首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Based on the analysis of various geophysical data, namely, free-air gravity anomalies, magnetic anomalies, upper mantle seismic tomography images, and topography/bathymetry maps, we single out the major structural elements in the Circum Arctic and present the reconstruction of their locations during the past 200 million years. The configuration of the magnetic field patterns allows revealing an isometric block, which covers the Alpha–Mendeleev Ridges and surrounding areas. This block of presumably continental origin is the remnant part of the Arctida Plate, which was the major tectonic element in the Arctic region in Mesozoic time. We believe that the subduction along the Anyui suture in the time period from 200 to 120 Ma caused rotation of the Arctida Plate, which, in turn, led to the simultaneous closure of the South Anyui Ocean and opening of the Canadian Basin. The rotation of this plate is responsible for extension processes in West Siberia and the northward displacement of Novaya Zemlya relative to the Urals–Taimyr orogenic belt. The cratonic-type North American, Greenland, and European Plates were united before 130 Ma. At the later stages, first Greenland was detached from North America, which resulted in the Baffin Sea, and then Greenland was separated from the European Plate, which led to the opening of the northern segment of the Atlantic Ocean. The Cenozoic stage of opening of the Eurasian Basin and North Atlantic Ocean is unambiguously reconstructed based on linear magnetic anomalies. The counter-clockwise rotation of North America by an angle of ~ 15° with respect to Eurasia and the right lateral displacement to 200–250 km ensure an almost perfect fit of the contours of the deep water basin in the North Atlantic and Arctic Oceans.  相似文献   

2.
扬马延海脊位于北大西洋的北极圈附近,东格陵兰板块和挪威板块之间,冰岛东北方向。北极地区地域辽阔,油气资源丰富,但是恶劣的环境一直制约油气的勘探进展。在扬马延海脊的沉积演化过程中,扬马延海脊在第三纪前有着和东格陵兰陆架、挪威陆架相似的沉积序列,其构造演化经历了二叠纪陆内裂谷、三叠纪—侏罗纪同裂谷和微陆块漂移、白垩纪至今热沉降和被动陆缘等3个阶段。结合前人研究成果,对搜集的东格陵兰陆架、挪威陆架的油气地质资料分析,认为扬马延海脊可划分为扬马延盆地、扬马延西部构造带、扬马延中部凸起带、扬马延海槽、扬马延东部斜坡、扬马延南部复杂构造带6个构造单元,在其上发育着2套油气系统。同时扬马延海脊发育有伸展构造圈闭、地垒断块圈闭、构造圈闭和地层圈闭,这些圈闭为油气的赋存提供了良好的环境,也有利于划分有利油气勘探区带。研究结果可为进一步分析扬马延海脊构造特征等方面提供基础信息,同时对我国参与研究开发北极油气资源具有重大意义。  相似文献   

3.
The structure of the sedimentary cover and acoustic basement in the northeastern Russian Arctic region is analyzed. Beneath the western continuation of the North Chukchi trough and Vil’kitskii trough, a Late Caledonian (Ellesmere) folded and metamorphozed basement is discovered. It is supposed that Caledonides continue further into the Podvodnikov Basin until the Geofizikov branch. A large magnetic anomaly in the Central Arctic zone has been verified by seismostratigraphic data: the acoustic basement beneath the Mendeleev (and partially Alpha) Ridge is overlain by trapps. Wave field analysis showed that the acoustic basement of the Lomonosov Ridge has folded structure, whereas beneath the Mendeleev Ridge, the sporadic presence of a weakly folded stratum of Paleozoic platform deposits is interpreted. It is supposed that the Caledonian and Late Cimmerian fold belts in the periphery of the Arctida paleocontinent appeared as a result of collision between arctic continental masses and southern ones. After Miocene extension and block displacements identified from appearance of horsts, grabens, and transverse rises both on the shelf and in the ocean, a general subsidence took place and the present-day shelf, slope, and the deepwater part of the Arctic Ocean formed.  相似文献   

