共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary High-grade gneisses from the Pulur complex in NE Turkey bear evidence for biotite-dehydration melting at 820°C and 0.7–0.8GPa, melt segregation and near-isothermal decompression to 0.4–0.5GPa. During further exhumation, the rocks underwent secondary pervasive rehydration at temperatures between 400 and 230°C and fluid pressures between 0.3 and 0.1GPa. Metamorphic peak conditions are dated at 331–327Ma, while hydrothermal retrogression occurred significantly later at 315–310Ma under static conditions. During the rehydration event, primary high-grade mineral assemblages including garnet, cordierite, sillimanite, spinel, biotite, plagioclase and ilmenite were extensively replaced by muscovite, paragonite, margarite, corundum, diaspore, chlorite, kaolinite, pumpellyite, prehnite, epidote, titanite, anatase, pyrite and chalcopyrite. Secondary mineral assemblages indicate that the infiltrating fluids were characterized by low fO 2, very low XCO2 (<0.002), variable activities of Ca 2+, K +, Na + and H + and relatively high activities of H 2S and CH 4. Quartz veins that might have acted as pathways for the fluids are rare. Ubiquitous veinlets consisting of (i) albite, (ii) chlorite+calcite+quartz or (iii) K-feldspar+calcite+quartz were formed after the pervasive rehydraton event by precipitation from aqueous solutions that were somewhat richer in CO 2. 相似文献
3.
The Adula Nappe in the Central Alps is a mixture of various pre-Mesozoic continental basement rocks, metabasics, ultrabasics, and Mesozoic cover rocks, which were pervasively deformed during Alpine orogeny. Metabasics, ultrabasics, and locally garnet–mica schists preserve eclogite-facies assemblages while the bulk of the nappe lacks such evidence. We provide garnet major-element data, Lu profiles, and Lu–Hf garnet geochronology from eclogites sampled along a north–south traverse. A southward increasing Alpine overprint over pre-Alpine garnets is observed throughout the nappe. Garnets in a sample from the northern Adula Nappe display a single growth cycle and yield a Variscan age of 323.8 ± 6.9 Ma. In contrast, a sample from Alpe Arami in the southernmost part contains unzoned garnets that fully equilibrated to Alpine high-pressure (HP) metamorphic conditions with temperatures exceeding 800 °C. We suggest that the respective Eocene Lu–Hf age of 34.1 ± 2.8 Ma is affected by partial re-equilibration after the Alpine pressure peak. A third sample from the central part of the nappe contains separable Alpine and Variscan garnet populations. The Alpine population yields a maximum age of 38.8 ± 4.3 Ma in line with a previously published garnet maximum age from the central nappe of 37.1 ± 0.9 Ma. The Adula Nappe represents a coherent basement unit, which preserves a continuous Alpine high-pressure metamorphic gradient. It was subducted as a whole in a single, short-lived event in the upper Eocene. Controversial HP ages and conditions in the Adula Nappe may result from partly preserved Variscan assemblages in Alpine metamorphic rocks. 相似文献
4.
The Hamamboğazi spa in western Turkey was built around natural hot springs with discharge temperatures in the range of 30–54°C;
the waters have near neutral pH values of 6.50–7.10 and a TDS content between 2,694 and 2,982 mg/l. Thermal water with a temperature
of 47.5–73°C has been produced at 325 l/s from five wells since 1994, causing some springs to go dry. A management plan is
required in the study area to maximize the benefits of this resource, for which currently proposed direct uses include heating
in the district and greenhouses, as well as balneology in new spas in the area. The best use for the water from each spring
or well will depend on its temperature, chemistry and location. The thermal waters are mixed Na–Mg–HCO 3–SO 4 fluids that contain a significant amount of CO 2 gas. The chemical geothermometers applied to the Hamamboğazi thermal waters yield a maximum reservoir temperature of 130°C.
Isotope results ( 18O, 2H, 3H) indicate that the thermal waters have a meteoric origin: rainwater percolates downward along fractures and faults, is heated
at depth, and then rises to the surface along fractures and faults that act as a hydrothermal conduit. The basement around
the Banaz Hamamboğazi resort is comprised of Paleozoic metamorphic schist and marbles exposed 8 km south and 15 km north of
Banaz. Mesozoic marble, limestone and ophiolitic complex are observed a few km west and in the northern part of Banaz. These
units were cut at a depth of 350–480 m in boreholes drilled in the area. Overlying lacustrine deposits are composed of fine
clastic units that alternate with gypsum, tuff and tuffites of 200–350 m thickness. The marble and limestones form the thermal
water aquifer, while lacustrine deposits form the impermeable cap. 相似文献
5.
