首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The masses of 27 asteroids are found from optical and radar observations of perturbed asteroids (test particles). The masses of 18 objects have been previously determined by other authors in the construction of ephemerides EPM2011, DE423, and INPOP10a. Their values are based on observations of the delay time of radio signals from spacecraft. Our values have smaller errors for most of the asteroids. Comparing our results with the latest determinations based only on optical observations of asteroids also shows their accuracy.  相似文献   

2.
The ESA astrometric mission Gaia, due for a launch in late 2011, will observe a huge number of asteroids (∼350,000 brighter than V<20) with an unprecedented positional precision (at the sub-milliarcsecond level). This precision will play an important role for the mass determination of about hundred minor planets with a relative precision better than 50%. Presently, due primarily to their perturbations on Mars, the uncertainty in the masses of the largest asteroids is the limiting factor in the accuracy of the solar system ephemerides. Besides, such high precision astrometry will enable to derive direct measurements of the masses of the largest asteroids which are of utmost significance for the knowledge of their physical properties. The method for computing the masses is based on the analysis of orbital perturbations during close encounters between massive asteroids (perturbers) and several smaller minor planets (targets). From given criteria of close approaches selection, we give the list of asteroids for which the mass can be determined, and the expected precision of these masses at mission completion. We next study the possible contribution of the ground-based observations for the mass determination in some special observation cases of close approaches.  相似文献   

3.
Masses of 19 asteroids have been determined from the analysis of their gravitational effect on the motion of perturbed bodies. The following asteroids were selected as perturbed bodies: (1) those which had single close encounters with the perturbing asteroid; (2) those whose mean motion was in a 1 : 1 commensurability with that of the perturber and which had close or moderate recurrent encounters with the perturber. The perturber mass was determined from observations of several tens of perturbed asteroids that were selected from these two groups. The selection criterion was the error of the mass determined from observations of only one asteroid. Positional observations of the asteroids on the interval 1900–2002 were used. The masses were determined with errors by an order-half an order of magnitude smaller than the masses found. The results are compared with those of other authors.  相似文献   

4.
We describe a new approach to estimate asteroid masses from planetary range measurements. The approach significantly simplifies the process of parameter estimation and allows an effective control of systematic errors introduced by the omission of asteroids from the dynamical model. All asteroid masses are adjusted individually thus avoiding the usual distinction between masses considered individually and masses based on densities within the C, S and M taxonomic classes. Regularization is achieved by accounting, on each mass, for a prior uncertainty determined from available estimations of asteroid diameters and densities.The new approach is used to fit the asteroid model of the JPL planetary ephemeris to Mars range data. The adjusted planetary solutions exhibit similar extrapolation capacity as previous releases of the JPL ephemeris. Up to 27 asteroid masses are determined to better than 35%. The masses agree well with estimates obtained independently by other authors. The determined masses are also robust with respect to cross-validation on a dataset with a shorter time-span and with respect to a different selection of asteroids in the model.  相似文献   

5.
The dependence of the cumulative number of numbered asteroids (up to 3720) on their absolute magnitude is investigated. The differential mass index k is derived from these relations for fainter asteroids. A steeper slope (2.2 < k < 2.4) is found in the four most populous asteroid familes (Flora, Koronis, Eos and Themis) and a flatter slope (1.3 < k < 1.6) for non-family asteroids. This indicates that there are two different asteroid populations in the asteorid belt. Total masses of the asteroid families may be greater than it is commonly accepted.  相似文献   

