首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seasonal variations of convection associated with the South American monsoon system (SAMS) are analyzed using pentad means of outgoing longwave radiation (OLR) data during the 1979–2006 period. The data is filtered for the 0.4–1.2 year scale and an empirical orthogonal function (EOF) analysis is applied. The results provide three dominant modes with distinct convective features, which are referred to as: equatorially antisymmetric, intertropical convergence zone (ITCZ) and symmetric modes. The first two modes vary in an annual scale, and the latter one in a semiannual scale. The evolving aspects of these modes are studied by correlating (lagged and simultaneously) the principal component of each mode and the filtered OLR time series. The antisymmetric and the ITCZ modes evolve smoothly into each other reflecting the northwestward and northeastward propagation of convective activity. The propagation rates vary depending on development stage and region considered. On the other hand, the symmetric mode with the largest convective activity in the western Amazon evolves independently, and depicts the transition from dry to wet seasons and vice-versa.  相似文献   

2.
夏季的季风环流   总被引:6,自引:0,他引:6  
早在五十年代,陶诗言和陈隆勋(1957)就已指出,印度西南季风的爆发和我国长江流域梅雨的开始有密切关系。随后,我国不少气象工作者指出,孟加拉湾是我国夏季重要的水汽源地之一,而西南季风则起了水汽输送者的作用。所以,有关季风的研究对于解决我国夏季旱涝的予报有重大的意义。从大气环流来看,季风是夏季热带和付热带大气环流中重要的一员,季风云团提供了大量的凝结潜热,季风又是夏季热带地区角动量输送  相似文献   

3.
4.
Summary The electrical effects due to monsoon clouds in conjunction with the VLF atmospherics data have been extensively analyzed. The cloud distribution and rainfall pattern during the SW monsoon period are examined. The diurnal curves of rainfall show that the maximum rain generally occurs in the afternoon hours between 13 to 18 IST. The coefficient of variation (CV) of monsoon rainfall plotted against rainfall amount reveals that CV decreases with increasing rainfall amounts upto about 40 inches. The differences in the mean dry bulb temperature as well as mean relative humidity values at the standard levels between strong and weak monsoon are studied. The monthly median of the hourly average together with the respective upper and lower decile values of atmospherics have been considered. Also, the frequency dependence of afternoon maximum (or late afternoon minimum) to morning minimum in the sferics level is taken into account to determine the seasonal variation. During monsoon months the sferics level with higher cloud amount (4 okta) increases considerably but the width of the sferics is reduced. The results are interpreted by considering the activity of the sources involved at such times.With 10 Figures  相似文献   

5.
The influence of outgoing longwave radiation anomalies on precipitation rates is studied based on the NCEP/NCAR reanalysis during the period of the summer monsoon circulation in the Indian region. The outgoing longwave radiation data are analyzed for 1987 (dry monsoon) and 1988 (wet monsoon) separately for the Arabian Sea, India, and the Bay of Bengal. It is shown that negative outgoing longwave radiation anomalies correspond to a wet Indian monsoon, and positive anomalies are associated with a dry monsoon. Calculations using the reanalysis enable the construction of a numerical algorithm of the interaction of outgoing longwave radiation, convection, and precipitation rates in the monsoon regions. The results obtained in this work are important in the verification of corresponding parameterizations of numerical atmospheric models.  相似文献   

6.
SomeAspectsoftheCharacteristicsofMonsoonDisturbancesUsingaCombinedBarotropic-BaroclinicModel¥N.R.ParijaandS.K.Dash(CentreforA...  相似文献   

7.
8.
Data collected during the Indo-Soviet Monsoon-77 expedition are used to determine quadratic expressions for the universal constants A and B, as functions of the stability parameter, . A quadratic expression has also been obtained for u *, in terms of the surface wind u s. It is shown, from the mean values of q and E , that the entire area covered by the expedition could be divided into four regions around the point 13° N, 78° E. The mean thermal characteristic of each region differs. It is shown that the northeastern quadrant is most favourable for the sustenance of a tropical storm once it has formed.  相似文献   

9.
东亚季风区的季风类型   总被引:2,自引:0,他引:2  
从地面流场正、斜压分量的冬夏季节转换的特征 ,对东亚至西太平洋季风区季风的性质进行了分析研究。结果表明 :这一地区的季风可分为 3种类型 :南海、华南沿海和低纬西太平洋主要为斜压流型季风区 ;华北北部、东北地区沿海主要为正压流型季风区 ;我国东部沿海和长江流域以及 2 7°N附近的西太平洋地区为正斜压流型共同形成的混合型季风区。  相似文献   

