首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

2.
We present new results on the structure resulting from Palaeoproterozoic terrane accretion and later formation of one of the aulacogens in the East European Platform. Seismic data has been acquired along the 530-km-long, N–S-striking EUROBRIDGE'97 traverse across Sarmatia, a major crustal segment of the East European Craton. The profile extends across the Ukrainian Shield from the Devonian Pripyat Trough, across the Palaeoproterozoic Volyn Block and the Korosten Pluton, into the Archaean Podolian Block. Seismic waves from chemical explosions at 18 shot points at approximately 30-km intervals were recorded in two deployments by 120 mobile three-component seismographs at 3–4 km nominal station spacing. The data has been interpreted by use of two-dimensional tomographic travel time inversion and ray trace modelling. The high data quality allows modelling of the P- and S-wave velocity structure along the profile. There are pronounced differences in seismic velocity structure of the crust and uppermost mantle between the three main tectonic provinces traversed by the profile: (i) the Pripyat Trough is a ca. 4-km-deep sedimentary basin, fully located in the Osnitsk–Mikashevichi Igneous Belt in the northern part of the profile. The velocity structure is typical for a Precambrian craton, but is underlain by a ca. 5-km-thick lowest crustal layer of high velocity. The development of the Pripyat Trough appears to have only affected the upper crust without noticeable thinning of the whole crust; this may be explained by a rheologically strong lithosphere at the time of formation of the trough. (ii) Very high seismic velocity and Vp/Vs ratio characterise the Volyn Block and Korosten Pluton to a depth of 15 km and probably also the lowest crust. The values are consistent with an intrusive body of mafic composition in the upper crust that formed from bimodal melts derived from the mantle and the lower crust. (iii) The Podolian Block is close to a typical cratonic velocity structure, although it is characterised by relatively low seismic velocity and Vp/Vs ratio. A pronounced SW-dipping mantle reflector from Moho to at least 70 km depth may represent the Proterozoic suture between Sarmatia and Volgo–Uralia, the structure from terrane accretion, or a later shear zone in the upper mantle. The sub-Moho P-wave seismic velocity is high everywhere along the profile, with the exception of the area above the dipping reflector. This velocity change further supports a plate tectonic origin of the dipping mantle reflector. The profile demonstrates that structure from Palaeoproterozoic plate tectonic processes are still identifiable in the lithosphere, even where younger metamorphic equilibration of the crust has taken place.  相似文献   

3.
One in-line wide-angle seismic profile was conducted in 1990 in the course of the Southeastern China Continental Dynamics project aimed at the study of the contact between the Cathaysia block and the Yangtze block. This 380-km-long profile extended in NW–SE direction from Tunxi, Anhui Province, to Wenzhou, Zhejiang Province. Five in-line shots were fired and recorded at seismic stations with spacing of about 3 km along the recording line. We have used two-dimensional ray tracing to model P- and S-wave arrivals and provide constraints on the velocity structure of the upper crust, middle crust, lower crust, Moho discontinuity, and the top part of the lithospheric mantle. P-wave velocity, S-wave velocity and VP/VS ratio are mapped. The crust is 36-km thick on average, albeit it gradually thins from the northwest end to the southeast end (offshore) of the profile. The average crustal velocity is 6.26 km/s for P-waves but 3.6 km/s for S-waves. A relatively narrow low-velocity layer of about 4 km of thickness, with P- and S-wave velocities of 6.2 km/s and 3.5 km/s, respectively, marks the bottom of the middle crust at a depth of 23-km northwest and 17-km southeast. At the crust–mantle transition, the P- and S-wave velocity change quickly from 7.4 to 7.8 km/s (northwest) and 8.0 to 8.2 km/s (southeast) and from 3.9 to 4.2 km/s (northwest) and 3.9 to 4.5 km/s (southeast), respectively. This result implies a lateral contrast in the upper mantle velocity along the 140 km sampled by the profile approximately. The average VP/VS ratio ranges from 1.68–1.8 for the upper crust to 1.75 for the middle and 1.75–1.85 for lower crust. With the interpretation of the wide-angle seismic data, Jiangshan–Shaoxin fault is considered as the boundary between the Yangtze and the Cathaysia block.  相似文献   

