonic activity resulted in the deposition of arenites with quartzose framework compositions, indicating that climatic and/or transport/depositional-environmental controls overwhelmed factors such as source-rock compositions. Ultrastable dense minerals are useful indicators of sedimentary recycling within the Peruc–Korycanytarenites. Mudstone samples are characterized by abundant kaolinite, illite, chlorite, and quartz but by negligible amounts of goethite and gypsum. Concentrations normalized to the post-Archaean Australian shale (PAAS) show that the sediments are strongly depleted of Na, K, Ca, Sr, and Ba, probably because of the mobility of these elements during weathering. Chemical indices of alteration (CIA, CIW, and PIA) show that the degree of weathering of the source area was high. The data fall closer to the compositional fields of highly weathered minerals such as kaolinite, gibbsite, and chlorite on an A-CN-K diagram. The indices of compositional variability of the studied samples are much less than 1, suggesting that the samples are compositionally mature and were likely dominated by recycling. The elemental ratios critical of provenance (La/Sc, Th/Sc, Th/Co, Th/Cr, and Cr/Th) are similar to fine fractions derived from the weathering of mostly granitoids rather than mafic rocks.  相似文献   

11.
靳立杰 《地质与勘探》2022,58(4):778-786
东昆仑地区出露的赛什腾组为一套边缘前陆盆地沉积,是原特提斯洋在东昆仑地区俯冲消减到碰撞闭合的沉积记录。对赛什腾组的地球化学特征进行分析和研究,有助于深入理解物源区的类型和性质。本次对赛什腾组的沉积序列进行了详细研究,对典型样品进行了主量、微量及稀土元素地球化学分析和研究。研究结果显示,赛什腾组的变质碎屑岩原岩主要为杂砂岩,少量的岩屑砂岩和长石砂岩;其物源区大地构造背景主要为活动大陆边缘及大陆岛弧。赛什腾组主要来自陆源碎屑岩或中酸性岩浆岩等长英质物质来源区,并且在沉积过程中有白沙河岩组、小庙岩群、万宝沟群等古老沉积组分的加入。此外,原特提斯洋演化过程中形成的岛弧花岗岩,也为赛什腾组提供物质来源。  相似文献   

12.
We present here comprehensive petromineralogic, mineral magnetic and lithologic observations from five stratigraphic sections representing the Barail Group, Middle and Upper units of Bhuban Formation, Bokabil Formation and Tipam Group in the Mizoram area. These stratigraphic units mainly display interplay of the grey and buff colored sandstones of the clast compositions varying from sub-lithic to lithic arenites (Q79F4L17 to Q55F3L42) including sedimentary, meta-sedimentary and subordinate igneous rock fragments. The buff sandstones with higher lithic fragments [Q69F4L27 (Ls61Lm38Lv1)] are dominated by recycled components with higher clast angularity (VA1A15SA51SR24R8WR0.4) relative to the grey sandstones. Mineral magnetic studies decipher bimodal (ferri- and antiferromagnetic) mineralogy with higher concentration in buff sandstones relative to the unimodal ferrimagnetic nature of the grey sandstones. The study infers that the buff sandstones mark the regressive phases driven by hinterland uplifts; whereas the growth of the grey sandstone facies is marked by transgressive basinal processes. Gradual increase in the frequency and appearance of the buff sandstones in the Surma stratigraphy, therefore, can be related to the evolution of the Indo-Burmese ranges.  相似文献   

13.
Detrital zircon U–Pb data from sedimentary rocks in the Hengyang and Mayang basins, SE China reveal a change in basin provenance during or after Early Cretaceous. The results imply a provenance of the sediment from the North China Craton and Dabie Orogen for the Upper Triassic to Middle Jurassic sandstones and from the Indosinian granitic plutons in the South China Craton for the Lower Cretaceous sandstones. The 90–120 Ma age group in the Upper Cretaceous sandstones in the Hengyang Basin is correlated with Cretaceous volcanism along the southeastern margin of South China, suggesting a coastal mountain belt have existed during the Late Cretaceous. The sediment provenance of the basins and topographic evolution revealed by the geochronological data in this study are consistent with a Mesozoic tectonic setting from Early Mesozoic intra-continental compression through late Mesozoic Pacific Plate subduction in SE China.  相似文献   

