首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Use of Natural Pozzolana and Lime for Stabilization of Cohesive Soils   总被引:1,自引:0,他引:1  
The present study investigates the use of natural pozzolana combined with lime for ground improvement applications. Laboratory tests were undertaken to study the effect of natural pozzolana, lime or a combination of both on the physical and the mechanical characteristics of cohesive soils. Natural pozzolana, lime and natural pozzolana-lime were added to two cohesive soils at ranges of 0–20 and 0–8%, respectively. Consistency, compaction, undrained traxial shear and unconfined compressive strength tests were performed on untreated and treated soil samples to assess the physical and mechanical characteristics of the soil. Treated samples were cured for 1, 7, 28 and 90 days. The results show that the cohesive soils can be successfully stabilized by combining natural pozzolana and lime.  相似文献   

2.
An experimental study is conducted to measure small-strain shear modulus of clay-cement mixture using bender element apparatus setup in a triaxial cell. Bender element tests were conducted on cement-treated soils and the results were analyzed to study the variation of shear modulus properties of soil specimens at different cement contents, confining pressures, curing times, and compaction moisture contents. Based on the obtained results increasing the cement ratio has a significant effect on the small-strain shear modulus of the treated soils, and this effect signifies with increasing the moisture content and curing time. Rates of shear modulus enhancements due to cement content, curing time, and compaction moisture content are quantified and presented. In this study, a clay–cement–water ratio formulation is proposed that enables one to calculate cement and water contents required to obtain specific small-strain shear modulus.  相似文献   

3.
Biosurfactants are frequently used in petroleum hydrocarbon and dense non-aqueous phase liquids (DNAPLs) remediation. The applicability of biosurfactant use in clayey soils requires an understanding and characterization of their interaction. Comprehensive effects of surfactants and electrolyte solutions on kaolinite clay soil were investigated for index properties, compaction, strength characteristics, hydraulic conductivities, and adsorption characteristics. Sodium dodecyl sulfate (SDS) and NaPO3 decreased the liquid limit and plasticity index of the test soil. Maximum dry unit weights were increased and optimum moisture contents were decreased as SDS and biosurfactant were added for the compaction tests for mixtures of 30% kaolinite and 70% sand. The addition of non-ionic surfactant, biosurfactant, and CaCl2 increased the initial elastic modulus and undrained shear strength of the kaolinite–sand mixture soils. Hydraulic conductivities were measured by fixed-wall double-ring permeameters. Results showed that the hydraulic conductivity was not significantly affected, but slightly decreased from 1×10−7 cm/s (water) to 0.3×10−7 cm/s for Triton X-100 and SDS. The adsorption characteristics of the chemicals onto kaolinite were also investigated by developing isotherm curves. SDS adsorbed onto soil particles with the strongest bonding strength of the fluids tested. Correlations among parameters were developed for surfactants, electrolyte solutions, and clayey soils.  相似文献   

4.
This study presents the application of different methods (simple–multiple analysis and artificial neural networks) for the estimation of the compaction parameters (maximum dry unit weight and optimum moisture content) from classification properties of the soils. Compaction parameters can only be defined experimentally by Proctor tests. The data collected from the dams in some areas of Nigde (Turkey) were used for the estimation of soil compaction parameters. Regression analysis and artificial neural network estimation indicated strong correlations (r 2 = 0.70–0.95) between the compaction parameters and soil classification properties. It has been shown that the correlation equations obtained as a result of regression analyses are in satisfactory agreement with the test results. It is recommended that the proposed correlations will be useful for a preliminary design of a project where there is a financial limitation and limited time.  相似文献   