6.
Hidden Mass in the Asteroid Belt   总被引:1,自引:0,他引:1  
The total mass of the asteroid belt is estimated from an analysis of the motions of the major planets by processing high precision measurements of ranging to the landers Viking-1, Viking-2, and Pathfinder (1976-1997). Modeling of the perturbing accelerations of the major planets accounts for individual contributions of 300 minor planets; the total contribution of all remaining small asteroids is modeled as an acceleration caused by a solid ring in the ecliptic plane. Mass Mring of the ring and its radius R are considered as solve-for parameters. Masses of the 300 perturbing asteroids have been derived from their published radii based mainly on measured fluxes of radiation, making use of the corresponding densities. This set of asteroids is grouped into three classes in accordance with physical properties and then corrections to the mean density for each class are estimated in the process of treating the observations. In this way an improved system of masses of the perturbing asteroids has been derived.The estimate Mring≈(5±1)×10−10M is obtained (M is the solar mass) whose value is about one mass of Ceres. For the mean radius of the ring we have R≈2.80 AU with 3% uncertainty. Then the total mass Mbelt of the main asteroid belt (including the 300 asteroids mentioned above) may be derived: Mbelt≈(18±2)×10−10M. The value Mbelt includes masses of the asteroids which are already discovered, and the total mass of a large number of small asteroids—most of which cannot be observed from the Earth. The second component Mring is the hidden mass in the asteroid belt as evaluated from its dynamical impact onto the motion of the major planets.Two parameters of a theoretical distribution of the number of asteroids over their masses are evaluated by fitting to the improved set of masses of the 300 asteroids (assuming that there is no observational selection effect in this set). This distribution is extrapolated to the whole interval of asteroid masses and as a result the independent estimate Mbelt≈18×10−10M is obtained which is in excellent agreement with the dynamical finding given above.These results make it possible to predict the total number of minor planets in any unit interval of absolute magnitude H. Such predictions are compared with the observed distribution; the comparison shows that at present only about 10% of the asteroids with absolute magnitude H<14 have been discovered (according to the derived distribution, about 130,000 such asteroids are expected to exist).  相似文献   

7.
Masses of asteroids are topical for research in ephemerides computations and density evaluations. Details of the dynamical method are given for asteroid mass determinations. Preliminary masses of 13 asteroids, obtained with relative errors less than 50%, are presented from non-weighted least squares. Accuracy improvement of mass values for dynamical computations is evident using contemporary observations of 1999-2006. Statistics of the fitting ephemerides to the observations is also discussed.  相似文献   

8.
A scientific collaboration between TÜB?TAK National Observatory (Turkey), Kazan State University (Russia) and Nikolaev Astronomical Observatory (Ukraine) involves observations of minor planets and near-Earth asteroids (NEAs) with the 1.5 m Russian-Turkish telescope (RTT150). Regular observations of selected asteroids in the range of 11-18 magnitudes began in 2004 with the view of determining masses of selected asteroids, improving the orbits of the NEAs, and studying physical characteristics of selected asteroids from photometric observations. More than 3000 positions of 53 selected asteroids and 11 NEAs have been obtained with an internal error in the range of 30-300 mas for a single determination. Photometric reductions of more than 4000 CCD frames are in progress. Masses of 21 asteroids were estimated through dynamical method using the ground-based optical observations, mainly from the RTT150 and Minor Planet Center. A comparison of the observational results from the RTT150 in 2004-2005 with observations of the same objects at other observatories allows us to conclude that RTT150 can be used for ground-based support in astrometry for the space mission GAIA.  相似文献   

9.
The level of precision of modern numerical ephemeris of the Solar System necessitates taking into account the gravitational influence of the largest asteroids on the terrestrial planets. This can be done in a straightforward manner when assuming that the mass of the asteroid is well known. Nevertheless, this is rarely the case, even for the largest asteroids. In this paper, we use recent determinations of the masses of Ceres, Pallas, and Vesta to both qualitatively and quantitatively determine the action of these asteroids on the orbital parameters of the Earth and Mars. This is done by the numerical integration by comparing the orbital motions of the perturbed planet when adding or not the perturbing asteroid to the classical 9 bodies problem (the Sun + the eight planets). Some preliminary results are discussed. Published in Russian in Astronomicheskii Vestnik, 2009, Vol. 43, No. 1, pp. 83–86. The text was submitted by the autors in English.  相似文献   

10.
The general approach to studying the dynamics of moons of planets and asteroids consists in developing more and more accurate models of motion based on observational data. Not only the necessary ephemerides, but also some physical parameters of planets and moons are obtained this way. It is demonstrated in the present study that progress in this field is driven not only by the increase in accuracy of observations. The accuracy of ephemerides may be increased by expanding the observation time interval. Several problems arise on the way toward this goal. Some of them become apparent only when the procedure of observational data processing and use is examined in detail. The method used to derive astrometric data by processing the results of photometric observations of mutual occultations and eclipses of planetary moons is explained below. The primary contribution to the error of astrometric results is produced by the unaccounted noise level in photometric readings and the inaccuracy of received values of the albedo of moons. It is demonstrated that the current methods do not allow one to eliminate the noise completely. Extensive additional photometric measurements should be performed at different angles of rotation of moons and in different spectral bands of the visible wavelength range in order to obtain correct values of the albedo of moons. Many new distant moons of the major planets have been discovered in the early 21st century. However, the observations of these moons are scarce and were performed over short time intervals; as a result, some of the moons were lost. The necessity of further observations of these Solar System bodies is pointed out in the present study. Insufficient knowledge of asteroid masses is an obstacle to improving the accuracy of the ephemerides of Mars. The basic method for determining the masses of large asteroids consists in analyzing their influence on the motion of Mars, the Earth, and spacecraft. The masses of more than 100 large asteroids were determined this way. One of the principal techniques for Earth-based measurement of the masses of asteroids involves astrometric observations of binary asteroids. The determination of relative coordinates is made rather difficult by the apparent proximity of components. The success of these efforts depends on the availability of instrumentation and the expertise of observers skilled in adaptive optics and speckle interferometry. Collaboration between different research teams and observers is absolutely necessary.  相似文献   