Summary A large number of podiform chromitite bodies of massive, disseminated and nodular type have been located in ultramafic units, composed of depleted mantle harzburgite and dunite of the Marmaris Peridotite from Ortaca (Mula, SW Turkey). The chromite ore bodies are surrounded by dunite envelopes of variable thickness, exhibiting transitional boundaries to harzburgite host rocks. Chromitites, containing a large number of inclusions, i.e. silicates, base metal sulphides and alloys, and platinum-group minerals (PGM) have a wide range of chemical composition. The Cr# [Cr/(Cr+Al)] values of most chromitites are high (0.61–0.81) and Mg# [Mg/(Mg+Fe 2+)] values range between 0.65 and 0.71 with TiO 2 content lower than 0.24wt.%, which may reflect the crystallization of chromites from boninitic magmas in supra-subduction setting environment.Platinum-group minerals (PGM) such as laurite, erlichmanite and Os–Ir alloys, silicates such as olivine, clinopyroxene and amphibole, and base metal sulphides (BM-S), alloys (BM-A) and arsenides (BM-As) are found as inclusions in chromite or in the serpentine matrix. Platinum-group element (PGE) concentrations of the Ortaca chromitites (OC) are low in all samples. Total PGE (Ir+Ru+Rh+Pt+Pd) ranges from 63ng/g to 266ng/g and Pd/Ir ratios range between 0.23 and 4.75. PGE content is higher and the Pd/Ir ratio lower in Cr-rich chromitites compared to Al-rich ones. There is a strong negative correlation between the Cr# and Pd/Ir ratios (r=–0.930). The PGE patterns show a negative slope from Ru to Pt and a positive slope from Pt to Pd. The low PGE content in the majority of the OC may reflect a lack of sulphur saturation during an early stage of their crystallization. The laurite compositions show a wide range of Ru–Os substitution caused by relatively low temperature and increasing f(S 2) during the chromite crystallization. The high Cr# of and hydrous silicate mineral inclusions in chromite imply that chromite crystallized in a supra-subduction setting. 相似文献
6.
The Diyadin Geothermal area, located in the eastern part of Anatolia (Turkey) where there has been recent volcanic activity, is favorable for the formation of geothermal systems. Indeed, the Diyadin geothermal system is located in an active geodynamic zone, where strike-slip faults and tensional cracks have developed due to N–S regional compression. The area is characterized by closely spaced thermal and mineralized springs, with temperatures in the range 30–64 °C, and flowrates 0.5–10 L/s. Thermal spring waters are mainly of Ca(Na)-HCO 3 and Ca(Mg)-SO 4 types, with high salinity, while cold groundwater is mostly of Ca(Na, Mg)-HCO 3 type, with lower salinity. High contents of some minor elements in thermal waters, such as F, B, Li, Rb, Sr and Cs probably derive from enhanced water–rock interaction.Thermal water samples collected from Diyadin are far from chemical equilibrium as the waters flow upward from reservoirs towards spring vents and possibly mix with cooler waters. The temperatures of the deep geothermal reservoirs are estimated to be between 92 and 156 °C in Diyadin field, based on quartz geothermometry, while slightly lower estimates are obtained using chalcedony geothermometers. The isotopic composition of thermal water (δ 18O, δ 2H, δ 3H) indicates their deep-circulating meteoric origin. The waters are likely to have originated from the percolation of rainwater along fractures and faults to the deep hot reservoir. Subsequent heating by conduction due to the presence of an intrusive cupola associated with the Tendurek volcano, is followed by the ascent of deep waters to the surface along faults and fractures that act as hydrothermal conduits.Modeling of the geothermal fluids indicates that the fluid is oversaturated with calcite, aragonite and dolomite, which matches travertine precipitation in the discharge area. Likewise, the fluid is oversaturated with respect to quartz, and chalcedony indicating the possibility of siliceous precipitation near the discharge areas. A conceptual hydro-geochemical model of the Diyadin thermal waters based on the isotope and chemical analytical results, has been constructed. 相似文献
7.