5.
Temporal and spatial dynamics of soil moisture are little known on karst hillslope with shallow soil in subtropical region. The objectives of this paper were (1) to investigate the temporal dynamics of soil moisture at depth of 0–10 cm under different land uses; and (2) to understand the relationship between mean and coefficient of variation (CV) of moisture contents on karst hillslope in northwest Guangxi, China. Soil moisture contents had a moderate variation (CV 17.5–30.3%) over an 8-month period and they had a significant difference among different land uses at the 0.01 level with a decreasing order: native scrubland > abandoned cropland and sloping cropland > economic forestland. There were higher mean and lower CV of moisture contents in rainy season than those in drought season. Mean and CV of moisture contents had a significant negative linear relationship except in abandoned cropland with higher soil and vegetation heterogeneity. This suggested that spatial variability of soil moisture within sampling sites would decrease when soils were wet and increase when soils were arid. Compared with rainy season, more soil samples may be needed and the interval for sampling should be shortened in drought season. Such information provided some insights to better understand the dynamics and variability of soil moisture at a larger scale in karst region of southwest China.  相似文献   

6.
Geotechnical properties of municipal sewage sludge   总被引:3,自引:0,他引:3  
The geotechnical properties of municipal sewage sludge, in particular those pertinent to the handling and landfilling of the material, are presented. Index, drying, compaction, shear strength and consolidation tests were conducted on the material at different states of biodegradation. The organic content and specific gravity of solids were found to be inversely related, with typical organic contents of 50–70% and specific gravity of solids values of 1.55–1.80. The density of the compacted material was low in comparison with mineral soils. Standard Proctor compaction yielded a maximum dry density of 0.56 tonne/m3 at 85% water content. Laboratory vane-shear and triaxial compression tests indicated that, below about 180% water content, the shear strength of the sludge material increased exponentially with reducing water content. Consolidated-undrained triaxial compression tests on the pasteurised sludge material indicated an effective angle of shearing resistance of 32° for the moderately degraded material and 37° for the strongly degraded material. Biogas was produced at rates of up to 0.33 L/day/kg slurry due to ongoing biodegradation and the resulting pore pressure response must be taken into account in any stress analysis. Consolidation tests using the hydraulic consolidation cell, oedometer and triaxial apparatus indicated that the sludge material was highly compressible although practically impermeable, for example the coefficient of permeability for the moderately degraded slurry was of the order of 10−9m/s. However, creep deformation was significant with typical coefficient of secondary compression values of 0.02–0.08 for the compacted material. A more free-draining material was produced at higher states of biodegradation.  相似文献   

7.
Analysis of Swelling and Shrinkage Behavior of Compacted Clays   总被引:2,自引:0,他引:2  
The impact of the variation in compaction condition on the swelling and shrinkage behavior of three soils has been examined. Two natural soils, namely red soil and black cotton soil, and one artificially mixed soil sample of commercial bentonite with well-graded sand, were studied. Compaction curve for Standard Proctor conditions were plotted and four compaction conditions were selected. Experimental results showed that clay mineralogy dominates over compaction conditions in influencing the swelling and shrinkage behavior of the tested soils. Monitoring of void ratio (e)−water content (w) relations during shrinkage showed that soil specimens generally shrunk in three distinct linear stages. A small reduction in void ratio occurred on reduction in water content during the first shrinkage stage and was termed as initial shrinkage. In second stage, void ratio decreased rapidly with reduction in water content and was termed as primary shrinkage. In third and final stage, reduction in water content is accompanied by a marginal change in void ratio and it’s called residual shrinkage. Irrespective of initial compaction conditions studied, the transition from primary to residual shrinkage for all the specimens occurred within a narrow range of water content (10–15%).  相似文献   

