首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Buoyancy fluxes in the marine atmospheric boundary layer (MABL) for the cloud street regime, observed during the Genesis of Atlantic Lows Experiment (GALE), have been analyzed using the technique of joint frequency distribution. For the lower half of the MABL, the results suggest that the buoyancy flux is mainly generated by the rising thermals and the sinking compensating ambient air, and is mainly consumed by the entrainment and detrainment of thermals, penetrative convection, and the entrainment from the MABL top.The results are compared to those from previous studies of mesoscale cellular convection (Air-Mass Transformation Experiment, AMTEX), the dry convective boundary layer, and the trade-wind MABL. For the lower MABL, the quadrant buoyancy fluxes, fractional coverages, and flux intensities are in good agreement with those of mesoscale cellular convection (AMTEX) and the dry convective boundary layer. The results suggest that, if the buoyancy flux is primarily driven by the temperature flux, the physical processes for generating buoyancy flux mentioned above are about the same for the lower boundary layers over land and ocean, even with different convective regimes. For the trade-wind MABL, the buoyancy flux is mainly driven by the moisture flux; the quadrant flux intensities are stronger than those of the other three studies except for the buoyant updrafts (thermals). These results suggest that the entrainment and detrainment of thermals are more effective in the trade-wind MABL than in the boundary layers driven by the temperature flux.Scale analysis of the buoyancy flux is in good agreement with that of AMTEX. For the lower half of the MABL, the buoyancy flux is mainly generated by the intermediate scale (200 m to 2 km), which includes the dominant convective thermals in the surface layer and the mixed layer. The scale smaller than 200 m is important only in the surface layer. The scale larger than 2 km, which includes the roll vortices, increases its significance upward. While most of the positive and negative fluxes are associated with the updrafts for the intermediate scale, the downdrafts are as important as updrafts for the larger scale.ST Systems Corporation, Lanham, MD, 20706, U.S.A.  相似文献   

2.
Turbulence and heat fluxes in the marine atmospheric boundary layer (MABL) for the roll vortex regime, observed during the Genesis of Atlantic Lows Experiment (GALE) over the western Gulf Stream, have been studied. The spectral analysis suggests that cloud streets (roll vortices) are vertically organized convection in the MABL having the same roll scale for both the cloud layer and subcloud layer, and that the roll spacing is about three times the MABL depth. The roll circulations contribute significantly to the sensible (temperature) and latent heat (moisture) fluxes with importance increasing upward. Near the MABL top, these fluxes are primarily due to roll vortices which transfer both sensible heat and moisture upward in the lower half of the convective MABL. Near the MABL top, the roll circulations transfer sensible heat downward and moisture upward in the clear thermal-street region, but roll vortices influenced by evaporative cooling can transfer sensible heat upward and moisture downward in the cloud-street region. Near the cloud-top, the upward buoyancy flux due to evaporative cooling is highly related to the roll circulations near the inversion.For the lower half of the MABL, the normalized temperature flux decreases upward more rapidly than the humidity flux, which is mainly because potential temperature () increases slightly upward while humidity (q) decreases slightly upward above the unstable surface layer. The gradient production (associated with the gradient) is a source for the temperature flux in the unstable surface layer but changes to a sink in the mixed layer, while the gradient production (associated with the q gradient) acts as a source for the humidity flux in both the unstable surface and mixed layers. The results suggest that the entrainment at the MABL top might affect the budgets of temperature and humidity fluxes in the lower MABL, but not in the unstable surface layer.Caelum Research Corporation, Silver Spring, MD, 20901, U.S.A.  相似文献   

3.
Extended sheets of stratocumulus (Sc) in the upper part of the atmospheric boundary layer (ABL) often occur under appropriate meteorological conditions. These cloud decks are important both in climate studies and in weather forecasting. We review the current knowledge of the turbulent structure of the ABL capped by a cloud deck, in the light of recent observations and model studies. The most important physical processes determining this structure are longwave radiative cooling at cloud top, shortwave radiative wanning by absorption in the cloud, surface buoyancy flux, and wind shear in the ABL. As a result, turbulence can cause entrainment against the buoyancy jump at cloud top. In cases where only longwave radiative fluxes and surface buoyancy fluxes are important, the turbulent structure is relatively well understood. When shortwave radiative fluxes and/or wind shear are also important, the resulting turbulent structure may change considerably. A decoupling of the cloud from the sub-cloud layer or of the top of the cloud from the rest of the ABL is then regularly observed. In no cases are the details of the entrainment at cloud top understood well enough to derive a relatively simple formulation that is consistent with observations. Cloud-top entrainment instability may lead to the break-up of a cloud deck (but also to cloud deepening). The role of mesoscale circulations in determining fractional cloudiness is not yet well understood.  相似文献   