Sn–W deposit of the Mueilha mine is one of many other Sn–W deposits in the Eastern desert of Egypt that associated with albite granite. Two forms of Sn–W mineralizations are known at the Mueilha Sn-mine area, namely fissure filling quartz veins and greisen. Cassiterite and/or wolframite, sheelite, and beryl are the main ore minerals in the greisen and quartz veins. Subordinate chalcopyrite and supergene malachite and limonite are also observed in the mineralized veins. To constrain the P–T conditions of the Sn–W mineralizations, fluid inclusions trapped in quartz and cassiterite, have been investigated. The following primary fluid inclusion types are observed: CO 2-rich, two-phase (L?+?V) aqueous, and immiscible three-phase (H 2O–CO 2) inclusions. Low temperature and low salinity secondary inclusions were also detected in the studied samples. Microthermometric results revealed that Sn–W deposition seem to have taken place due to immiscibility at temperature between 260°C and 340°C, and estimated pressure between 1.2 to 2.2 kb. Microthermometric results of fluid inclusions in fluorite from fluorite veins illustrated that fluorite seems to be deposited due to mixing of two fluids at minimum temperature 140°C and 180°C, and estimated minimum pressure at 800 bars. 相似文献
8.
Granitoids of the Ekecikda? Igneous Association (Central Anatolia/Turkey) are products of collisional–post-collisional magmatism in the Ekecikda? area. These granitoids are granodiorite, microgranite and leucogranite. Field relations of granodiorites with microgranites is obscured, but leucogranites intrude both rock types. Mean zircon laser ablation (LA)-ICP-MS 206Pb- 238U ages of granodiorites and microgranites are 84.52 ± 0.93 Ma and 80.7 ± 1.6 Ma, respectively, and age of leucogranites is suggested as 80 Ma, based on field relations combined with 206Pb/ 238U and Rb-Sr ages. Crystallisation temperatures of granodiorites, microgranites and leucogranites are 728°C-848°C, 797°C-880°C, 704°C-809°C, respectively. Geochemical characteristics including Sr-Nd isotopic evidences infer a non-cogenetic character, as there is a high crustal contribution in I-type granodiorite sources, a crustal source with insignificant and significant mantle inputs in S-type microgranites and leucogranites, respectively. LA-ICP-MS Lu-Hf isotope data from zircons reveal their crustal nature (εHf(t): ?1.3 ± 0.5 to ?8.8 ± 0.5). Crustal melting linked to the Alpine thickening during the Late Cretaceous led to formation of heterogeneous sourced granitoids with crustal dominated sources in the Ekecikda? area. Understanding of the nature and evolution of collisional Ekecikda? granitoids is not only important to put contribution in the geodynamic evolution of Central Anatolia and surrounding Alpine area, but also to better understand systematics of collisional magmatic systems. 相似文献
9.
Neoarchaean–Palaeoproterozoic granitoids of the Aravalli craton, represented by four plutons with different ages, viz. Gingla (2.6–2.4 Ga), Ahar River (2562 Ma), Untala (2505 Ma), and Berach (2440 Ma) granitoids, are classified into three suites: TTG-like, Sanukitoid, and High-K Granitoid suite, all exhibiting negative Nb and Ti anomalies. The TTG-like suite is characterized by high contents of SiO 2, Na 2O, and LREEs, high (La/Yb) N, low contents of K 2O, MgO, Cr, and Ni, and low (Dy/Yb) N, suggesting that this suite formed by partial melting of a subducted basaltic slab without interacting with a mantle wedge. In contrast, the calc-alkaline Sanukitoid suite is marked by a high content of LILEs and mantle-compatible elements, which indicate that this suite formed by partial melting of a slab-fluid metasomatized mantle wedge in a subduction-related arc environment. On the other hand, the High-K Granitoid suite is characterized by high contents of SiO 2 and K 2O, and low contents of Na 2O, MgO, Cr, and Ni with variable Eu anomaly, along with high (La/Sm) N and (La/Yb) N, and low (Dy/Yb) N and Nb/Th. Some high-K granitoids also exhibit A-type characteristics. These features indicate that the High-K Granitoid suite formed by melting of crustal rocks. Early Neoarchaean continental crust formation reflected a slab-melting-dominated magmatic process as evidenced by the TTG-like suite, whereas Palaeoproterozoic petrogenesis was governed by the interaction of slab melt with mantle wedge as demonstrated by the Sanukitoid suite. The High-K Granitoid suite formed during the waning stages of subduction. This study reveals that granitic rocks of the Aravalli craton evolved from slab melting in the Neoarchaean to melting of mantle wedge in the Palaeoproterozoic. Melting of older crust led to the formation of the High-K Granitoid suite. 相似文献
10.