8.
Cement-Stabilization of Sabkha Soils from Al-Auzayba,Sultanate of Oman   总被引:2,自引:1,他引:1  
Sabkha soils are salt-bearing formations that are formed in arid regions. In their in situ states the sabkha soils have high compressibility and low shear strength. These soils are also heterogeneous and their properties depend on the type and amount of salt present. Thus, these soils are not suitable for support of infrastructures without the risk of high settlement and/or bearing capacity failure. This paper investigates the possibility of using cement to improve the shear strength of sabkha soils for possible use as a foundation-bearing soil. The sabkha soil used in this study is a sandy sabkha obtained from the coastal plains at Al-Auzayba, Sultanate of Oman. Cement was added in percentages of 2.5, 5, 7.5 and 10%, by dry weight of soil. The soil-stabilizer mixers were allowed to cure for 7, 14 and 28 days. Laboratory tests such as compaction, unconfined compression, consolidated undrained triaxial and durability tests were performed to measure the engineering characteristics of the stabilized material. The results showed substantial improvements in the shear strength of the sabkha–cement mixtures and the mixtures are also durable with small weight loss after 12 wetting/drying cycles. Thus, cement can be used to improve the shear strength of sabkha soils. Furthermore, the effective stress path and the tress-strain relation of the sabkha–cement mixtures follow trends similar to those of cemented calcareous soils.  相似文献   

9.
Permafrost degradation has the potential to significantly change soil moisture. The objective of this study was to assess the variability of soil moisture in a permafrost region using geostatistical techniques. The experiment was conducted in August 2008 in alpine steppe and meadow located in the Qinghai-Tibetan Plateau permafrost region. Four soil depths (0–10, 10–20, 20–30 and 30–40 cm) were analyzed using frequency domain reflectometry, and sampling made of 80 points in a 10 m × 10 m grid were sampled. Soil moisture was analyzed using classical statistics to appropriately describe central tendency and dispersion, and then using geostatistics to describe spatial variability. Classical statistical method indicated that soil moisture in the permafrost region had a normal distribution pattern. Mean surface soil moisture in alpine meadow was higher than that in alpine steppe. The semivariograms showed that soil moisture variability in alpine cold steppe was larger than that in alpine meadow, which decreased with depths. Nugget values in alpine steppe were low (0.1–4.5), in contrast to alpine cold meadow. Soil moisture in alpine steppe had highly structured spatial variability with more than 93.4% spatial heterogeneity, and the range decreased with depth. Soil moisture content in alpine cold meadow had a moderate spatial dependence with a range of 51.3–169.2 m, increasing with depth.  相似文献   

10.
Laboratory investigations were carried out on reddish brown tropical soils from Moniya, Ibadan Southwestern Nigeria to determine the basic unconfined compressive strength of the soil samples which is an important factor to be considered when considering materials as liners in waste containment structure. Clay mineralogy, major element geochemical analyses were carried out by means of X-ray diffractometry and X-ray fluorescence spectrometry respectively. The engineering tests such as sieve size analyses, Atterberg limits, natural moisture contents, specific gravity and compaction using four different compactive efforts namely reduced proctor, standard proctor, West African standard and modified proctor. The tests were carried out in line with the procedures of the British standard 1377 of 1990 and Head of 1992. The soils were found to contain kaolinite as the major minerals with some mixtures of smectite, muscovite, halloysite, quartzite, biotite and aluminium phosphate. Values of the unconfined compressive strength obtained within 12.5 and 22.5% moulding water contents equal to or greater than 200 kN/m2 which is the minimum acceptable value required for containment facilities. The maximum dry density, Mg/m3 ranged between 1.68 and 1.98 while Optimum moisture content, % ranged between 12.3 and 21.2. Hence, unconfined compressive strength values were found to be greater than 200 kN/m2 at dry unit weight of 16.20 kN/m3 especially when WAS and modified proctor compactive efforts were used which met the minimum required unconfined compressive strength of 200 kN/m2 for hydraulic barriers in waste containment facilities.  相似文献   