4.
Christoffer Nielsen  H. Thybo   《Tectonophysics》2009,470(3-4):298-318
The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities of the crust and uppermost mantle. Previous interpretation and velocity modelling of P-wave arrivals in the BEST data has revealed a multi layered crust with smooth variation in Moho depth between the Siberian Platform (41 km) and the Sayan-Baikal fold belt (46 km). The lower crust exhibits normal seismic velocities around the rift structure, except for beneath the rift axis where a distinct 50–80-km wide high-velocity anomaly (7.4–7.6 ± 0.2 km/s) is observed. Reverberant or “ringing” reflections with strong amplitude and low frequency originate from this zone, whereas the lower crust is non-reflective outside the rift zone. Synthetic full-waveform reflectivity modelling of the high-velocity anomaly suggests the presence of a layered sequence with a typical layer thickness of 300–500 m coinciding with the velocity anomaly. The P-wave velocity of the individual layers is modelled to range between 7.4 km/s and 7.9 km/s. We interpret this feature as resulting from mafic to ultra-mafic intrusions in the form of sills. Petrological interpretation of the velocity values suggests that the intrusions are sorted by fractional crystallization into plagioclase-rich low-velocity layers and pyroxene- and olivine-rich high-velocity layers. The mafic intrusions were probably intruded into the ductile lower crust during the main rift phase in the Late Pliocene. As such, the intrusive material has thickened the lower crust during rifting, which may explain the lack of Moho uplift across southern BRZ.  相似文献   

5.
The Borborema Province of northeastern Brazil is a major Proterozoic crustal province that, until now, has never been explored using deep crustal seismic methods. Here are reported the first results obtained from a high-quality seismic refraction/wide-angle reflection profile that has defined the internal seismic velocity structure and thickness of the crust in this region. Almost 400 recording stations were deployed in the Deep Seismic Refraction (DSR) experiment through an NW–SE ca. 900 km linear array and 19 shots were exploded at every 50 km along the line. Data from the 10 southeastern most shots of the seismic profile were processed in this work. The main features and geological structures crossed by the studied portion of the profile belong to the so-called Central Sub-province of the Borborema tectonic province. The crustal model obtained is compatible with a typical structure of extended crust. The model was essentially divided into three layers: upper crust, lower crust, and a half-space represented by the shallower portion of the mantle. The Moho is an irregular interface with depth ranging between 31.7 and 34.5 km, and beneath the Central Sub-province it varies from 31.5 to 33 km depth, where its limits are related to major crustal discontinuities. The distribution of velocities within the crust is heterogeneous, varying vertically from 5.7 to 6.3 km/s in the upper crust and from 6.45 to 6.9 km/s in the lower crust. From the average crustal velocity distribution it is evident that the Central Sub-province has seismic characteristics different from neighboring domains. The crust is relatively thin and crustal thickness variations in the profile are subtle due to stretching that occurred in the Cretaceous, during the fragmentation of Pangaea, opening of the South Atlantic Ocean and separation of South America from Africa.  相似文献   

6.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   

7.
Crustal studies within the Japanese islands have provided important constraints on the physical properties and deformation styles of the island arc crust. The upper crust in the Japanese islands has a significant heterogeneity characterized by large velocity variation (5.5–6.1 km/s) and high seismic attenuation (Qp=100–400 for 5–15 Hz). The lateral velocity change sometimes occurs at major tectonic lines. In many cases of recent refraction/wide-angle reflection profiles, a “middle crust” with a velocity of 6.2–6.5 km/s is found in a depth range of 5–15 km. Most shallow microearthquakes are concentrated in the upper/middle crust. The velocity in the lower crust is estimated to be 6.6–7.0 km/s. The lower crust often involves a highly reflective zone with less seismicity, indicating its ductile rheology. The uppermost mantle is characterized by a low Pn velocity of 7.5–7.9 km/s. Several observations on PmP phase indicate that the Moho is not a sharp boundary with a distinct velocity contrast, but forms a transition zone from the upper mantle to the lower crust. Recent seismic reflection experiments revealed ongoing crustal deformations within the Japanese islands. A clear image of crustal delamination obtained for an arc–arc collision zone in central Hokkaido provides an important key for the evolution process from island arc to more felsic continental crust. In northern Honshu, a major fault system with listric geometry, which was formed by Miocene back arc spreading, was successfully mapped down to 12–15 km.  相似文献   