14.
The Eocene La Meseta Formation is the youngest exposed unit of the back-arc James Ross Basin, Antarctic Peninsula, cropping out in Seymour (Marambio) Island. The formation comprises 720 m of clastic sedimentary rocks of deltaic, estuarine and shallow marine origin. It was subdivided into six unconformity-based units (Valle de Las Focas, Acantilados, Campamento, Cucullaea I, Cucullaea II and Submeseta Allomembers) grouped into three main facies associations. Facies association I represents valley-confined deposition in a progradational/aggradational tide-dominated and wave-influenced delta front/delta plain environment. Facies association II includes tidal channels, mixed tidal flats, tidal inlets and deltas, washover and beach environments. Facies association III represents nonconfined tide- and storm-influenced nearshore environments. La Meseta Formation sandstones are quartzofeldspathic with some hybrid arenites (glauconite and carbonate bioclasts-rich). Sandstone detrital modes are subdivided into two distinctive petrofacies: the low quartz petrofacies (petrofacies I, Q<55% and L>12%), interpreted to retain the original provenance signal, and the high quartz petrofacies (petrofacies II, Q>55% and L<12%), representing the reworking product of the former after selective elimination of the more labile components. Petrofacies I sandstone framework grains were mainly derived from a dissected magmatic arc and an associated metamorphic belt. Textural evidence for recycling of some grains (e.g. garnet) from older sedimentary units during valley incision is not conclusive. Changes in the relative participation of source areas during the evolution of the incised-valley system are evaluated from the relative proportions of lithic fragments and monomineralic clasts derived from each rock type. Two lithic assemblages were recognized. The mixed lithic assemblage (Rv/Rm+Rp<1.4) shows participation of all rock types; it represented valley-confined environments, either during the initial stage of valley development, or after main episodes of incision. The volcanic lithic assemblage (Rv/Rm+Rp>1.4) is clearly dominated by volcanic-derived clasts; it developed at times of high sea level and/or during later stages of the valley fill, when an “energy fence” at the shoreline prevented delivery of sediment from the Antarctic Peninsula, thus enhancing the relative participation of local volcanic sources.  相似文献   

15.
This study focuses on the detailed provenance evolution of young, syn- to post-orogenic extensional grabens in orogens like the Himalaya to trace the tectonic history of such late-stage basins, using the Neogene Thakkhola-Mustang Graben as a case study. The graben is situated within the Tibetan-Tethys zone and is filled with > 870 m of continental deposits of Miocene to Holocene age-. Based on logged sections within the predominantly alluvial to coarse-grained fluvial fill of the graben we investigated paleocurrent data and the petrology of sandstones and conglomerates including heavy minerals studies to interpret provenance and source areas in detail. Significant changes are recorded by slight differences in heavy mineral and pebble compositions.The sandstones can be classified as lithic greywackes, lithic arkoses and feldspathic litharenites. Sandstone, mudstone, quartzite and some granite clasts are dominant in conglomerates of the central part of the graben. Tetang Formation conglomerates of Miocene age comprise mostly clasts of Mesozoic rocks with an eastern provenance, consistent with measured paleocurrent directions. All paleocurrent data and compositional analyses of imbricated conglomerates of the Miocene–Pliocene Thakkhola Formation in the northeast of the graben suggest that clasts were derived from eastern source areas comprising mainly Mesozoic rocks whereas Paleozoic clasts of a western to northern source area predominate in the centre of the graben.Heavy mineral analysis indicates that tourmaline, staurolite, zircon, garnet and apatite constitute a significant proportion of the assemblages of all formations through time whereas epidote, andalusite, kyanite, chloritoid, hornblende, chrome-spinel, rutile and amphiboles are less common. These assemblages reflect in general stable minerals and low to high-grade metamorphic source rocks, and are principally controlled by reworking of older, passive margin sediments of the Tibetan-Tethys zone as indicated by provenance discrimination diagrams.Three successive stages in provenance evolution were recognized: (1) The Miocene Tetang Formation, characterized by higher kyanite values, corresponding to the Himalayan foreland evolution; (2) the Thakkhola Formation, characterized by granite clasts and significantly higher amounts of andalusite, indicating source area expansion and erosion of the Mustang-Mugu granites to the northwest; (3) the Upper Pleistocene/Holocene Kaligandaki Formation, bearing higher amounts of epidote/klinozoisite and ophiolite and high-pressure/low temperature detritus as indicated by chrome spinel and blue amphiboles, derived from the north-lying Indus-Tsangpo suture zone. The change in source areas from the Miocene/Pliocene to the Late Pleistocene/Holocene is interpreted as a result of the evolution from an initial stage of high-angle normal faulting and collapse basin formation to a low-angle extensional detachment basin system.  相似文献   