4.
基于POST观测计划中获得的海洋性层积云顶边界层内高频气象资料和云微物理资料,在选取解耦个例基础上研究解耦边界层湍流和云微物理特征及成因。结果表明,过渡层的大气静力稳定度较强,抑制向上浮力做功,使得湍流动能迅速消耗殆尽,实现边界层解耦。湍流动能最大值出现在云内,主要与云顶降温、大云滴下落沉降拖曳带来的下沉气流增强及云底之上附近凝结增长潜热释放产生向上浮力作用有关。近地面层的浮力项和切变项对湍流动能都起到增强作用,并以切变项的贡献更为显著,云内的湍流动能是以浮力项贡献为主。过渡层附近存在向下的热通量,抑制了热量向上输送和向上浮力项的增强,促进解耦发生。云内存在向上感热通量,其最大值及其出现高度主要与云顶冷却和云中下部的凝结潜热加热有关。云顶之上湿层促进了潜热通量的向下输送,增强了云内水汽含量,为解耦边界层云的发展起到正反馈作用。云顶浮力倒转引起的云中湍流混合呈现非均匀性,并进一步导致绝热或超绝热液滴出现,促进凝结和碰并增长的增强,同时云顶之上湿层进一步对云中的微物理增长起到了重要的推动作用。云底因夹卷混合表现为均匀混合特征。  相似文献   

5.
For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy Diffusivity\Mass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCS\ARM) and conserve a realistic evolution of stratocumulus (EUROCS\FIRE).  相似文献   

6.
A laboratory experiment was performed to investigate mixing across a density interface which separates two turbulent fluid layers and coexists with a stabilizing buoyancy flux. It was found that the buoyancy flux (q0) across the interface and through the turbulent layers (of depth D) becomes steady and constant in magnitude in the vertical direction, only when , where u is the horizontal r.m.s. velocity at the base of the mixed layers. The results suggest that mixing across the density interface is controlled by a dynamically important buoyancy gradient induced in the turbulent layers and that parameters such as the bulk Richardson number, , where Δb is the interfacial buoyancy jump, are of secondary importance. Measurements are used to infer the mixing mechanism at the interface, the mixing efficiency of stratified fluids and the entrainment law. Some geophysical applications of the results are also discussed.  相似文献   

7.
A convection scheme for climate model is developed based on Tiedtke’s (Mon Weather Rev 117:1779–1800, 1989) bulk mass flux framework and is evaluated with observational data and cloud resolving model simulation data. The main differences between the present parameterization and Tiedtke’s parameterization are the convection trigger, fractional entrainment and detrainment rate formulations, and closure method. Convection is triggered if the vertical velocity of a rising parcel is positive at the level at which the parcel is saturated. The fractional entrainment rate depends on the vertical velocity and buoyancy of the parcel as well as the environmental relative humidity. For the fractional detrainment rate, a linear decrease in the updraft mass flux above maximum buoyancy level is assumed. In the closure method, the cloud base mass flux is determined by considering both cloud layer instability and subcloud layer turbulent kinetic energy as controlling factors in the strength of the convection. The convection scheme is examined in a single column framework as well as using a general circulation model. The present bulk mass flux (BMF) scheme is compared with a simplified Relaxed Arakawa-Schubert (RAS) scheme. In contrast to the RAS, which specifies the cloud top, cloud top height in BMF depends on environmental properties, by considering the conditions of both the parcel and its environment in a fractional entrainment and detrainment rate formulations. As a result, BMF shows improved sensitivity in depth and strength of convection on environmental humidity compared to RAS, by strengthening coupling between cloud and environment. When the mid to lower troposphere is dry, the cloud resolving model and BMF produce cloud top around the dry layer and moisten the layer. In the framework of general circulation model, enhanced coupling between convection and environmental humidity in BMF results in improved representation of eastward propagating intraseasonal variability in the tropics—the Madden-Julian oscillation.  相似文献   