4.
A combined analysis of the recently collected aeromagnetic data from the Eurasian Basin with the magnetic data from the Labrador Sea, the Norwegian-Greenland Sea and the North Atlantic yields a plate kinematic solution for the Eurasian Basin which is consistent with the solution for the North Atlantic as a whole. It shows that the Eurasian Basin and Norwegian-Greenland Sea started to evolve at about anomaly 25 time, though active seafloor spreading did not start in either of these regions until anomaly 24 time. It further shows that the spreading in the Eurasian Basin has been a result of motion only between the North American and Eurasian plates since the beginning, with the Lomonosov Ridge remaining attached to the North American plate. The relative motion among the North American, Greenland and Eurasian plates as obtained from the plate kinematics of the North Atlantic shows that from Late Cretaceous to Late Paleocene (anomaly 34 to 25) Greenland moved obliquely to Ellesmere Island. It is suggested that most of this motion was taken up within the Canadian Arctic Islands resulting in little or no motion along Nares Strait between Greenland and Ellesmere Island. From Late Paleocene to mid-Eocene (anomaly 25-21) Greenland continued to move obliquely, resulting in a displacement of 125 km along and of 90 km normal to the Nares Strait. From mid-Eocene to early Oligocene another 100 km of motion took place normal to the Strait, which correlates well with the Eurekan Orogeny in the Canadian Arctic Island. During these times the relative motion between Greenland and Svalbard (Eurasian plate) was mainly strike-slip with a small component of compression. The implication of the resulting motion between the North American and the Eurasian plates onto the Siberian platform are discussed.  相似文献   

5.
Episodes of glaciation in the region north of Baffin Bay resulted in the erosion of Paleozoic carbonate outcrops in NW Greenland and the Canadian High Arctic. These events are recognized in the marine sediments of Baffin Bay (BB) as a series of detrital carbonate-rich (DC-) layers. BBDC-layers thin southward within Baffin Bay; thus, the contribution of Baffin Bay ice-rafted carbonate-rich sediments to the North Atlantic is probably slight, especially compared with sediment output from Hudson Strait during Heinrich events. We reexamine (cf. Aksu, 1981) a series of nine piston cores from the axis of Baffin Bay and across the Davis Strait sill and provide a suite of 21 AMS 14C dates on foramininfera which bracket the ages of several DC-layers. The onset of the last DC event is dated in six cores and has an age of ca. 12.4 ka. In northern and central Baffin Bay a thick DC-layer occurs at around 4 m in the cores and is dated >40 ka. There were three to six DC intervening events. The youngest BBDC event (possibly a double event) lags Heinrich event 1 (H-1) off Hudson Strait, dated at 14.5 ka, but it is coeval with the pronounced warming seen in GISP2 records from the Greenland Ice Sheet during interstadial #1. We hypothesize that BBDC episodes are coeval with major interstadial δ18O peaks from GISP2 and other Greenland ice core records and are caused by or associated with the advection of Atlantic Water into Baffin Bay (cf. Hiscott et al., 1989) and the subsequent rapid retreat of ice streams in the northern approaches to Baffin Bay.  相似文献   

6.
The modern views on the structure of the oceanic and continental crust are discussed. The presented geological-geophysical information on the deep structure of the Earth’s crust of the Lomonosov Ridge, Mendeleev Rise, and Alpha Ridge, which make up the province of the Central Arctic Uplifts in the Arctic Ocean, is based on CMP, seismic-reflection, and seismic-refraction data obtained by Russian and Western researchers along geotraverses across the Amerasia Basin. It is established that the crust thickness beneath the Central Arctic Uplifts ranges from 22 to 40 km. Comparison of the obtained velocity sections with standard crust sections of different morphostructures in the World Ocean that are underlain by the typical oceanic crust demonstrates their difference with respect to the crustal structure and to the thickness of the entire crust and its individual layers. Within the continental crust, the supercritical waves reflected from the upper mantle surface play the dominant role. Their amplitude exceeds that of head and refracted waves by one to two orders of magnitude. In contrast, the refracted and, probably, interferential head waves are dominant within the oceanic crust. The Moho discontinuity is the only first-order boundary. In the consolidated oceanic crust, such boundaries are not known. The similarity in the velocity characteristics of the crust of the Alpha Ridge and Mendeleev Rise, on the one hand, and the continental crust beneath the Lomonosov Ridge, on the other, gives grounds to state that the crust of the Mendeleev Rise and Alpha Ridge belongs to the continental type. The interference mosaic pattern of the anomalous magnetic field of the Central Arctic Uplifts is an additional argument in favor of this statement. Such patterns are typical of the continental crust with intense intraplate volcanism. Interpretation of seismic crustal sections of the Central Arctic Uplifts and their comparison with allowance for characteristic features of the continental and oceanic crust indicate that the Earth’s crust of the uplifts has the continental structure.  相似文献   