11.
《Planetary and Space Science》1999,47(6-7):873-881
The ROSETTA spacecraft will fly-by a few asteroids during its course to the final cometary target. The candidate asteroids presently are 3840 Ministrobel (S-type), 2703 Siwa and 140 (C-type).With the limited data presently available on these bodies we calculated some approximate quantities which may be useful to select the fly-by trajectories of the ROSETTA probe. In particular we derived the zones in which particles could stably orbit by analyzing Hills problem of three hierarchical masses—the sun, the asteroid and the orbiting particle. Then, following the approach of Hamilton and Burns, the effects of solar radiation pressure and of the ellipticity of the orbits were also taken into account. In this way for each asteroid we could calculate not only a classical quantity like the radius of the Hill sphere, but also the critical starting orbital distance (as a function of orbital inclination) within which most orbits remain bound to the asteroid, and outside which most escape as a consequence of perturbations. Moreover we determined the orbital stability zone, defined as the union of all the numerically integrated orbits showing long-term stability, for each of the target asteroids. The particular shape of these zones would suggest to have the spacecrafts close approach out of the orbital plane of the asteroids.To further investigate this problem and, in particular, to take into account the irregular shape of the asteroids, we developed a model using a polyhedral representation of the central rotating body, following a theory developed by Werner and Scheeres. This model is described here and the first orbital integration results are presented. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

12.
Akira Fujiwara 《Icarus》1982,52(3):434-443
The fragmentation of the parent asteroids of the Themis, Eos, and Koronis families is investigated by considering mutual gravitational effects among the fragmented bodies. The masses of the parent asteroids and the kinetic and gravitational energies of the fragmented bodies are estimated. Comparison of these results and data from the laboratory impact experiments leads to the conclusion that the parent asteroids of the three families were completely fragmented at Ep/M of 108 erg/g or more (Ep, impact energy; M, parent mass). However, since most of the fragments had low relative velocities many reaccumulated through mutual gravitation. The larger members in these families should have the rubble pile structures and hydrostatic equilibrium figures.  相似文献   

13.
Abstract— Four asteroidal bodies (the Martian satellites Phobos and Deimos and the main-belt asteroids 243 Ida and 253 Mathilde) have now been the subjects of sufficiently close encounters by spacecraft that the masses and sizes and, hence, the densities of these bodies can be estimated to ~10%. All of these asteroids are significantly less dense than most members of the classes of meteorites identified as being compositionally most nearly similar to them on the basis of spectral characteristics. We show that two processes can act, independently or in concert, during the evolutionary histories of asteroids to produce a low bulk density. One of these processes is the result of one or more impact events and can affect any asteroid type, whereas the other can occur only for certain types of small asteroids that have undergone aqueous alteration.  相似文献   