8.
张苏平  王媛  衣立  刘海坤  王倩 《大气科学》2017,41(2):227-235
由于缺乏海上现场观测,对天气尺度扰动下,海表面温度锋 (海洋锋) 对海洋大气边界层 (MABL) 垂直结构和MABL内海洋性低云 (marine stratus) 的影响研究较少。2014年4月12日,中国海洋大学东方红2号科学考察船在黑潮延伸体海区的海洋锋附近捕捉到一次层积云的迅速发展。在比较稳定的天气形势下,由暖水侧向北穿越海洋锋时,云底和云顶高度升高,云区范围迅速扩大。本文利用多种大气-海洋联合观测数据,结合卫星观测和再分析资料,对此次层积云迅速发展的机理进行了综合分析。结果表明,在海上低压后部西北风控制下,在海洋锋的暖水侧 (下风方) 形成热通量大值中心和低压槽,有助于高空西风动量下传,进而又使得海气界面热通量增加,这种正反馈效应为MABL内混合层厚度加大和云底/顶高度在海洋锋的下风方升高提供有利背景条件。4月12日09:00~12:00(协调世界时),来自日本本州岛陆地的低空暖平流到达该热通量中心上空,暖平流与热通量中心的共同作用,导致该时段近海面暖中心强度异常增加,MABL中静力不稳定层加深和低压槽发展,综合作用的结果使得混合层厚度明显加深,云底高度升高,云区迅速发展。本研究有助于理解在复杂大气背景扰动下MABL对海洋强迫的响应机理。  相似文献   

9.
10.
Mixed-layer depth and entrainment zone thickness areextracted from two large lidar data sets with arecently developed technique. The entrainment fluxratio (which is often used to model entrainment inatmospheric boundary-layer models) can be calculatedfrom these two quantities. This ratio is generallybelieved to be in the range of 0.1 and 0.4. Aqualitative analysis of time series (MERMOZ II dataset) confirms this range of values under equilibriumconditions (afternoon hours), but also shows that itclearly underestimates the importance of entrainmentduring the morning hours when the mixed layer isgrowing most rapidly. An examination of the spatialdistribution of the entrainment flux ratio (Pacific'93 data set) shows that this parameter is spatiallyhighly variable, even during equilibrium hours inthe afternoon. In regions where the boundary layerhas to adjust to new boundary conditions at theground, values much larger than 0.4 can be observed. Although these results can only be interpretedqualitatively, they suggest that currently usedentrainment parameterisations in boundary-layer modelsare not sufficient to capture the entrainment processproperly.  相似文献   

11.
The marine atmospheric boundary layer is characterized by cool temperatures and high humidity. Clouds are observed over most of the oceans. It is generally accepted that these overcast cloud decks break up into scattered fragments due to cloud-top entrainment instability. That is, if the air above the boundary layer is sufficiently cool and dry relative to cloud top, the buoyancy flux will be directed upwards and entrainment can occur freely.A boundary-layer model is used to test the sensitivity of the model atmosphere to the various processes which promote the onset of cloud-top entrainment instability. It is found that the transition from a solid cloud deck to scattered cumulus clouds depends on a rate process. The cloud cover is sensitive to mesoscale variations in sea surface temperature only if the cloud-top inversion is sufficiently weak.  相似文献   

12.
The partitioning of aerosol particles between cloud droplets and interstitial air by number and volume was determined both in terms of an integral value and as a function of size for clouds on Mt. Kleiner Feldberg (825 m asl), in the Taunus Mountains north-west of Frankfurt am Main, Germany. Differences in the integral values and the size dependent partitioning between two periods during the campaign were observed. Higher number and volume concentrations of aerosol particles in the accumulation mode were observed during Period II compared to Period I. In Period I on average 87±11% (±one standard deviation) and 73±7% of the accumulation mode volume and number were incorporated into cloud droplets. For Period II the corresponding fractions were 42±6% and 12±2% in one cloud event and 64±4% and 18±2% in another cloud event. The size dependent partitioning as a function of time was studied in Period II and found to have little variation. The major processes influencing the partitioning were found to be nucleation scavenging and entrainment.  相似文献   