Apatite fission-track analyses indicate that the Kazda? Massif in northwestern Anatolia was exhumed above the apatite partial annealing zone between 20 and 10 Ma (i.e. early-middle Miocene), with a cluster of ages at 17–14 Ma. The structural analysis of low-angle shear zones, high-angle normal faults and strike-slip faults, as well as stratigraphic analysis of upper-plate sedimentary successions and previous radiometric ages, point to a two-stage structural evolution of the massif. The first stage -encompassing much of the rapid thermal evolution of the massif- comprised late Oligocene-early Miocene low-angle detachment faulting and the associated development of small supradetachment grabens filled with a mixture of epiclastic, volcaniclastic and volcanic rocks (Küçükkuyu Fm.). The second stage (Plio-Quaternary) has been dominated by (i) strike-slip faulting related to the westward propagation of the North Anatolian fault system and (ii) normal faulting associated with present-day extension. This later stage affected the distribution of fission-track ages but did not have a component of vertical (normal) movement large enough to exhume a new partial annealing zone. The thermochronological data presented here support the notion that Neogene extensional tectonism in the northern Aegean region has been episodic, with accelerated pulses in the early-middle Miocene and Plio-Quaternary. 相似文献
12.
Linking of normal faults forms at all scales as a relay ramp during growth stages and represents the most efficient way for faults to lengthen during their progressive formation. Here, I study the linking of normal faulting along the active K?rka?aç Fault Zone within the west Anatolian extensional system to reconstruct fault interaction in time and space using both field- and computer-based data. I find that (i) connecting of the relay zone/ramp occurred with two breaching faults of different generations and that (ii) the propagation was facilitated by the presence of pre-existing structures, inherited from the ?zmir-Bal?kesir transfer zone. Hence, the linkage cannot be compared directly to a simple fault growth model. Therefore, I propose a combined scenario of both hangingwall and footwall fault propagation mechanisms that explain the present-day geometry of the composite fault line. The computer-based analyses show that the approximate slip rate is 0.38 mm/year during the Quaternary, and a NE–SW-directed extension is mainly responsible for the recent faulting along the K?rka?aç Fault Zone. The proposed structural scenario also highlights the active fault termination and should be considered in future seismic hazard assessments for the region that includes densely populated settlements. 相似文献
13.
NW Turkey is a mosaic of several continental and oceanic units, that were amalgamated by collisional and strike–slip tectonics.
One of the continental units is the İstanbul terrane, the Palaeozoic strata of which comprise an Early Ordovician to Early
Carboniferous transgressive sedimentary sequence. The basement to the Palaeozoic succession is exposed in the Bolu Massif
and is represented by a thick meta-volcanic unit intruded by Late Neoproterozoic (ca. 575 Ma) felsic magma. This meta-igneous
basement is considered to be a sliver of the Cadomian magmatic arc. Unconformably overlying Early Ordovician strata start
with red fluvial clastics (ca. 3,000 m), overlain by shallow marine quartzites (<250 m). Detrital zircons were separated from
an Ordovician quartzite sample located 5 m above the contact with the underlying red fluvial clastics. We have dated a total
of 99 zircon grains by U–Pb method using laser ablation-sector field-inductively coupled plasma mass spectrometer (LA-SF-ICP-MS).
The ages (97% are >90% concordant) range from 530 to 2550 Ma. The dominance (44 grains) of Neoproterozoic zircon ages (around
540, 570, 600–640 and 700–800 Ma) rules out any link of the İstanbul terrane with Baltica. The large amount (40 grains) of
Grenvillian and Meso- to Palaeo-proterozoic ages (around 1.0–1.2, 1.3–1.6, 1.7–1.8, and 1.9–2.1 Ga) in the zircon population
further rules out a link to Cadomian and Minoan terranes, but is indicative for Amazonian source areas. The new age data suggest
the İstanbul terrane to be a peri-Gondwanan terrane that was located at the northwestern margin of Gondwana close to Amazonia.