7.
The tectonic evolution of the Arctic Region in the Mesozoic and Cenozoic is considered with allowance for the Paleozoic stage of evolution of the ancient Arctida continent. A new geodynamic model of the evolution of the Arctic is based on the idea of the development of upper mantle convection beneath the continent caused by subduction of the Pacific lithosphere under the Eurasian and North American lithospheric plates. The structure of the Amerasia and Eurasia basins of the Arctic is shown to have formed progressively due to destruction of the ancient Arctida continent, a retained fragment of which comprises the structural units of the central segment of the Arctic Ocean, including the Lomonosov Ridge, the Alpha-Mendeleev Rise, and the Podvodnikov and Makarov basins. The proposed model is considered to be a scientific substantiation of the updated Russian territorial claim to the UN Commission on the determination of the Limits of the Continental Shelf in the Arctic Region.  相似文献   

8.
内蒙古地域辽阔,全区跨越了西伯利亚、华北、哈萨克斯坦、塔里木四大板块。受多期构造运动影响,地质构造环境极其复杂。历年来关于华北板块、西伯利亚板块缝合带界限的位置,始终是地质工作者讨论的热点。笔者从地球物理学的角度,分析了华北板块与西伯利亚板块缝合带之地球物理场(重磁场)特征,认为西拉木伦河断裂带应是华北板块与西伯利亚板块的终极缝合带。  相似文献   

9.
A GIS layout of the map of recent volcanism in North Eurasia is used to estimate the geodynamic setting of this volcanism. The fields of recent volcanic activity surround the Russian and Siberian platforms—the largest ancient tectonic blocks of Eurasia—from the arctic part of North Eurasia to the Russian Northeast and Far East and then via Central Asia to the Caucasus and West Europe. Asymmetry in the spatial distribution of recent volcanics of North Eurasia is emphasized by compositional variations and corresponding geodynamic settings. Recent volcanic rocks in the arctic part of North Eurasia comprise the within-plate alkaline and subalkaline basic rocks on the islands of the Arctic Ocean and tholeiitic basalts of the mid-ocean Gakkel Ridge. The southern, eastern, and western volcanic fields are characterized by a combination of within-plate alkaline and subalkaline basic rocks, including carbonatites in Afghanistan, and island-arc or collision basalt-andesite-rhyolite associations. The spatial distribution of recent volcanism is controlled by the thermal state of the mantle beneath North Eurasia. The enormous mass of the oceanic lithosphere was subducted during the formation of the Pangea supercontinent primarily beneath Eurasia (cold superplume) and cooled its mantle, having retained the North Pangea supercontinent almost unchanged for 200 Ma. Volcanic activity was related to the development of various shallow-seated geodynamic settings and deep-seated within-plate processes. Within-plate volcanism in eastern and southern North Eurasia is controlled, as a rule, by upper mantle plumes, which appeared in zones of convergence of lithospheric plates in connection with ascending hot flows compensating submergence of cold lithospheric slabs. After the breakdown of Pangea, which affected the northern hemisphere of the Earth insignificantly, marine basins with oceanic crust started to form in the Cretaceous and Cenozoic in response to the subsequent breakdown of the supercontinent in the northern hemisphere. In our opinion, the young Arctic Ocean that arose before the growth of the Gakkel Ridge and, probably, the oceanic portion of the Amerasia Basin should be regarded as a typical intracontinental basin within the supercontinent [48]. Most likely, this basin was formed under the effect of mantle plumes in the course of their propagation (expansion, after Yu.M. Pushcharovsky) to the north of the Central Atlantic, including an inferred plume of the North Pole (HALIP).  相似文献   