11.
In compacted coarse-grained materials, the stress state is largely influenced by the compaction procedure and by the characteristics of the single grains (mineralogy, shape). In this work, two compacted sandy gravels with the same grading but different grain properties have been tested in a large soft oedometer to highlight this influence. In the first part of the paper, the effect of oedometric ring deformability on the stress state is quantified in the framework of elastoplasticity. It is then shown that, for the adopted apparatus and for the tests carried out, the error in the measurement of the coefficient of earth pressure at rest K 0 caused by ring deformability is very small. The two tested materials, compacted by wet tamping, behave differently because of their different grain properties, showing, respectively, small and large grain breakage. In primary loading, the more crushable material has values of K 0 that compare well with Jaky’s (J Soc Hungarian Archit Eng 355–358, 1944) equation at any stress level and for every tested soil density. For the material with stronger grains, only very loose specimens that have undergone little or no compaction have a similar behaviour, while the denser specimens show the typical behaviour of overconsolidated soils, with values of K 0 initially larger than that suggested by Jaky (J Soc Hungarian Archit Eng 355–358, 1944) for normally consolidated soils, tending to it only at the largest applied stress values. By considering the complex combined effect of tamping and grain crushing on the stress state and on the overconsolidation ratio of the soil at the end of compaction, these experimental evidences have been qualitatively explained.  相似文献   

12.
Soil compaction and substrate modification produced during large-scale armored military maneuvers in the early 1940s were examined in 1981 at seven sites in California’s eastern Mojave Desert Recording penetrometer measurements show that tracks left by a single pass of an M3 “medium” tank have average soil resistance values that are 50% greater than those of the surrounding untracked soil in the upper 20 cm At one site, measurements made along short segments of track that have been visually eliminated by erosion and deposition processes show a 73% increase in penetrometer resistance over adjacent, undisturbed soils Dirt roadways at three former base camp locations could not be penetrated below 5–10 cm because of extreme compaction Soil bulk density was not as sensitive an indicator of soil compaction as was penetrometer resistance Density values in the upper 10 cm of soil are not significantly different between tank tracks and undisturbed soils at most sites, and roadways at two base camps show an average increase in bulk density of only 12% over adjacent soils. Trench excavations across tank tracks show that physical modifications of the substrate can extend vertically beneath a track to a depth of 25 cm and outward from a track’s edge to 50 cm These soil disturbances are probably major factors that encourage accelerated soil erosion throughout the manuever area and also retard or prevent the return of vegetation to pre-disturbance conditions  相似文献   

13.
Karst rocky desertification is a process of land degradation involving serious soil erosion, extensive exposure of basement rocks. It leads to drastic decrease in soil productivity and formation of a desert-like landscape. In this regard, changes in climatic conditions are the main origin of the soils degradation. Indeed, soils subjected to successive dry/wet cycling processes caused by climate change develop swelling and shrinkage deformations which can modify their water retention properties, thus inducing the degradation of soil–water capacity. The ecological characteristics of cultivation soils in karst areas, Southwest of China, are extremely easy to be affected by external environmental factors due to its shallow bedding and low vegetation coverage. Based on the analysis of the climate (precipitation) of this region during the past decades, an experimental study has been conducted on a cultivated soil obtained from the typical karst area in southwestern China. Firstly, the soil–water properties have been investigated. The measured soil–water retention curve shows that the air-entry value of the soil is between 50 and 60 kPa, while the residual saturation is about 12%. Based on the experimental results, three identifiable stages of de-saturation have been defined. Secondly, a special apparatus was developed to investigate the volume change behavior of the soil with controlled suction cycles. The vapor equilibrium technique was used for the suction control. The obtained results show that under the effect of dry/wet cycles, (1) the void ratio of the cultivated soil is continuously decreasing, leading to a gradual soil compaction. (2) The permeability decreases, giving rise to a deterioration of water transfer ability as well as a deterioration of soil–water retention capacity. It is then obvious that the long-term dry/wet cycling process caused by the climate change induce a continuously compaction and degradation of the cultivated soil in karst rocky desertification areas.  相似文献   