13.
High-resolution measurements of thermodynamic, microphysical, and turbulence properties inside a turbulent inversion layer above a marine stratocumulus cloud layer are presented. The measurements are performed with the helicopter-towed measurement payload Airborne Cloud Turbulence Observation System (ACTOS), which allows for sampling with low true air speeds and steep profiles through cloud top. Vertical profiles show that the turbulent inversion layer consists of clear air above the cloud top, with nearly linear profiles of potential temperature, horizontal wind speed, absolute humidity, and concentration of interstitial aerosol. The layer is turbulent, with an energy dissipation rate nearly the same as that in the lower cloud, suggesting that the two are actively coupled, but with significant anisotropic turbulence at the large scales within the turbulent inversion layer. The turbulent inversion layer is traversed six times and the layer thickness is observed to vary between 37 and 85 m, whereas the potential temperature and horizontal wind speed differences at the top and bottom of the layer remain essentially constant. The Richardson number therefore increases with increasing layer thickness, from approximately 0.2 to 0.7, suggesting that the layer develops to the point where shear production of turbulence is sufficiently weak to be balanced by buoyancy suppression. This picture is consistent with prior numerical simulations of the evolution of turbulence in localized stratified shear layers. It is observed that the large eddy scale is suppressed by buoyancy and is on the order of the Ozmidov scale, much less than the thickness of the turbulent inversion layer, such that direct mixing between the cloud top and the free troposphere is inhibited, and the entrainment velocity tends to decrease with increasing turbulent inversion-layer thickness. Qualitatively, the turbulent inversion layer likely grows through nibbling rather than engulfment.  相似文献   

14.
A moderate cold air outbreak from the Arctic ice over the warm West-Spitsbergen current on 15 and 16 May 1988 during the field experiment ARKTIS '88 is analysed using data from four aircraft and one research vessel.The downstream development of cloud coverage appears to depend sensitively on the moisture content above the inversion. The cloud amount determines the energy balance at the sea surface. Under daytime conditions and little cloud cover, energy is added to the ocean in spite of sensible and latent heat losses.The downstream temperature increase in the boundary layer is controlled by sensible heat flux and by longwave radiation cooling. The entrainment sensible heat flux is the dominating term in the region near the ice edge. The downstream moisture increase is controlled by surface evaporation. Condensation processes play no significant role.On 16 May 1988 cloud streets near the ice edge changed to closed cloud meanders in the downstream direction. The aspect ratio increased from 3 to around 10 over a distance of 200 km. In the cloud street region, the dynamical generation of turbulent kinetic energy due to wind shear at the tilted inversion was larger than the thermal generation.Cloud droplet concentration, mean droplet radius and liquid water content increased linearly with height. The maximum liquid water content was only 0.1 g/kg near the top of a 400 m thick closed cloud and clearly below the adiabatic value. The net longwave radiation flux decreased by 50 W/m2 at cloud top and increased by 13 W/m2 at cloud base.  相似文献   

15.
A mixing fraction determines the relative amount of above-cloud-top air that has been mixed into a cloudy air parcel. A method, based on the use of mixing fractions, to calculate the cooling effects due to mixing, longwave radiation and phase changes at cloud top is derived and discussed. We compute cooling effects for the whole range of mixing fraction for two observed cases of the stratocumulus-topped marine boundary layer. In both cases the total radiative cooling effect is found to be the most dominant contributor to the negative buoyancy excess found at cloud top. The largest radiative cooling rates are found for clear-air parcels immediately adjacent to cloud top rather than inside the cloud. With the help of a simple longwave radiation model, we show this to be caused by clear-air radiative cooling due to the temperature inversion at cloud top. Further we show that flux profiles in the entrainment zone can be computed from data obtained from a horizontal level run that is half the time in cloud and half the time out of cloud.  相似文献   

16.
We propose a new turbulence closure model based on the budget equations for the key second moments: turbulent kinetic and potential energies: TKE and TPE (comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent fluxes of momentum and buoyancy (proportional to potential temperature). Besides the concept of TTE, we take into account the non-gradient correction to the traditional buoyancy flux formulation. The proposed model permits the existence of turbulence at any gradient Richardson number, Ri. Instead of the critical value of Richardson number separating—as is usually assumed—the turbulent and the laminar regimes, the suggested model reveals a transitional interval, , which separates two regimes of essentially different nature but both turbulent: strong turbulence at ; and weak turbulence, capable of transporting momentum but much less efficient in transporting heat, at . Predictions from this model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulation and large-eddy simulation.  相似文献   