8.
The CELEBRATION 2000 together with the earlier POLONAISE'97 deep seismic sounding experiments was aimed at the recognition of crustal structure in the border zone between the Precambrian East European Craton (Baltica) and Palaeozoic Europe. The CEL02 profile of the CELEBRATION family is a 400-km long SW–NE transect, running in Poland from the Upper Silesia Block (USB), across the Małopolska Block (MB) and the Trans-European Suture Zone (TESZ) to the East European Craton (EEC). The structure along CEL02 was interpreted using both 2D tomography and forward ray-tracing techniques as well as 2D gravity modelling.The crustal thickness along CEL02 varies from 32–35 km in the USB to 45–47 km beneath the TESZ and the EEC. The USB is a clearly distinctive crustal block with the characteristic high velocity lower crust (7.1–7.2 km/s), interpreted as a fragment of Gondwana. The Kraków–Lubliniec Fault is a terrane boundary produced by soft docking of the USB with the MB. The Małopolska crust fundamentally differs from the USB and has a strong connection with Baltica. It is a transitional, 150- to 200-km wide unit composed of the extended Baltican lower crust and the overlying low velocity (5.15–5.9 km/s) Neoproterozoic metasediments in the up to 18-km thick upper crust. The Łysogóry Unit has its crustal structure identical with that of Małopolska, thus it is connected with Baltica and cannot be interpreted as a Gondwana-derived terrane. Higher velocity and density bodies found below the Mazovia–Lublin Graben at a depth of 12 km and at the base of the lower crust, might be a result of mantle-derived mafic intrusions accompanying the extension of Baltica. By the preliminary 2D gravity modelling, we have reconfirmed the need for considering the increased TESZ mantle density in comparison to the EEC and USB mantle.  相似文献   

9.
The large-scale POLONAISE'97 seismic experiment investigated the velocity structure of the lithosphere in the Trans-European Suture Zone (TESZ) region between the Precambrian East European Craton (EEC) and Palaeozoic Platform (PP). In the area of the Polish Basin, the P-wave velocity is very low (Vp <6.1 km/s) down to depths of 15–20 km, and the consolidated basement (Vp5.7–5.8 km/s) is 5–12 km deep. The thickness of the crust is 30 km beneath the Palaeozoic Platform, 40–45 km beneath the TESZ, and 40–50 km beneath the EEC. The compressional wave velocity of the sub-Moho mantle is >8.25 km/s in the Palaeozoic Platform and 8.1 km/s in the Precambrian Platform. Good quality record sections were obtained to the longest offsets of about 600 km from the shot points, with clear first arrivals and later phases of waves reflected/refracted in the lower lithosphere. Two-dimensional interpretation of the reversed system of travel times constrains a series of reflectors in the depth range of 50–90 km. A seismic reflector appears as a general feature at around 10 km depth below Moho in the area, independent of the actual depth to the Moho and sub-Moho seismic velocity. “Ringing reflections” are explained by relatively small-scale heterogeneities beneath the depth interval from 90 to 110 km. Qualitative interpretation of the observed wave field shows a differentiation of the reflectivity in the lower lithosphere. The seismic reflectivity of the uppermost mantle is stronger beneath the Palaeozoic Platform and TESZ than the East European Platform. The deepest interpreted seismic reflector with zone of high reflectivity may mark a change in upper mantle structure from an upper zone characterised by seismic scatterers of small vertical dimension to a lower zone with vertically larger seismic scatterers, possible caused by inclusions of partial melt.  相似文献   

10.
Poisson's ratios of the upper and lower crust and the sub-Moho mantle beneath central Honshu, Japan, are investigated using three independent methods that are based on S to P ratios of apparent velocities, the Wadati diagrams and an inversion of P and S arrivals. Shallow earthquakes at distances of 200—500 km from the Nagoya University Telemeter Network are used for the apparent velocity ratio method. Crustal and subcrustal earth-quakes under the network are used for the other two methods. The network consists of wide-band seismometers with three components which are particularly suitable for detecting S waves. The three different methods give a consistent result for Poisson's ratio σ, that is, (1) σ = 0.23 ± 0.01 in the upper crust, (2) σ = 0.26−0.28 in both the lower crust and in the sub-Moho mantle. The result indicates a sharp contrast in σ between the upper and the lower crust rather than at the Moho. The low σ in the upper crust can only be explained by the presence of a substantial amount of free quartz, indicating granitic rocks. A higher σ in the lower crust suggests that this portion is presumably less saturated in silica and may be even undersaturated, pointing to intermediate to mafic rocks. The sub-Moho σ is almost equal to the σ averaged over the entire upper mantle that has been estimated from the Wadati diagrams of deep shocks beneath Japan but is higher than those calculated from Pn and Sn velocities in oceanic and stable continental regions.  相似文献   