10.
Evidence from terrestrial sections, ice cores, and marine cores are reviewed and used to develop a scenario for environmental change in the area of the extreme northwest North Atlantic during marine isotope stages 5 and 4. The critical physical link between the landbased glacial chronology and marine events in Baffin Bay is the presence of carbonate rich drift along the Baffin Bay coast of Bylot Island and a detrital carbonate facies (Facies B) in Baffin Bay sediments. Cores from Baffin Bay/Labrador Sea can be dated by means of oxygen isotope variations and by peaks in the abundance of volcanic glass shards. One occurrence of Facies B is dated between late stage 5 and stage 4 and we correlate this event with the Eclipse Glaciation of Bylot Island and the Ayr Lake stade of the Foxe Glaciation of Baffin Island (= Kogalu aminozone). In contrast on West Greenland, amino acid racemization evidence suggests that the Greenland Ice Sheet developed throughout stage 4 and reached a maximum in stage 3 (Svartenhuk advance >40 ka). The oxygen isotope record in the Devon Island Ice Cap (northwest Baffin Bay) indicates that Baffin Bay was largely open during marine isotope stage 5. Analyses of shallow water molluscan and foraminiferal assemblages, deep-water foraminifera, pollen from Iand sections and deep-sea cores, and dinoflagellates from marine cores indicate that interglacial conditions prevailed during much of the stage glaciation.  相似文献   

11.
Investigations of three plausible tectonic settings of the Kerguelen hotspot relative to the Wharton spreading center evoke the on-spreading-axis hotspot volcanism of Paleocene (60-54 Ma) age along the Ninetyeast Ridge. The hypothesis is consistent with magnetic lineations and abandoned spreading centers of the eastern Indian Ocean and seismic structure and radiometric dates of the Ninetyeast Ridge. Furthermore, it is supported by the occurrence of oceanic andesites at Deep Sea Drilling Project (DSDP) Site 214, isotopically heterogeneous basalts at Ocean Drilling Program (ODP) Site 757 of approximately the same age (59-58 Ma) at both sites. Intermix basalts generated by plume-mid-ocean ridge (MOR) interaction, exist between 11° and 17°S along the Ninetyeast Ridge. A comparison of age profile along the Ninetyeast Ridge between ODP Sites 758 (82 Ma) and 756 (43 Ma) with similarly aged oceanic crust in the Central Indian Basin and Wharton Basin reveals the existence of extra oceanic crust spanning 11° latitude beneath the Ninetyeast Ridge. The extra crust is attributed to the transfer of lithospheric blocks from the Antarctic plate to the Indian plate through a series of southward ridge jumps at about 65, 54 and 42 Ma. Emplacement of volcanic rocks on the extra crust resulted from rapid northward motion (absolute) of the Indian plate. The Ninetyeast Ridge was originated when the spreading centers of the Wharton Ridge were absolutely moving northward with respect to a relatively stationary Kerguelen hotspot with multiple southward ridge jumps. In the process, the spreading center coincided with the Kerguelen hotspot and took place on-spreading-axis volcanism along the Ninetyeast Ridge.  相似文献   

12.
Abstract Alkaline granites (Rb-Sr ages 276-286 Ma) occurring in the Bayan U1-East Ujimqin belt at the southern margin of the Siberian plate originated in a tensional tectonic environment about 60 Ma earlier than the Late Devonian to Early Carboniferous collision between the Siberian and Sino-Korean plates. They belong to post-orogenic A - type granites and may be used as an indicator of the end of the orogeny. At the northern margin of the Sino-Korean plate, however, only late-orogenic calc-alkaline granites occurred during the late Caboniferous-Permian, and alkaline syenites did not appear until the Late Triassic. The asymmetric magmatism at the margins of the two neighbouring plates might be controlled by the differences in size and mass of the two plates.  相似文献   