This terrane should have travelled a large distance in the Phanerozoic times. 相似文献
14.
Disasters caused by events such as earthquake, flooding, rock falls, landslides are often encountered. However, generally, the reasons for the destructive and devastating effects of these nature events are that settlement locations were chosen without site investigation studies, or that available studies were inadequate. Such inadequacies in the field are related to inappropriate settlement location and the resulting damage caused by rock falls. This study evaluated rockfall risk in a settlement that developed in a similar manner. The study was carried out in Bo?aziçi village of Kemah (Erzincan/Turkey), which is located in a very important tectonic zone. The study site is located on the lower sections of an area with very steep cliffs and 50–75° slopes. This cliff, which is the source of rockfalls, has a slope dip of approximately 90°. The cliff comprises 25–30 m high, fractured and cracked basaltic volcanic mass. To determine block size in the study area, scanline survey measurements and block size measurements were performed on blocks that loosened and fell from the cliff face. It was found that block sizes reached 6 m 3. Rockfall analyses were performed along the selected profiles using the Rockfall V.4.0 software. Kinetic energy, bounce height, horizontal location of rock end-points, and velocity of the rocks along each section were evaluated separately for each profile. This data were used to produce distribution maps for each profile and the settlement was evaluated in terms of rockfall risk. The results indicate that the study area was at risk of future rockfalls and that it would be appropriate to relocate one part of the settlement. 相似文献
15.
Hasandağ and Erciyes stratovolcanoes, which produced both calc-alkaline and alkaline eruptive products, are the two important volcanic complexes in Central Anatolia. There are three geochemical evolution stages in the history of the Hasandağ strato volcanic complex: (1) Keçikalesi tholeiitic, (2) Hasandağ calc-alkaline and (3) Hasandağ alkaline. Volcanologic and petrologic characteristics of the Hasandağ and Erciyes calc-alkaline series show that water played an important role on the genesis of these rocks. These rocks are phenocryst-rich with vesicular texture, and contain hydrous mineral phases. The approximate pressure and temperature estimates obtained from the mineral chemistry studies of the Hasandağ strato volcanic complex indicate crystallization temperature of 1100 °C with 2.5–3.4 kbar pressure interval for the first stage of Keçikalesi tholeiitic volcanism, and about 850 °C temperatures with 4.3–9.6 kbar pressure intervals for the second stage of Hasandağ calc-alkaline volcanism.The geochemical evolution of Erciyes volcanic complex also exhibits three distinct evolutionary stages: (1) Koçdağ alkaline, (2) Koçdağ calc-alkaline and (3) Erciyes calc-alkaline. The temperature of Koçdağ alkaline volcanism is 1097–1181 °C and in a range of 5.1–6.7 kbar pressure, for Koçdağ calc-alkaline volcanism 850–1050 °C temperature to 2.0–6.6 kbar pressure interval, and for Erciyes calc-alkaline volcanism about 950 °C temperature, to 3.2–7.9 kbar pressure intervals were calculated. Polybaric origin of magma chambers for calc-alkaline and alkaline rocks and disequilibrium parameters observed in phenocrysts indicate that the rocks were affected by magma mixing processes in crustal magma chambers. The disequilibrium features of amphibole and plagioclase phenocrysts in these rocks point the latent heat in magma chambers and periodic recharging with mafic magma chambers and also show that magmas reequilibrate before the eruption. 相似文献
16.
The post-collisional Saraycık granodiorite intruded into a late Paleocene to early Eocene nappe pile that formed during collision of the Pontides in the North and the Anatolide-Tauride platform in the South, leading to the formation of the İzmir-Ankara-Erzincan suture. A relatively shallow pluton intrusion depth (∼5 to 8 km) was estimated from Al-in-hornblende geobarometry and contact metamorphic assemblages. The emplacement age is tightly constrained to ∼52 Ma by two Ar–Ar plateau and total fusion ages on biotite. The main mass of the pluton consists of metaluminous to peraluminous biotite granodiorite and hornblende-biotite granodiorite. In addition, up to 10-m thick dacitic and <25-cm thick aplitic dikes occur. Granodiorites and dacites show many close compositional similarities to high-silica adakites from supra-subduction zone settings, but tend to be slightly more felsic and to have a higher aluminium saturation index. Chondrite-normalized (cn) rare earth element patterns are characterized by high ratios of (La/Yb) cn, concave-upward shapes of the HREE and a lack of significant Eu anomalies. In conjunction with relatively high abundances of Ba and Sr as well as low abundances of Y, HREE and Sc, these patterns suggest a feldspar-poor, garnet ± amphibole-rich fractionating mineral assemblage (residue). All samples have very similar Nd–Sr isotopic characteristics, regardless of rock type. Initial ε Nd values range from −0.3 to −1.2 and initial 87Sr/ 86Sr ratios from 0.70491 to 0.70529. It is suggested that the magmas formed by partial melting of mafic lower crust at elevated pressures (∼1 to 2 GPa). 相似文献
17.