16.
ILFRYN PRICE 《Sedimentology》1977,24(4):529-546
The Othris Mountains of eastern Greece contain a calcareous continental margin/ocean basin sequence exposed in a stack of Cretaceous thrust sheets. Upper Triassic to Lower Cretaceous shelf, submarine fan and basinal successions overlie shallow marine units of Lower Triassic and Permian age. In off-shelf sequences the older sediments are separated from the younger by a horizon of alkaline ‘early-rifting’ basalts. Ophiolites overthrust the marginal sequence. Pre-rifting sediments are represented by a varied suite of limestones and clastics resting on metamorphic basement and include distinctive, green lithic arenites. In the thrust sheet immediately over the para-autochthonous shelf sequence, pre-rifting sediments are separated from the rift basalts by an intermittent horizon of calcareous sandstones and conglomerates reworked from uplifted basement and older sediments. Textural and petrographic immaturity suggests that these are probably deposits derived from fault scarps, produced in an early phase of rifting. Above the basalts in the same sheet is a suite of calciclastic sediment-gravity-flow deposits, apparently sedimented on a submarine fan. Progressive downslope modification of calcirudites suggests deposition from evolving, high concentration flows. Massive calcarenite facies (? grain flows) are unusually abundant; a possible reflection of a shallow palaeo-shelf break since provenance and palaeocurrent evidence proves the clastic carbonates to have been derived from a calcareous shelf. In addition to limestone lithoclasts the calcirudites, but not the massive calcarenites, contain fragments of pre-rifting lithologies including the distinctive arenites. Since the shelf sequence in Othris is totally nondetrital these clasts imply derivation of coarse sediment from an off-shelf position; probably the walls of a submarine canyon. This may have occurred either by direct erosion of wall rock, or by reworking of material from an older clastic sequence. In the latter case the inferred fault-scarp deposits are a likely source.  相似文献   

17.
The petrography and geochemistry (major, trace, and rare earth elements) of clastic sedimentary rocks from the Paleogene Dainan Formation (E2 d) in the North Jiangsu Basin, eastern China, are investigated to trace their provenance and to constrain their tectonic setting. The studied samples are characterized by LREE enrichment, flat HREE, and negative Eu anomaly similar to the upper continental crust composed chiefly of felsic components in the source area. Petrographic observation indicates that the sandstones contain predominant metamorphic and sedimentary clasts that were derived from peripheral recycled orogen and intrabasinal materials. The trace element ratios (Co/Th, La/Sc, La/Th, and Th/U) and the La-Th-Sc ternary plot further confirm that the sandstones are derived from granitic gneiss sources from recycled orogen and the intrabasinal mixed sedimentary provenance. The granitic gneiss source rocks may have derived from the Proterozoic granitic gneiss denuded in the eastern Dabie-Sulu orogen; and the intrabasinal provenance may come from the underlying strata during the Late Paleocene Wubao movement. The chemical index of alteration (CIA) and A-CN-K plot show that these source rocks may have experienced weak to medium chemical weathering. Analysis on tectonic setting of the source area suggests an active continental margin, which is intimate with tectonic feature of the Dabie-sulu orogen and the Yangtze block. In summary, we suggest that the North Jiangsu Basin is an ideal site for the study of the coupling between the uplift of the orogen and the subsidence of the foreland basin.  相似文献   