13.
Alkaline granites (Rb-Sr ages 276-286 Ma)occurring in the Bayan Ul-East Ujimqin belt at the southern margin of the Siberian plate originated in a tensional tectonic environment about 60 Ma earlier than the Late Devonian to Early Carboniferous collision between the Siberian and Sino-Korean plates. They belong to post-orogenic A-type granites and may be used as an indicator of the end of the orogeny. At the northern margin of the Sino-Korean plate, however, only late-orogenic calc-alkaline granites occurred during the late Caboniferous-Permian, and alkaline syenites did not appear until the Late Triassic. The asymmetric magmatism at the margins of the two neighbouring plates might be controlled by the differences in size and mass of the two plates.  相似文献   

14.
抛刀岭金矿位于长江中下游成矿带中的安庆-贵池矿集区,是长江中下游多金属成矿带中首次发现的斑岩型独立金矿床。通过磷灰石裂变径迹研究分析区内的构造演化特征,裂变径迹长度处于11.9±1.8μm和13.2±1.6μm之间,表明样品在后期受构造热事件的影响,样品长时间处于退火带温度,长度直方图总体呈现单峰特征,受隆升冷却作用控制明显。通过对同组年龄(x2检验值>5%)和混合年龄(x2检验值<5%)进行分析,所测年龄位于123Ma和19Ma之间,可以将年龄分为5组:123.0Ma,107Ma,86Ma,52Ma,19Ma。裂变径迹热历史可以分为4个时期:缓慢冷却期,从150~90Ma;快速冷却期,从90Ma至65~58Ma;缓慢冷却期,从65~58Ma至18~12Ma;快速降温期,从18~12Ma至今。自中侏罗世以来,江南隆起带受控于太平洋板块构造,太平洋板块在不同时期有着不同的活动,其运移方向和活动强度直接控制着中国东部的构造演化。研究地区所测裂变径迹年龄划分时代与太平洋形成后不同产状洋岛链出现的时代吻合,热历史模拟结果和太平洋板块不同期次活动相关。通过热历史模拟和构造分析,可推测热历史不同阶段的形成是不同时期太平洋板块运动的结果,样品混合年龄亦证明了构造活动的多期次性。可以推断贵池地区自白垩纪以来的构造运动与太平洋构造带活动密切相关,其多期构造演化是对太平洋板块活动的响应。  相似文献   