11.
The VRANCEA99 seismic refraction experiment is part of an international and multidisciplinary project to study the intermediate depth earthquakes of the Eastern Carpathians in Romania. As part of the seismic experiment, a 300-km-long refraction profile was recorded between the cities of Bacau and Bucharest, traversing the Vrancea epicentral region in NNE–SSW direction.

The results deduced using forward and inverse ray trace modelling indicate a multi-layered crust. The sedimentary succession comprises two to four seismic layers of variable thickness and with velocities ranging from 2.0 to 5.8 km/s. The seismic basement coincides with a velocity step up to 5.9 km/s. Velocities in the upper crystalline crust are 5.96.2 km/s. An intra-crustal discontinuity at 18–31 km divides the crust into an upper and a lower layer. Velocities within the lower crust are 6.7–7.0 km/s. Strong wide-angle PmP reflections indicate the existence of a first-order Moho at a depth of 30 km near the southern end of the line and 41 km near the centre. Constraints on upper mantle seismic velocities (7.9 km/s) are provided by Pn arrival times from two shot points only. Within the upper mantle a low velocity zone is interpreted. Travel times of a PLP reflection define the bottom of this low velocity layer at a depth of 55 km. The velocity beneath this interface must be at least 8.5 km/s.

Geologic interpretation of the seismic data suggests that the Neogene tectonic convergence of the Eastern Carpathians resulted in thin-skinned shortening of the sedimentary cover and in thick-skinned shortening in the crystalline crust. On the autochthonous cover of the Moesian platform several blocks can be recognised which are characterised by different lithological compositions. This could indicate a pre-structuring of the platform at Mesozoic and/or Palaeozoic times with a probable active involvement of the Intramoesian and the CapidavaOvidiu faults. Especially the Intramoesian fault is clearly recognisable on the refraction line. No clear indications of the important Trotus fault in the north of the profile could be found. In the central part of the seismic line a thinned lower crust and the low velocity zone in the uppermost mantle point to the possibility of crustal delamination and partial melting in the upper mantle.  相似文献   


12.
The POLONAISE'97 (POlish Lithospheric ONset—An International Seismic Experiment, 1997) seismic experiment in Poland targeted the deep structure of the Trans-European Suture Zone (TESZ) and the complex series of upper crustal features around the Polish Basin. One of the seismic profiles was the 300-km-long profile P2 in northwestern Poland across the TESZ. Results of 2D modelling show that the crustal thickness varies considerably along the profile: 29 km below the Palaeozoic Platform; 35–47 km at the crustal keel at the Teisseyre–Tornquist Zone (TTZ), slightly displaced to the northeast of the geologic inversion zone; and 42 km below the Precambrian Craton. In the Polish Basin and further to the south, the depth down to the consolidated basement is 6–14 km, as characterised by a velocity of 5.8–5.9 km/s. The low basement velocities, less than 6.0 km/s, extend to a depth of 16–22 km. In the middle crust, with a thickness of ca. 4–14 km, the velocity changes from 6.2 km/s in the southwestern to 6.8 km/s in the northeastern parts of the profile. The lower crust also differs between the southwestern and northeastern parts of the profile: from 8 km thickness, with a velocity of 6.8–7.0 km/s at a depth of 22 km, to ca.12 km thickness with a velocity of 7.0–7.2 km/s at a depth of 30 km. In the lowermost crust, a body with a velocity of 7.20–7.25 km/s was found above Moho at a depth of 33–45 km in the central part of the profile. Sub-Moho velocities are 8.2–8.3 km/s beneath the Palaeozoic Platform and TTZ, and about 8.1 km/s beneath the Precambrian Platform. Seismic reflectors in the upper mantle were interpreted at 45-km depth beneath the Palaeozoic Platform and 55-km depth beneath the TTZ.