14.
The principal dynamical properties of the planetary and satellite systems listed in Section 2 require these bodies to have condensed in highly-flattened nebulae which provided the dissipation forces that produced the common directions of orbital motion, and the lowe andi values. Minimum masses of these nebulae can be estimated on the assumption that the initial solar abundances apply, starting from the empirical data on present planetary and satellite compositions and masses. The asteroids and comets are assumed to be direct condensations and accretion products in their respective zones (2–4 AU and 20–50 AU), without the benefit of gravitational instability in the solar nebula, owing to the comparatively low density there; with gravitational instability accelerating and ultimately dominating the accretion of the planets and major satellites, in zones approaching and exceeding the local Roche density. Only in the case of Jupiter, gravitational instability appears to have dominated from the outset; the other planets are regarded as hybrid structures, having started from limited accretions. In Section 3 the empirical information on protostars is reviewed. ‘Globules’ are described, found to have the typical range of stellar masses and with gaseous compositions now well known thanks largely to radio astronomy. They contain also particulate matter identified as silicates, ice, and probably graphite and other carbon compounds. The measured internal velocities would predict a spread of total angular momenta compatible with the known distribution of semi-major axes in double stars. The planetary system is regarded as an ‘unsuccessful’ binary star, in which the secondary mass formed a nebula instead of a single stellar companion, with 1–2% of the solar mass. This mass fraction gives a basis for an estimate of thefrequency of planetary systems. The later phases of the globules are not well known empirically for the smaller masses of solar type; while available theoretical predictions are mostly made for non-rotating pre-stellar masses. Section 5 reviews current knowledge of the degree of stability of the planetary orbits over the past 4.5×109 yr, preparatory to estimates of their original locations and modes of origin. The results of the Brouwer and Van Woerkom theory and of recent numerical integrations by Cohenet al. indicate no drastic changes in Δa/a over the entire post-formation history of the planets. Unpublished numerical integrations by Dr P. E. Nacozy show the remarkable stability of the Jupiter-Saturn system as long as the planetary masses are well below 29 times their actual values. Numerical values of Δa/a are collected for all planets. The near resonances found for both pairs of planets and of satellites are briefly reviewed. Section 6 cites the statistics on the frequency and masses of asteroids and information on the Kirkwood gaps, both empirical and theoretical. An analogous discussion is made for the Rings of Saturn, including its extension observed in 1966 to the fourth Saturn satellite, Dione. The reality, or lack of it, of the divisions in the Rings are considered. The numbers of Trojan asteroids are reviewed, as is the curious, yet unexplained, bimodal distribution of their orbital inclinations. Important information comes from the periods of rotation of the asteroids and the orientation of their rotational axes. The major Hirayama families are considered as remnants of original asteroid clusterings whose membership has suffered decreases through planetary perturbations. Other families with fewer large members may be due to collisions. The three main classes of meteorites, irons, stones, and carbonaceous chondrites all appear to be of asteroidal origin and they yield the most direct evidence on the early thermal history of the solar system. While opinion on this subject is still divided, the author sees in the evidence definite confirmation of thecold origin of the planetary system, followed by ahot phase due to the evolving sun that caused the dissolution of the solar nebula. This massive outward ejection, that included the smaller planetesimals, appears to have caused the surface melting of the asteroids by intense impact, with the splashing responsible for the formation of the chondrules. The deep interiors of the asteroids are presumably similar to the C1 meteorites which have recently been found to be more numerous in space by two orders of magnitude than previously supposed.  相似文献   

15.
J.G. Williams 《Icarus》1984,57(1):1-13
The orbit of Mars is perturbed more than 5 m, a value compatible with the accuracy of the Viking lander ranging data, by about three dozen asteroids. In addition to larger asteroids throughout the belt, significant perturbations of long period are generated by smaller objects near commensurabilities with Mars. The largest periodic terms induced by 1 Ceres and 2 Pallas have amplitudes of 0.8 and 0.2 km, respectively, both with 10-year periods. Due to a near commensurability, 4 Vesta causes a 5-km, 52-year term. While the Viking ranges will yield significant mass determinations for the largest three asteroids, and some of the smaller bodies should be detectable, it will be difficult to seperate the smaller bodies with useful accuracies. Accurate discrimination must await range data from future missions to Mars or other bodies in the neighborhood of the asteroid belt. The Viking ranges can also yield improved masses for the outer planets (except Pluto), an application which is being exploited by groups analyzing these data. Uncertainties in the asteroid masses limit the ultimate accuracy of the Viking determinations of both the long time scale motion of the system the inner four planets with respect to an inertial frame and the rate of change of the gravitational constant.  相似文献   

16.
An obstacle to the asteroid mass determination lies in the difficulty in isolating the gravitational perturbation exerted by a single asteroid on the planets, being strongly correlated and mixed up with those of many other asteroids. This hindrance may be avoided by the method of analysis presented here: an asteroid mass is estimated in correspondence with its close encounters with Mars where the acceleration it induces on the planet can be sufficiently disentangled from those generated by the remaining asteroid masses to calculate. We test this technique in the analysis of range observations to Mars Global Surveyor and Mars Express performed from 1999 to 2007. For this purpose, we adopt the dynamical model of the planetary ephemeris INPOP06 (Fienga et al., 2008), which includes the gravitational influences of the 300 most perturbing asteroids of the Martian orbit. We obtain the solutions of 10 asteroid masses that have the largest effects on this orbit over the period examined: they are generally in good agreement with determinations recently published.  相似文献   