15.
The paper reports results of the analysis of the spatial distribution of modern (younger than 2 Ma) volcanism in the Earth’s northern hemisphere and relations between this volcanism and the evolution of the North Pangaea modern supercontinent and with the spatial distribution of hotspots of the Earth’s mantle. Products of modern volcanism occur in the Earth’s northern hemisphere in Eurasia, North America, Greenland, in the Atlantic Ocean, Arctic, Africa, and the Pacific Ocean. As anywhere worldwide, volcanism in the northern hemisphere of the Earth occurs as (a) volcanism of mid-oceanic ridges (MOR), (b) subduction-related volcanism in island arcs and active continental margins (IA and ACM), (c) volcanism in continental collision (CC) zones, and (d) within-plate (WP) volcanism, which is related to mantle hotspots, continental rifts, and intercontinental belts. These types of volcanic areas are fairly often neighboring, and then mixed volcanic areas occur with the persistent participation of WP volcanism. Correspondingly, modern volcanism in the Earth’s northern hemisphere is of both oceanic and continental nature. The latter is obviously related to the evolution of the North Pangaea modern supercontinent, because it results from the Meso-Cenozoic evolution of Wegener’s Late Paleozoic Pangaea. North Pangaea in the Cenozoic comprises Eurasia, North and South America, India, and Africa and has, similar to other supercontinents, large sizes and a predominantly continental crust. The geodynamic setting and modern volcanism of North Pangaea are controlled by two differently acting processes: the subduction of lithospheric slabs from the Pacific Ocean, India, and the Arabia, a process leading to the consolidation of North Pangaea, and the spreading of oceanic plates on the side of the Atlantic Ocean, a process that “wedges” the supercontinent, modifies its morphology (compared to that of Wegener’s Pangaea), and results in the intervention of the Atlantic geodynamic regime into the Arctic. The long-lasting (for >200 Ma) preservation of tectonic stability and the supercontinental status of North Pangaea are controlled by subduction processes along its boundaries according to the predominant global compression environment. The long-lasting and stable subduction of lithospheric slabs beneath Eurasia and North America not only facilitated active IA + ACM volcanism but also resulted in the accumulation of cold lithospheric material in the deep mantle of the region. The latter replaced the hot mantle and forced this material toward the margins of the supercontinent; this material then ascended in the form of mantle plumes (which served as sources of WP basite magmas), which are diverging branches of global mantle convection, and ascending flows of subordinate convective systems at the convergent boundaries of plates. Subduction processes (compressional environments) likely suppressed the activity of mantle plumes, which acted in the northern polar region of the Earth (including the Siberian trap magmatism) starting at the latest Triassic until nowadays and periodically ascended to the Earth’s surface and gave rise to WP volcanism. Starting at the breakup time of Wegener’s Pangaea, which began with the opening of the central Atlantic and systematically propagated toward the Arctic, marine basins were formed in the place of the Arctic Ocean. However, the development of the oceanic crust (Eurasian basin) took place in the latter as late as the Cenozoic. Before the appearance of the Gakkel Ridge and, perhaps, also the oceanic portion of the Amerasian basin, this young ocean is thought to have been a typical basin developing in the central part of supercontinents. Wegener’s Pangaea broke up under the effect of mantle plumes that developed during their systematic propagation to the north and south of the Central Atlantic toward the North Pole. These mantle plumes were formed in relation with the development of global and local mantle convection systems, when hot deep mantle material was forced upward by cold subducted slabs, which descended down to the core-mantle boundary. The plume (WP) magmatism of Eurasia and North America was associated with surface collision- or subduction-related magmatism and, in the Atlantic and Arctic, also with surface spreading-related magmatism (tholeiite basalts).  相似文献   

16.
华北板块北缘活动带元古宙构造岩片   总被引:15,自引:3,他引:15  
新的研究证实 ,华北板块北缘残存一条元古宙构造岩片堆集带 ,包括古元古代、中元古代、新元古代等多期构造岩片。并相伴有 180 0Ma±、140 0Ma±、10 0 0Ma±、6 5 0Ma±的花岗岩类的侵入活动和构造变质成矿等热事件的年代记录 ,并在华北板块北部金镶边带中保存了相一致的信息 ,揭示了它们是陆缘多期拼贴造山的产物。这为超大陆旋回 ,特别是元古宙两次超大陆的聚合与裂解及其构造演化过程的研究提供了良好的野外实验园地 ,并为元古宙、特别是古元古代大陆的增生及Rodinia超大陆在北半球的存在或构造响应提出新的课题。  相似文献   

17.
内蒙古四子王旗黑脑包岩体位于华北板块北缘早古生代增生造山带,主要由花岗闪长岩和花岗斑岩组成。对花岗闪长岩进行La-ICP-MS锆石U-Pb定年,获得四子王旗黑脑包侵入岩体的2个侵位年龄为407.4±4.7 Ma和268.0±2.7 Ma,分别代表洋陆俯冲事件以及陆陆碰撞事件年龄。岩石地球化学数据显示,四子王旗黑脑包岩体属钙碱性系列,逐步向低钾拉斑系列靠近,并且亏损高场强元素。同位素地质年龄及地球化学数据表明,样品具有同碰撞花岗岩特征。结合区域大地构造背景认为,四子王旗黑脑包地区主要构造背景为西伯利亚板块与华北板块之间俯冲、碰撞和对接过程,属古亚洲洋构造域,而后期的构造演化还有待进一步研究。  相似文献   