Poikiloblastic harzburgite xenoliths (P-type) from Borée, France are characterised by large (>1 cm), essentially unstrained
olivines and high equilibrium temperatures (>1200 °C). Mineralogical data, trace element abundances and Sr-Nd-O isotopes of
the constituent minerals are consistent with formation as a result of melt percolation-reactions in a lherzolite precursor
during lithospheric erosion by an upwelling plume. This petrogenetic model contrasts with previous models involving isochemical
recrystallisation from a granular lherzolite precursor (G-type) or derivation as metacumulates from tholeiitic magmas. Numerical
simulation of percolation reactions at the lithosphere-plume boundary using the plate model of Vernières et al. (1997) indicates
that the different textured xenoliths may represent mantle from different levels in a percolation-reaction column. If correct
then the P-type harzburgites resulted from pyroxene-dissolving and olivine-producing reactions at increasing melt fraction
(>3%) at the lower part of column (base of the lithosphere), whereas the G-type lherzolites were located within the low-porosity
domain (<0.1%) above a permeability barrier, and are formed through a melt-rock reaction at decreasing melt mass. Given the
very low melt fraction, the REE fractionation in this zone is controlled by chromatographic effects coupled with source effects
of reaction. The variations in porosity, melt/rock ratio and melt-rock reaction mechanism are believed to be responsible for
the diversity of REE patterns and striking correlation between REE abundance and texture in Borée xenoliths.
Received: 15 June 1997 / Accepted: 7 January 1998 相似文献
18.
INTRODUCTIONItisanacknowledgedfactthataragonite,ahigh pressurepolymorphofCaCO3 ,occurswidelyasanindexmineralofhigh pressureandlow temperaturemetamorphism (glaucophaneschistfacies)withinthegeodynamiccontextofsubduction obductionandcontinentalcollision (Liou… 相似文献
19.
Evidence of rifting and continental break-up to form the S Neotethys is found within the volcanic-sedimentary Koçali Complex. This is a folded, thrust-imbricated succession that includes lavas, volcaniclastic sediments, pelagic carbonates, radiolarites and manganiferous deposits. Interbedded ribbon cherts contain radiolarians of Late Triassic to Late Jurassic age. The lower part of the succession of Mid?-Late Triassic age (Tarasa Formation) is dominated by enriched mid-ocean ridge basalt (E-MORB). The overlying Late Triassic to Mid-Jurassic interval (Konak Formation) is characterised by intercalations of ocean island basalt and E-MORB. Taking account of structural position, the basalts erupted within the outer part of a continent–ocean transition zone. Continental break-up probably occurred during the Late Triassic (Carnian–Norian). Early to Mid-Jurassic lavas and volcaniclastic sediments record volcanism probably after continental break-up. In addition, the Karadut Complex is a broken formation that is located at a relatively low structural position just above the Arabian foreland. Pelagic carbonates, redeposited carbonates and radiolarites predominate. Radiolarians are dated as Early to Mid-Jurassic and Late Cretaceous in age. The pelagic carbonates include planktic foraminifera of Late Cretaceous age. The Karadut Complex resulted from the accumulation of calcareous gravity flows, pelagic carbonate and radiolarites in a relatively proximal, base-of-slope setting. After continental break-up, MORB and ophiolitic rocks formed within the S Neotethys further north. Tectonic emplacement onto the Arabian platform took place by earliest Maastrichtian time. Regional interpretation is facilitated by comparisons with examples of Triassic rifting and continental break-up in the eastern Mediterranean region and elsewhere. 相似文献
|