14.
压实度是道路、房建、水利等工程领域评价土体压实质量的重要参数,与土体含水率和电导率密切相关。而频域反射技术(frequency domain reflectometry,FDR)可用于快速测定土体含水率和电导率。首先利用频域反射技术分别对多种压实状态下红黏土、膨胀土和黄土的含水率、电导率进行测量;然后对含水率测值进行室内标定,得到3种土的含水率标定曲线;通过偏最小二乘回归分析方法(partial least squares regression,PLSR)建立了3种土体的压实度-含水率-电导率之间的经验关系,并与实测值进行了对比分析;再根据扫描电子显微镜(scanning electron microscopy,SEM)和压汞法(mercury intrusion porosimetry,MIP)试验结果分析了其微观机制;最后对拟合公式得到的压实度预测值进行随机试样验证,建立与实测值的误差评估体系,结果表明基于压实度-含水率-电导率之间的关系而提出的拟合公式预测压实度的精度较高。相关研究可为道路、房建、水利等工程中土体压实度的快速检测提供参考。  相似文献   

15.
This paper presents the results of laboratory experiments showing the effects of rock fragments contained in three different purple soils of the Sichuan basin of southwest China. The experiments investigated how these rock fragments alter the soil’s physical, chemical, and agronomical characteristics such as infiltration and evaporation. We found that the infiltration rate, whether horizontal or vertical, in the three soils has the following order: gray brown purple soil < reddish brown purple soil < brown purple soil. With increasing rock fragment contents the accumulated infiltration decreases, while the total time decreases first and then increases. The minimum occurs at approximately 10–20% of fragment content by weight. The infiltration rate also changes with the distance. In the 0–5 cm range, the initial infiltration rate increases with increasing rock fragment contents, while in the 5–10 cm range, the slope of infiltration curve increases with increasing rock fragment contents. With increasing distance, the slope gradually decreases and finally reaches a stable value. The presence of rock fragments reduces soil water content, the minimal value appearing when the rock fragments were on top of the soil column (soil + rock sample), decreasing with increasing rock fragments for other samples mixed with fragments. Under the constant 40°C temperature, the accumulated evaporation and evaporation rate are minimal for soils covered by rock fragments, and the accumulated evaporation decreases with increasing rock fragment for other soil samples. However, the evaporation rate increases with increasing rock fragments in the first 4 days and decreases thereafter.  相似文献   

16.
Major geotechnical problems in construction involving silty–clayey soils are due to their low strength, durability and high compressibility of soft soils, and the swell–shrink nature of the overconsolidated swelling soils. Confronted with these problems, a suitable ground improvement technique is needed, for deep excavations in soft clays, for stability, durability and deformation control. Cement-stabilization is one of the alternatives. An increase in strength and durability, reduction in deformability are the main aims of this method. Conventional cement-stabilization methods are used mainly for surface treatment. However, the use of cement has recently been extended to a greater depth in which cement columns were installed to act as a type of soil reinforcement (deep cement–soil mixing and cement jet grouting). In situ engineering properties of these silty–clayey soils are often variable and difficult to predict. For this reason cement-stabilization methods have a basic target to control the aforementioned engineering properties of these clays so that the properties of a silty–clayey soil become more like the properties of a soft rock such as clayey shale or lightly cemented sandstone. So cement-stabilization of these soils is essential to control their engineering properties and to predict their engineering behaviour for construction. In an effort to predict, classify and study the suitability of silty–clayey soils for cement-stabilization both slaking and unconfined compressive strength tests were carried out on clayey–sand mixtures consisted of two types of clays, kaolin and bentonite. Finally diagrams were prepared to study the variation of slaking and strength due to compaction, curing time and cement percentage and also to predict areas of efficient cement-stabilization.  相似文献   