18.
川东北元坝地区须家河组石英砂岩沉积与储层特征   总被引:1,自引:0,他引:1  
在川东北元坝及周边地区首次发现纯净的石英砂岩沉积,石英砂岩厚度10~15 m左右。研究表明,石英砂岩主要以夹层形式出现在须一、二段,但沉积环境相当特殊,主要为海泛或湖泛早期沉积的滩坝砂体,不属于须家河组广泛发育的三角洲沉积体系,石英砂体呈近东西向展布,明显受到米仓山-大巴山前陆前渊带的控制。石英砂岩以粉-细砂为主,分选好,磨圆度高,杂基含量低,具有较高的成熟度,与其它地区不同,研究区石英砂岩具有良好的储集性能,其主要原因是由于石英砂岩中石英颗粒内具有高密度原生微裂缝,这些原生裂缝在沉积后成岩过程中可能闭合,但在后期的构造挤压背景下石英砂岩的脆性特性及破碎颗粒容易导致大量裂缝发育,裂缝的发育同时促进原生裂缝充填物和粒间填屑物的溶蚀,形成以裂缝为主的孔隙性储层。在研究区具有裂缝的石英颗粒并不局限在石英砂岩,我们推测具有裂缝的石英与物源有关。  相似文献   

19.
张英利  王宗起 《地质学报》2011,85(12):2014-2030
徽成盆地是西秦岭造山带内一个具有代表性的盆地,保留较完整的地层记录.早白垩世田家坝组、周家湾组和鸡山组为一套砂砾岩沉积组合序列.本文通过对早白垩世砂岩的古水流恢复、砾石成分与含量、重矿物和地球化学分析,对沉积岩物源区特征和原型盆地进行探讨.古水流恢复和砾石成分统计表明,沉积物主要是近源堆积,主要来自于盆地南缘和北部.重矿物研究结果表明,早白垩世砂岩母岩以岩浆岩为主,并有少量变质岩/沉积岩.地球化学分析表明,早白垩世砂岩为成熟度较低的硬砂岩和长石/岩屑砂屑岩.稀土元素标准化配分曲线呈现轻稀土富集、重稀土平坦和弱Eu负异常特征.砂岩物源区组成判别图研究表明,早白垩世砂岩的物源区主要出露长英质火山岩.砂岩源区构造环境判别图解及特征指数分析表明,早白垩世砂岩源区主要形成于大陆岛弧和活动大陆边缘.结合区域资料和前人研究,表明早白垩世徽成地区发育走滑拉分盆地.  相似文献   

20.
鸡西、勃利盆地白垩纪砂岩的物源分析及构造意义   总被引:7,自引:0,他引:7       下载免费PDF全文
鸡西、勃利盆地白垩纪砂岩骨架矿物成分的模式分析显示:下白垩统城子河组和穆棱组砂岩的源区主要为切割型岛弧,结合古水流方向和砂岩地球化学特征研究,物源区主要为小兴安岭-张广才岭;上白垩统猴石沟组砂岩的源区主要为基底隆升和切割型岛弧。结合古水流方向和砾石的统计结果认为,鸡西、勃利盆地物源区主要为桦南隆起和密山隆起,以及小兴安岭-张广才岭。据白垩纪砂岩物源,晚白垩世砾岩成分,以及区域地质资料分析,下白垩统城子河组和穆棱组时期,鸡西盆地、勃利盆地和黑龙江东部各盆地为统一的原型盆地,早白垩世末期随着桦南隆起和密山隆起的隆升而破坏。并在晚白垩世早期已隆升,并为周缘盆地提供物源,形成现今黑龙江东北部地区的盆岭格局。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号