17.
This numerical study examines the breakup of marine atmospheric boundary-layer (MABL) clouds through various physical processes over an inhomogeneous sea surface temperature (SST) field. Three regimes are identified under which the cloud layer will break up. (A) advection of drier air into the MABL for the California case. (B) daytime absorption of solar radiation, occurring most easily over the cold water. (C) mesoscale fluctuations in the flow, producing holes in the cloud layer.The budget study of these three situations concludes that large-scale subsidence, solar radiation, local mesoscale advection, and inhomogeneous surface fluxes cannot be neglected in modeling cloud breakup. This study also confirms the belief that the mixing process alone induced by evaporative entrainment is generally insufficient to predict the breakup of the cloud layer.Sections of this paper are based on an extended abstract by the author and Dr. Steven Stage for the Ninth Symposium on Turbulence and Diffusion held at Riso, Denmark, 1990.  相似文献   

18.
A methodology for tracing the bursting phenomenon occurring in the turbulent boundary-layer is applied to stable marine atmospheric boundary-layer (MABL) data, collected within the framework of the Coupled Boundary Layer Air-Sea Transfer, Low wind component experiment at Nantucket Island, 2003, Massachusetts, USA. For the definition of the events contributing to the bursting phenomenon, the quadrant analysis of the momentum flux with varying threshold value is utilized. The present work aims at the better understanding of the time scales of the microstructures in the MABL, by providing the number of the events and the groups and their mean duration and the time difference of all quadrants of the quadrant analysis, for different thresholds and under different meteorological conditions. The interrelation of the different time scales as well as the correlation between the quadrants are investigated and discussed. Also, it is demonstrated that the procedure of grouping events leads to bursts with a mean duration that is independent of the threshold value, for the most important quadrants of the momentum transfer (2 and 4). It is found that the combination of near-neutral conditions with low wind speed permits the development of larger duration events within the stable MABL. Finally, it is shown that the groups of events maintain adequate time and flux coherence only for quadrants 2 and 4.  相似文献   

19.
The entrainment of air from the free atmosphere into the convective boundary layer is reviewed and further investigated using observations from a 2 μm Doppler lidar. It is possible to observe different individual processes entraining air into the turbulent layer, which develop with varying stability of the free atmosphere. These different processes are attended by different entrainment-zone thicknesses and entrainment velocities. Four classes of entrainment parametrizations, which describe relationships between the fundamental parameters of the process, are examined. Existing relationships between entrainment-zone thickness and entrainment velocity are basically confirmed using as scaling parameters boundary-layer height and convective velocity. An increase in the correlation coefficient between stability parameters based on the stratification of the free atmosphere and entrainment velocity (and entrainment-zone thickness respectively) up to 200% was possible using more suitable length and velocity scales.  相似文献   

20.
Summary Water vapour flux profiles in the atmospheric boundary layer have been derived from measurements of water vapour density fluctuations by a ground-based Differential Absorption Lidar (DIAL) and of vertical wind fluctuations by a ground-based Doppler lidar. The data were collected during the field experiment LITFASS-2003 in May/June 2003 in the area of Lindenberg, Germany. The eddy-correlation method was applied, and error estimates of ±50 W/m2 for latent heat flux were found. Since the sampling error dominates the overall measurement accuracy, time intervals between 60 and 120 min were required for a reliable flux calculation, depending on wind speed. Rather large errors may occur with low wind speed because the diurnal cycle restricts the useful interval length. In the lower height range, these measurements are compared with DIAL/radar-RASS fluxes. The agreement is good when comparing covariance and error values. The lidar flux profiles are well complemented by tower measurements at 50 and 90 m above ground and by area-averaged near surface fluxes from a network of micrometeorological stations. Water vapour flux profiles in the convective boundary layer exhibit different structures mainly depending on the magnitude of the entrainment flux. In situations with dry air above the boundary layer a positive entrainment flux is observed which can even exceed the surface flux. Flux profiles which linearly increase from the surface to the top of the boundary layer are observed as well as profiles which decrease in the lower part and increase in the upper part of the boundary layer. In situations with humid air above the boundary layer the entrainment flux is about zero in the upper part of the boundary layer and the profiles in most cases show a linear decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号