17.
Because of the relatively low soil moisture in arid or semi-arid regions, water vapour movement often predominates in the vadose zone and affects the partitioning of energy among various land surface fluxes. In an outdoor sand bunker experiment, the soil water content at 10 and 30 cm depth were measured at hourly intervals for 2.5 days during October 2004. It was found that the soil moisture reached the daily maximum value (5.9–6.1% at 10 cm and 11.9–13.1% at 30 cm) and minimum value (4.4–4.5% at 10 cm and 10.4–10.8% at 30 cm) at midday (0–1 p.m. for 10 cm and 2–3 p.m. for 30 cm) and before dawn (2–3 a.m. for 10 cm and 4–5 a.m. for 30 cm), respectively. The modified HYDRUS-1D code, which refers to the coupled water, water vapour and heat transport in soil, was used to simulate the moisture and water vapour flow in the soil. The numerical analyses provided insight into the diurnal movement of liquid water and water vapour driven by the gradients of pressure heads and temperatures in the subsurface zone. The simulated temperature and water content were in good agreement with the measured values. The spatial–temporal distribution of liquid water flux, water vapour flux and soil temperature showed a detailed diurnal pattern of soil water dynamics in relatively coarse sand. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
 Understanding the mechanisms of mercury evaporation from soil to the atmosphere is necessary for tracing the fate of mercury in the biological environment and for assessing potential health effects and the impact of anthropogenic mercury emissions on the environment. In this article an integrating overview of the current knowledge of the mechanisms of mercury evaporation is presented. Abiological and biological formation of Hg(0) and/or (CH3)2Hg in the uppermost soil layers are the rate limiting processes of mercury evaporation from soils in background areas; the evaporation rate in background areas is probably strongly influenced by deposited airborne mercury. The evaporation rate limiting factors in mercury enriched mineralized areas with large fractions of total mercury being volatile mercury species (relative to background soil in the non-mineralized vicinity) meteorological variations and the transport characteristics of soils for volatile mercury species. Mercury evaporation rates from background soils are usually <0.2 μg·m–2·h–1 and significantly smaller than from mercury-enriched mineralized areas. Received: 20 November 1995 / Accepted: 24 July 1996  相似文献   

19.
文桃  米海珍  杨鹏  应赛  王月礼 《岩土力学》2015,36(7):1945-1952
为了全面地揭示硫酸盐渍土击实性能的变化原因和规律,对不同条件下配制的硫酸盐渍土进行了一系列的轻型击实试验。试验研究表明,含盐量对硫酸盐渍土最大干密度和最优含水率的影响规律并不是单一不变的,它取决于土中硫酸钠的3种状态(硫酸钠溶液、无水硫酸钠和十水硫酸钠)及3种状态间的相对含量。硫酸盐渍土的最大干密度和最优含水率与土中不同状态硫酸钠相对含量间的关系曲线具有反相关性。闷料时间和初始含水率对硫酸盐渍土击实性能的影响与含盐量有关,当含盐量较低(如1.5%)时,其影响甚小;当含盐量较高(如5.0%)时,其影响显著。硫酸盐渍土在由湿到干的过程中会出现“假干现象”。该试验结果对工程中硫酸盐渍土的击实性能和压实度的合理评价都具有重要的参考价值。  相似文献   

20.
天津滨海地区晚新生代地层自然固结与地面沉降研究   总被引:1,自引:0,他引:1  
天津滨海地区地处渤海湾西岸,晚新生代沉积了巨厚的松散沉积物。地下水位下降、地层自然固结、地表载荷的加速增长等复合因素造成了严重的地面沉降。利用在天津滨海新区塘沽地区施工的一眼1 226 m全取芯钻孔,通过原状样品测试分析,系统研究了晚新生代土层的物理力学性质、黏性土固结特征,并结合欠固结黏性土层沉降量计算等方法阐述了土层固结状态空间特征,探讨了土层固结特征与地面沉降的相关关系。结果表明:该地区0~100 m深度土层具有低天然密度、高孔隙比、高含水率、高压缩性等特点,表现出软土的性质,在地表荷载增大的情况下,易发生地面沉降;100~550 m的黏性土大都处于超固结和微超固结状态,主要是由于过去地下水的大量开采造成的;550 m以下的黏性土多为正常固结,局部存在欠固结黏性土夹层。钻孔中存在合计约218 m的欠固结黏性土夹层,这些欠固结黏性土夹层在自重应力下的最终沉降量为1 985 mm,沉降量最大的土层对应于第1、6含水组,分别达614 mm和665 mm,这一沉降过程完成所需时间为数十年甚至上百年。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号