The Polish Basin is an up to 14-km-thick asymmetric graben feature. The basement beneath the Palaeozoic Platform in the southwest is similar to other areas that were subject to Caledonian deformation (Avalonia) such that the Variscan basement has only been imaged at a shallow depth along the profile. At northeastern end of the profile, the velocity structure is comparable to the crustal structure found in other portions of the East European Craton (EEC). The crustal keel may be related to the geologic inversion processes or to magmatic underplating during the Carboniferous–Permian extension and volcanic activity.  相似文献   


13.
Qunshu Tang  Ling Chen   《Tectonophysics》2008,455(1-4):43-52
We have used Rayleigh wave dispersion analysis and inversion to produce a high resolution S-wave velocity imaging profile of the crust and uppermost mantle structure beneath the northeastern boundary regions of the North China Craton (NCC). Using waveform data from 45 broadband NCISP stations, Rayleigh wave phase velocities were measured at periods from 10 to 48 s and utilized in subsequent inversions to solve for the S-wave velocity structure from 15 km down to 120 km depth. The inverted lower crust and uppermost mantle velocities, about 3.75 km/s and 4.3 km/s on average, are low compared with the global average. The Moho was constrained in the depth range of 30–40 km, indicating a typical crustal thickness along the profile. However, a thin lithosphere of no more than 100 km was imaged under a large part of the profile, decreasing to only ~ 60 km under the Inner Mongolian Axis (IMA) where an abnormally slow anomaly was observed below 60 km depth. The overall structural features of the study region resemble those of typical continental rift zones and are probably associated with the lithospheric reactivation and tectonic extension widespread in the eastern NCC during Mesozoic–Cenozoic time. Distinctly high velocities, up to ~ 4.6 km/s, were found immediately to the south of the IMA beneath the northern Yanshan Belt (YSB), extending down to > 100-km depth. The anomalous velocities are interpreted as the cratonic lithospheric lid of the region, which may have not been affected by the Mesozoic–Cenozoic deformation process as strongly as other regions in the eastern NCC. Based on our S-wave velocity structural image and other geophysical observations, we propose a possible lithosphere–asthenosphere interaction scenario at the northeastern boundary of the NCC. We speculate that significant undulations of the base of the lithosphere, which might have resulted from the uneven Mesozoic–Cenozoic lithospheric thinning, may induce mantle flows concentrating beneath the weak IMA zone. The relatively thick lithospheric lid in the northern YSB may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection systems at the present time.  相似文献   

14.
The large-scale CELEBRATION 2000 seismic experiment investigated the velocity structure of the crust and upper mantle between western portion of the East European Craton (EEC) and the eastern Alps. This area comprises: the Trans-European Suture Zone, the Carpathian Mountains, the Pannonian Basin and the Bohemian Massif. This experiment included 147 chemical shots recorded by 1230 seismic stations during two deployments. Good quality data along 16 main and a few additional profiles were recorded. One of them, profile CEL03, was located in southeastern Poland and was laid out as a prolongation of the TTZ profile performed in 1993. This paper focuses on the joint interpretation of seismic data along the NW–SE trending TTZ–CEL03 transect, located in the central portion of the Trans-European Suture Zone. First arrivals and later phases of waves reflected/refracted in the crust and upper mantle were interpreted using two-dimensional tomographic inversion and ray-tracing techniques. This modelling established a 2-D (quasi 3-D) P-wave velocity lithospheric model. Four crustal units were identified along the transect. From northwest to southeast, thickness of the crust varies from 35 km in the Pomeranian Unit (NW) to 40 km in the Kuiavian Unit, to 50 km in the Radom–Łysogóry Unit and again to 43 km in the Narol Unit (SE). The first two units are thought to be proximal terranes detached from the EEC farther to the southeast and re-accreted to the edge of the EEC during the Early Palaeozoic. The origin of the remaining two units is a matter of dispute: they are either portions of the EEC or other proximal terranes. In the area of the Polish Basin (first two units), the P-wave velocity is very low (Vp < 6.1 km/s) down to depths of 15–20 km indicating that a very thick sedimentary and possibly volcanic rock sequence, whose lower portion may be metamorphosed, is present. The velocity beneath the Moho was found to be rather high, being 8.25 km/s in the northwestern portion of the transect, 8.4 km/s in the central sector, and 8.1 km/s in the southeastern sector.  相似文献   