17.
We apply the technique of astrometric mass determination to measure the masses of 21 main-belt asteroids; the masses of 9 Metis (1.03 ± 0.24 × 10-11 M), 17 Thetis (6.17 ± 0.64 × 10-13 M), 19 Fortuna (5.41 ± 0.76 × 10-12 M), and 189 Phthia (1.87 ± 0.64 × 10-14 M) appear to be new. The resulting bulk porosities of 11 Parthenope (12±4%) and 16 Psyche (46±16%) are smaller than previously-reported values. Empirical expressions modeling bulk density as a function of mean radius are presented for the C and S taxonomic classes. To accurately model the forces on these asteroids during the mass determination process, we created an integrated ephemeris of the 300 large asteroids used in preparing the DE-405 planetary ephemeris; this new BC-405 integrated asteroid ephemeris also appears useful in other high-accuracy applications.  相似文献   

18.
More than half of the C-type asteroids, the dominant type of asteroid in the outer half of the main-belt, show evidence of hydration in their reflectance spectra. In order to understand the collisional evolution of asteroids and the production of interplanetary dust and to model the infrared signature of small particles in the Solar System it is important to characterize the dust production from primary impact disruption events, and compare the disruption of hydrous and anhydrous targets. We performed a hypervelocity impact disruption experiment on an ∼30 g target of the Murchison CM2 hydrated carbonaceous chondrite meteorite, and compared the results with our previous disruption experiments on anhydrous meteorites including Allende, a CV3 carbonaceous chondrite, and nine ordinary chondrites. Murchison is significantly more friable than the ordinary chondrites or Allende. Nonetheless, on a plot of mass of the largest fragment versus specific impact energy, the Murchison disruption plots within the field of the anhydrous meteorites points, suggesting that Murchison is at least as resistant to impact disruption as the anhydrous meteorites, which require about twice the energy for disruption as terrestrial anhydrous basalt targets. We determined the mass-frequency distribution of the debris from the Murchison disruption over a nine order-of-magnitude mass range, from ∼10−9 g to the mass of the largest fragment produced in the disruption. The cumulative mass-frequency distribution from the Murchison disruption is fit by three power-law segments. For masses >10−2 g the slope is only slightly steeper than that of the corresponding segment from the disruption of most anhydrous meteorites. Over the range from ∼10−6 to 10−2 g the slope is significantly steeper than that for the anhydrous meteorites. For masses <10−6 g the slopes of both the Murchison and the anhydrous meteorites are almost flat. Thus the Murchison disruption significantly over-produced small fragments (10−6-10−3 g) compared to anhydrous meteorite targets. If the Murchison results are representative of hydrous asteroids, the hydrous asteroids may dominate over anhydrous asteroids in the production of interplanetary dust >100 μm in size, the size of micrometeorites recovered from the polar ices, while both types of asteroids might produce comparable amounts of ∼10 μm interplanetary dust. This would explain the puzzle that polar micrometeorites (>100 μm in size) are similar to hydrous meteorites, while the majority of the ∼10 μm interplanetary dust particles are anhydrous.  相似文献   

19.
P. Descamps 《Icarus》2010,207(2):758-768
The present paper deals with the application of the classical theory of equilibrium figures of two rotating liquid masses to the case where bodies exhibit a radially stratified internal density distribution so that they can be considered as inhomogeneous bodies. The derived ellipsoidal shape solutions are applied to five real systems of equal-sized synchronous asteroids. Furthermore, internal inhomogeneity puts strong constraints on the surface grain density. A satisfactory model fit is achieved with internal densities of asteroids steadily increasing outwards. In particular, from such an approach we derived grain densities of the considered systems in agreement with their mineralogical composition inferred from reflectance spectroscopy. According to this new approach, 4492 Debussy, presently of unknown spectral type, is predicted to appear as a C-type object with a grain density on the order of 2 g/cm3.  相似文献   

20.
The Asteroid Photometric Catalogue was used to redetermine the rotation periods of all asteroids with data in the catalogue. The quality of the period determinations was divided into five groups. The total number of asteroids studied were 710 and 225 of these were considered not to be observed enough to yield any rotation period (code 0). For 121 asteroids the uncertainty was several hours (code d) and for 180 the uncertainty was less than one hour (code c). Code a was used for asteroids with reliable pole determinations (47 asteroids) and code b was used for asteroids with very reliable synodic rotation periods (137 asteroids). Some statistic properties of the rotation periods of asteroids are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号