18.
The Paleo-Pacific Ocean was originated from the Panthalassa, which was a vast global ocean surrounding the Pangea Supercontinent. With the breakup of the Pangea and the closure of the Paleo-Tethyan Ocean, the Paleo-Pacific, Atlantic, Arctic and Indian Oceanic plates were in turn formed. About 190 Ma, the Pacific Plate was initially generated at the junction of the oceanic rift among the Izanagi, Karallon and Pheonix plates. Although most geologists considered a coherent genetic relationship between Meso-Cenozoic tectonic evolution of NE Asian continental margin and subduction of the Pacific Plate, there still exist some key problems. The main issues include; ( I ) the formation, motion trait and evolution paths of the Pacific Plate, especially the Izanagi Plate which subducted beneath the NE Asian continental margin at least since early Jurassic; ( 2) the beginning time of the Pacific Plate subduction; (3) the identification of subduction-related magmatisni; and(4) physical conditions of subduction processes. Based on the recent research progress of the above issues, this paper synthesizes that the subduction of the Paleo-Pacific Plate( or Izanagi Plate) beneath the NE Asian continent started in the early Jurassic. The subduction zone was gradually migrated eastward and constituted anarchipelagic oceanic framework with the involvement of old microblocks or foreign massifs.  相似文献   

19.
Svalbard is located in the north-west corner of the Barents Sea shelf and the Eurasian Plate, in a key area for interpreting Caledonian and older orogens in the Arctic region. Recent U–Pb dating in the Nordaustlandet Terrane of eastern Svalbard shows this terrane to consist of a Grenville-age basement, overlain by Neoproterozoic to early Palaeozoic platformal sediments, and intruded by Caledonian anatectic granites. Deformation, metamorphism and crustal anatectic magmatism occurred both during the Grenvillian (960–940 Ma) and Caledonian (450–410 Ma) orogenies. This evolution shows great similarities with that of eastern Greenland. In the classical model, eastern Svalbard is placed outboard of central east Greenland in pre-Caledonian time. Alternatively, it may have been located north-east of Greenland and transferred west and rotated anticlockwise during Caledonian continent–continent collision. In the Neoproterozoic, easternmost Svalbard may have been part of a wider area of Grenville-age crust, now fragmented and dispersed around the Arctic.  相似文献   

20.
We present a new three-dimensional model of P-velocity anomalies in the upper mantle beneath the Circum-Arctic region based on tomographic inversion of global data from the catalogues of the International Seismological Center (ISC, 2007). We used travel times of seismic waves from events located in the study area which were recorded by the worldwide network, as well as data from remote events registered by stations in the study region. The obtained mantle seismic anomalies clearly correlate with the main lithosphere structures in the Circum-Arctic region. High-velocity anomalies down to 250–300 km depth correspond to Precambrian thick lithosphere plates, such as the East European Platform with the adjacent shelf areas, Siberian Plate, Canadian Shield, and Greenland. It should be noted that lithosphere beneath the central part of Greenland appears to be strongly thinned, which can be explained by the effect of the Iceland plume which passed under Greenland 50–60 million years ago. Beneath Chukotka, Yakutia, and Alaska we observe low-velocity anomalies which represent weak and relatively thin actively deformed lithosphere. Some of these low-velocity areas coincide with manifestations of Cenozoic volcanism. A high-velocity anomaly at 500–700 km depth beneath Chukotka may be a relic of the subduction zone which occurred here about 100 million years ago. In the oceanic areas, the tomography results are strongly inhomogeneous. Beneath the North Atlantic, we observe very strong low-velocity anomalies which indicate an important role of the Iceland plume and active rifting in the opening of the oceanic basin. On the contrary, beneath the central part of the Arctic Ocean, no significant anomalies are observed, which implies a passive character of rifting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号