15.
During summer 1972 seismic studies were carried out along the Scandinavian “Blue Road” traverse between the Norwegian coast near the Arctic Circle and southern Finland. A set of several reversed and unreversed overlapping seismogram sections with a maximum length of about 600 km could be obtained, using eight shots at five different positions.Velocity models of the crust and upper mantle were computed, based on very clear arrivals of refracted P-waves. The crust—mantle boundary, which was mapped along the whole profile, shows only minor undulations with a mean depth of about 40 km. A root below the Caledonian mountain chain could not be found since recording distances were too short. A constant mantle velocity is derived, to depths of about 80 km, from parallel Pn-branches. Apart from the different geological structures near the surface, the overall distribution of seismic velocities appears to be very similar within the Caledonides and the Baltic Shield.  相似文献   

16.
为了理解长江中下游地区在中生代成矿的深部动力学过程,Sinoprobe-03-02项目于2011年9月至10月,在跨宁芜矿集区和郯庐断裂带实施了从安徽利辛至江苏宜兴450km长的宽角反射/折射地震剖面。速度剖面结果显示,Moho面深度和地壳速度结构在郯庐断裂两侧东西方向存在明显的差异:(1)在东部扬子块体内部,地壳覆盖层厚3~5km,西部的合肥盆地下方,则达到4~7km。(2)剖面平均Moho面深度为30~32km左右,在郯庐断裂下方,Moho面深度在35km左右;在宁芜矿集区下方,Moho面整体深度偏浅,达30~31km左右,但局部范围内,Moho面深度至34km左右。(3)剖面的下地壳平均速度在6.5~6.6km/s左右,在宁芜矿集区下方,下地壳速度偏低,为6.4~6.5km/s左右。剖面上地幔顶部的速度结构平均在8.0~8.2km/s。在宁芜矿集区下方,速度偏低,为7.9~8.1km/s左右。(4)郯庐断裂带的下方,从地表开始,还存在20多千米长的低速异常带,一直延伸到Moho面附近。剖面的宁芜矿集区下方Moho面上隆、下地壳及上地幔的低速异常等壳幔结构特征,预示下地壳不以榴辉岩残体为主,支持燕山期地幔岩浆的上涌和侵入并成矿,是热上涌物质的源地。  相似文献   

17.
Abyssal variations beneath the Baikal rift zone are revealed in an irregular seismic stratification of the crust, the presence of an intracrust waveguide and by the vast (> 200,000 km2) underlying area of anomalously low velocity (Pn = 7.6−7.8 km/sec) uppermost mantle. In its abyssal structure the Baikal rift is heterogeneous along the strike, with sharp changes in crustal thickness (35–50 km).Comparison of first-arrival seismic-velocity curves and also the respective velocity columns reveals the essential similarity of upper-mantle seismic cross-sections for all continental rift zones. The anomalous upper layer of the mantle (ca. 7.7 km/sec) is relatively thin (15-13 km) and can be linked with the mantle waveguide only locally.  相似文献   

18.
A complete understanding of the processes of crustal growth and recycling in the earth remains elusive, in part because data on rock composition at depth is scarce. Seismic velocities can provide additional information about lithospheric composition and structure, however, the relationship between velocity and rock type is not unique. The diverse xenolith suite from the Potrillo volcanic field in the southern Rio Grande rift, together with velocity models derived from reflection and refraction data in the area, offers an opportunity to place constraints on the composition of the crust and upper mantle from the surface to depths of  60 km. In this work, we calculate seismic velocities of crustal and mantle xenoliths using modal mineralogy, mineral compositions, pressure and temperature estimates, and elasticity data. The pressure, temperature, and velocity estimates from xenoliths are then combined with sonic logs and stratigraphy estimated from drill cores and surface geology to produce a geologic and velocity profile through the crust and upper mantle. Lower crustal xenoliths include garnet ± sillimanite granulite, two-pyroxene granulite, charnokite, and anorthosite. Metagabbro and amphibolite account for only a small fraction of the lower crustal xenoliths, suggesting that a basaltic underplate at the crust–mantle boundary is not present beneath the southern Rio Grande rift. Abundant mid-crustal felsic to mafic igneous xenoliths, however, suggest that plutonic rocks are common in the middle crust and were intraplated rather than underplated during the Cenozoic. Calculated velocities for garnet granulite are between  6.9 and 8.0 km/s, depending on garnet content. Granulites are strongly foliated and lineated and should be seismically anisotropic. These results suggest that velocities > 7.0 km/s and a layered structure, which are often attributed to underplated mafic rocks, can also be characteristic of alternating garnet-rich and garnet-poor metasedimentary rocks. Because the lower crust appears to be composed largely of metasedimentary granulite, which requires deep burial of upper crustal materials, we suggest the initial construction of the continental crust beneath the Potrillo volcanic field occurred by thickening of supracrustal material in the absence of large scale magmatic accretion. Mantle xenoliths include spinel lherzolite and harzburgite, dunite, and clinopyroxenite. Calculated P-wave velocities for peridotites range from 7.75 km/s to 7.89 km/s, with an average of 7.82 km/s. This velocity is in good agreement with refraction and reflection studies that report Pn velocities of 7.6–7.8 km/s throughout most of the Rio Grande rift. These calculations suggest that the low Pn velocities compared to average uppermost mantle are the result of relatively high temperatures and low pressures due to thin crust, as well as a fertile, Fe-rich, bulk upper mantle composition. Partial melt or metasomatic hydration of the mantle lithosphere are not needed to produce the observed Pn velocities.  相似文献   