10.
11.
12.
The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud mod-el were compared with the aircraft cloud physical observations collected during the summer monsoon seasons of 1973,1974,1976 and 1981 in the Deccan Plateau region.The model predicted profiles of cloud liquid water content (LWC) are in agreement with the observed profiles. There is reasonable agreement between the model predicted cloud vertical thickness and observed rainfall.The observed cloud-drop spectra were found to be narrow and the concentration of drops with diameter >20μm is either low or absent on many occasions. In such clouds the rain-formation cannot take place under natural atmos-pheric conditions due to the absence of collision-coalescence process. A comparison of the model predicted and ob-served rainfall suggested that the precipitation efficiency in cumulus clouds of small vertical thickness could be as low as 20 per cent.The clouds forming in the Deccan Plateau region during the summer monsoon are, by and large, cumulus and strato-cumulus type. The vertical thickness of the cumulus clouds is in the range of 1.0-2.0 km. The LWC is found to be more in the region between 1.6-1.9 km A. S. L., which corresponds to the level at almost 3 / 4 th of the total verti-cal thickness of the cloud and thereafter the LWC sharply decreased. Nearly 98 per cent of the tops of the low clouds in the region are below freezing level and the most frequent range of occurrence of these cloud-tops is in the range of 2.0-3.0 km A. S. L.. The dominant physical mechanism of rain-formation in these summer monsoon clouds it the col-lision-coalescence process.  相似文献   

13.
14.
Some evidence of climate change in twentieth-century India   总被引:1,自引:0,他引:1  
The study of climate changes in India and search for robust evidences are issues of concern specially when it is known that poor people are very vulnerable to climate changes. Due to the vast size of India and its complex geography, climate in this part of the globe has large spatial and temporal variations. Important weather events affecting India are floods and droughts, monsoon depressions and cyclones, heat waves, cold waves, prolonged fog and snowfall. Results of this comprehensive study based on observed data and model reanalyzed fields indicate that in the last century, the atmospheric surface temperature in India has enhanced by about 1 and 1.1°C during winter and post-monsoon months respectively. Also decrease in the minimum temperature during summer monsoon and its increase during post-monsoon months have created a large difference of about 0.8°C in the seasonal temperature anomalies which may bring about seasonal asymmetry and hence changes in atmospheric circulation. Opposite phases of increase and decrease in the minimum temperatures in the southern and northern regions of India respectively have been noticed in the interannual variability. In north India, the minimum temperature shows sharp decrease of its magnitude between 1955 and 1972 and then sharp increase till date. But in south India, the minimum temperature has a steady increase. The sea surface temperatures (SST) of Arabian Sea and Bay of Bengal also show increasing trend. Observations indicate occurrence of more extreme temperature events in the east coast of India in the recent past. During summer monsoon months, there is a decreasing (increasing) trend in the frequency of depressions (low pressure areas). In the last century the frequency of occurrence of cyclonic storms shows increasing trend in the month of November. In addition there is increase in the number of severe cyclonic storms crossing Indian Coast. Analysis of rainfall amount during different seasons indicate decreasing tendency in the summer monsoon rainfall over Indian landmass and increasing trend in the rainfall during pre-monsoon and post-monsoon months.  相似文献   

15.
The present study aims to (a) examine meteorological basis for construction of regional monsoon indices and (b) explore the commonality and differences among tropical regional monsoons, especially the teleconnection and monsoon–ENSO relationship. We show that the area-averaged summer precipitation intensity is generally a meaningful precipitation index for tropical monsoons because it represents very well both the amplitude of annual cycle and the leading mode of year-to-year rainfall variability with a nearly uniform spatial pattern. The regional monsoon circulation indices can be defined in a unified way (measuring monsoon trough vorticity) for seven tropical monsoon regions, viz.: Indian, Australian, western North Pacific, North and South American, and Northern and Southern African monsoons. The structures of the tropical monsoons are commonly characterized by a pair of upper-level double anticyclones residing in the subtropics of both hemispheres; notably the winter hemispheric anticyclone has a barotropic structure and is a passive response. Two types of upper-level teleconnection patterns are identified. One is a zonal wave train emanating from the double anticyclones downstream along the westerly jets in both hemispheres, including Indian, Northern African and Australian monsoons; the other is a meridional wave train emanating from the double anticyclones polewards, such as the South American and western North Pacific monsoons. Over the past 55 years all regional summer monsoons have non-stationary relationship with ENSO except the Australian monsoon. The regional monsoon–ENSO relationship is found to have common changing points in 1970s. The relationships were enhanced for the western North Pacific, Northern African, North American and South American summer monsoons, but weakened for the Indian summer monsoon (with a recovery in late 1990s). Regardless the large regional differences, the monsoon precipitations over land areas of all tropical monsoon regions are significantly correlated with the ENSO, suggesting that ENSO drives global tropical monsoon rainfall variability. These results provide useful guidance for monitoring sub-seasonal to seasonal variations of the regional monsoons currently done at NCEP and for assessment of the climate models’ performances in representing regional and global monsoon variability.  相似文献   