19.
Several long-range seismic profiles were carried out in Russia with Peaceful Nuclear Explosions (PNE). The data from 25 PNEs recorded along these profiles were used to compile a 3-D upper mantle velocity model for the central part of the Northern Eurasia. 2-D crust and upper mantle models were also constructed for all profiles using a common methodology for wavefield interpretation. Five basic boundaries were traced over the study area: N1 boundary (velocity level, V = 8.35 km/s; depth interval, D = 60–130 km), N2 (V = 8.4 km/s; D = 100–140 km), L (V = 8.5 km/s; D = 180–240 km) and H (V = 8.6 km/s; D = 300–330 km) and structural maps were compiled for each boundary. Together these boundaries describe a 3-D upper mantle model for northern Eurasia. A map characterised the velocity distribution in the uppermost mantle down to a depth of 60 km is also presented. Mostly horizontal inhomogeneity is observed in the uppermost mantle, and the velocities range from the average 8.0–8.1 km/s to 8.3–8.4 km/s in some blocks of the Siberian Craton. At a depth of 100–200 km, the local high velocity blocks disappear and only three large anomalies are observed: lower velocities in West Siberia and higher velocities in the East-European platform and in the central part of the Siberian Craton. In contrast, the depths to the H boundary are greater beneath the craton and lower beneath in the West Siberian Platform. A correlation between tectonics, geophysical fields and crustal structure is observed. In general, the old and cold cratons have higher velocities in the mantle than the young platforms with higher heat flows.Structural peculiarities of the upper mantle are difficult to describe in form of classical lithosphere–asthenosphere system. The asthenosphere cannot be traced from the seismic data; in contrary the lithosphere is suggested to be rheologically stratified. All the lithospheric boundaries are not simple discontinuities, they are heterogeneous (thin layering) zones which generate multiphase reflections. Many of them may be a result of fluids concentrated at some critical PT conditions which produce rheologically weak zones. The most visible rheological variations are observed at depths of around 100 and 250 km.  相似文献   

20.
During 1976 the first installment of a long range seismic profile was conducted in the North Pacific to a range of 600 km using shots to two tons in size. The line was shot to a closely-spaced array of Scripps ocean bottom seismographs and was parallel to magnetic anomaly 32 at an age of approximately 70 · 106 yr. The line extended between the Clarion and Molokai Fracture Zones and did not cross any major topographic features. Linearized and extremal travel-time inversions were conducted to provide bounds on the compressional velocity as a function of depth. The velocity does not exceed 8.4 km s−1 to a depth of 60 km at which point the data no longer provide any resolution. The constraints on the acceptable models were improved by using array processing methods to measure phase velocity and synthetic seismogram techniques to model phase and amplitude information. The oceanic crust is composed of a series of gradients with no first order discontinuities. The “Moho” is smeared out over a depth of 1.5–2.0 km even though “wide-angle reflections” from the Moho, the phase PMP, are clearly seen in the data. The upper lithosphere is characterized by a general tendency for the velocity to decrease with depth and the tendency is occasionally overwhelmed (at about 27 and 52 km depth) by rapid velocity changes perhaps associated with phase or compositional changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号