16.
Measurements of the flow characteristics at 2 m over unobstructed wave surfaces on Lake Michigan were made using an anemometer-bivane as a velocity sensor. During one 40-min period of measurement, significant energy concentration was observed at the frequency of dominant surface waves in the vertical and cross wind spectra. Cross spectra between the surface elevation and vertical motions in the flow indicate that the surface lags the vertical motions by about 55 ° at the frequency of dominant waves.  相似文献   

17.
关于东亚副热带季风若干问题的讨论   总被引:21,自引:4,他引:21  
利用NCEP/NCAR再分析格点资料、TRMM卫星降水资料、中国东部站点降水资料和CMAP降水资料,重点讨论了东亚副热带季风雨季的起始时间、建立特征及其和南海夏季风的关系,同时也讨论了东亚副热带季风的可能机制。结果表明:(1)东亚副热带季风雨季于3月底—4月初(第16—18候)在江南南部和华南北部首先开始,伴随着降水的开始是偏南风的增强和对流性降水的显著增加,华南前汛期开始。(2)东亚副热带季风雨季的建立早于热带季风雨季,在热带季风建立后两者的雨带、强西南风带、强垂直运动带、强低空水汽辐合带均是分离的,南海热带季风在其建立后,与东亚副热带季风发生相互作用,促使副热带季风雨带季节性北进,两者共同影响中国的旱涝。(3)3月中下旬,东亚大陆(包括青藏高原)上空大气由冷源转为热源,东亚大陆与西太平洋之间的纬向热力差异及其相应的温度和气压对比均发生反转。东亚大陆(包括青藏高原)的动力和热力作用究竟是否是东亚副热带季风雨带提前建立的机制值得进一步研究。文章最后讨论了有关东亚副热带季风的共识与分歧。  相似文献   

18.
东亚和南亚季风协同作用对西南地区夏季降水的影响   总被引:1,自引:0,他引:1  
为探究东亚夏季风(EASM,East?Asian?summer?monsoon)和南亚夏季风(SASM,South?Asian?summer?monsoon)相互作用及其强弱变化对西南地区夏季降水的影响,利用1979—2019年西南地区161站逐日降水观测资料和ERA-5提供的1979—2019年全球再分析资料,通过对...  相似文献   

19.
Demarcating the worldwide monsoon   总被引:10,自引:1,他引:10  
Summary The monsoon is a global climate phenomenon. This paper addresses the seasonal reversal of atmospheric circulation and the transition of dry/wet spells in the monsoon regions worldwide. The NCEP/NCAR 850 hPa wind reanalysis data for 1950–1999 and the upper-tropospheric water vapour (UTWV) band brightness temperature (BT) data observed by NOAA polar orbiting satellites for 1980–1995 are used. In the tropics, there are three large wet-UTWV centres. The summer monsoon in the subtropics can be defined as the expansion of these centres associated with the influence of cross-equatorial flows. Specifically, the dry/wet spell transition is determined by the BT values that are smaller than 244 K. The regions of the South and North African monsoons, the Asian-northwest Pacific and Australian-Southwest Pacific monsoons, and the North and South American monsoons are examined with a focus on the dry/wet spell transition and stream field features. Findings suggest that the summer monsoons over many subtropical regions can be defined by both cross-equatorial flows and dry/wet spell transitions. In the mid- and low-latitudes, there exist six major dry/wet spell transition regions with a dry or wet period lasting more than one month. The region of most significant change is located over the subtropical North Africa–Asia–northwest Pacific. The others appear over subtropical South Africa, Indonesia–Australia, southwest Pacific, the Mexico-Caribbean Sea, and subtropical South America. In addition, three regions exist where only one of the two indicators (cross-equatorial flow and dry/wet transition) is satisfied. The first is near the Equator where the directions of cross-equatorial flows alternate but a dry/wet spell transition is never experienced. The second is over North Africa where only the dry/wet spell transition can be found but not the cross-equatorial flows. The third is over the mid-latitude regions in North China, South Africa, and northern North America. These regions are influenced by cross-equatorial flows but the upper-tropospheric water vapour content is not as high as that in tropical regions. Received June 29, 2000 Revised May 15, 2001  相似文献   

20.
Results are analyzed of study of the monsoon circulation indices: those determined from wind speed in the lower and upper troposphere and those characterizing the precipitation intensity. Averaged space distribution and monthly mean annual cycle of the monsoon circulation indices are presented. Seasonal changes in precipitation intensity in the main monsoon regions are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号