首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of a polytropic fluid layer in the presence of a uniform vertical magnetic field is studied under the combined influence of thermal and magnetic diffusion. The main objective of the present investigation is to examine the effect of finite electrical conductivity of the medium on the stability of hydromagnetic modes which are believed to be important in the sunspot phenomena. It is shown that the inclusion of finite electrical conductivity has destabilizing effect on convective modes and small-scale convection can occur in the presence of strong magnetic field, provided the magnetic diffusivity is larger than the thermal diffusivity. The magnetic diffusivity, however, has a tendency to stabilize the fast, slow, and Alfvén-modes.  相似文献   

2.
Hall effects on the hydromagnetic free convection flow of an electrically conducting incompressible viscous fluid past a steadily moving vertical porous plate has been analysed when the free stream oscillates in magnitude. The flow is subjected to a constant suction, through the porous plate, and the difference between wall temperature and the free-stream is moderately large causing the free convection currents. The mathematical analysis is presented for the hydromagnetic boundary layer flow without taking into account the induced magnetic field. This is a valid assumption for small magnetic Reynolds number. Approximate solutions for the components of velocity field and temperature field and their related quantities are obtained. The influence of various parameters entering into the problem is extensively discussed with the help of graphs and tables.  相似文献   

3.
4.
Kitchatinov  L.L.  Mazur  M.V. 《Solar physics》2000,191(2):325-340
We analyse stability and equilibrium of a unipolar large-scale magnetic field pervading a plane horizontal subphotospheric layer with the possible implications for sunspots in mind. Eddy diffusivity is applied to account for the effects of the small-scale convective turbulence. Diffusivity quenching by magnetic field results in a secondary large-scale instability. A linear stability analysis is performed to define the marginal stability boundary in parametric space and the unstable mode structure. The nonlinear dynamics of the unstable modes are followed numerically. The original state of a uniform vertical magnetic field is transformed via the instability into the nonlinear dynamical equilibrium with a highly intermittant distribution of the magnetic field. Magnetic flux is concentrated in a relatively small area surrounded by an almost field-free region. The role of the fluid motion in the hydromagnetic equilibrium is emphasized. Although the relevance of the instability to the process of sunspot formation is rather questionable, the resulting equilibrium structures are similar to mature spots in their thermal and magnetic properties. Also, the simulated flow structure agrees with helioseismic tomography results.  相似文献   

5.
Time-dependent incompressible MHD solutions in two dimensions are obtained numerically to study the evolutionary process involving a re-connexion of magnetic lines of force. Given an initial antiparallel magnetic field, or a current sheet, to which there is an injection of fluid in a transverse direction, we seek to see how the process of re-connexion builds up. In this numerical experiment, special considerations are given to the confirmation of reconnexion, the formation of X-type magnetic field, the speed of growth, conditions that control the evolution, acceleration of particles, the structure of the diffusion region and so forth. The findings are: magnetic lines of force can re-connect and grow to the X-type configuration in fluids of any finitely large hydromagnetic and hydrodynamic Reynolds numbers; the conditions local to the neutral point are less important than the boundary conditions that set up global flow patterns; acceleration of fluid in bulk only concerns whether the X-type configuration grows to the comparably large extent or not; the electric field at the neutral point due to the rapidly changing magnetic field is less efficient in accelerating charged particles.  相似文献   

6.
Unsteady hydromagnetic boundary layer flow of a viscous incompressible and electrically conducting fluid past an infinite vertical non-conducting porous limiting surface in presence of a transverse magnetic field, is considered when the limiting surface is moving impulsively in its own plane and is subjected to a constant suction. The free stream oscillates in time about a constant mean value and the magnetic Reynolds number is taken to be small enough so that the induced magnetic field is negligible. As the mean steady flow has been presented in Part I, only the solutions for the transient velocity profiles, transient temperature profiles, the amplitude and the phase of the skin friction and the rate of the heat transfer are presented in this work. The influence of the various parameters entering into the problem, especially of the magnetic parameterM, is extensively discussed. A comparative study with hydrodynamic case (M=0) is also made.  相似文献   

7.
In this work an analysis of Stokes' problem for a two-dimensional unsteady hydromagnetic free convection flow, of an incompressible viscous electrically conducting fluid, past an infinite vertical porous limiting surface is presented, when the free stream velocity oscillates in time about a constant mean value. The flow is subjected to a constant suction, through the porous wall, and the difference between the wall temperature and the free stream is moderately large causing the free convection currents. The mathematical analysis is presented for the hydromagnetic boundary layer flow without taking into account the induced magnetic field. This is a valid assumption for small magnetic Reynolds number. Analytical expressions for the velocity field, the temperature field and for their related quantities are obtained. The influence of the various parameters entering into the problem is extensively discussed. A comparative study with hydrodynamic case is also made wherever necessary.  相似文献   

8.
Unsteady hydromagnetic flow near a harmonically oscillating limiting surface (e.g., of a star) is considered in presence of a transverse magnetic field. Exact solutions, for a periodic boundary layer without a mean steady flow,are obtained when the magnetic Prandtl number is unity and there is a normal velocity of injection imposed at the wall. The results are also presented for the case when the wall is subjected to a normal velocity of suction instead of injection. It is observed that two distinct boundary (or hydromagnetic boundary) layers exist and tend to coalesce into a single layer when the magnetic field parameter approaches zero. The thicknesses of these boundary layers are significantly affected by the injection/suction velocity and the applied magnetic field.  相似文献   

9.
Although the inhomogeneous nature of solar magnetic fields is now well established, most theoretical analyses of hydromagnetic wave propagation assume infinite homogeneous fields. Here we reformulate the hydromagnetic wave problem for magnetic fields which vary in one direction perpendicular to the field. The permitted modes of small amplitude hydromagnetic oscillations are considered, first in the case of a single interface between semi-infinite magnetic and non-magnetic compressible regions, and secondly for a magnetic flux sheath of given thickness imbedded in a nonmagnetic region. It is shown that, for small values of R (the ratio of the Alfvén to the sound speed), an acoustic or p-mode wave front passes through the flux sheath with only minor deformation. However, for large R, the transmitted acoustic wave is attenuated and, depending upon the thickness of the flux sheath and the angle of incidence, a hydromagnetic wave may be effectively trapped and guided along the flux sheath. It is also shown that, for the symmetric vibration of the flux sheath in the absence of incident acoustic waves, only slow mode type waves are permitted. Thus, in compressible regions for which R > 1 the Alfvénic-type fast mode is not a permitted mode of free vibration of a flux sheath.  相似文献   

10.
Effects of temperature-dependent heat source on hydromagnetic free-convection flow (set up due to temperature as well as species concentration) of an electrically-conducting incompressible viscous fluid past a steadily moving vertical porous plate through high porous medium has been analysed when the free stream oscillates in magnitude. The flow is subjected to a constant suction, through the porous plate. The mathematical analysis is presented for the hydromagnetic flow without taking into account the induced magnetic field. This is a valid assumption for small magnemtic Reynold number. Approximate analysis for the velocity and temperature field and their related quantities are obtained. The influence of various parameters entering into the problem is extensively discussed with the help of graphs and tables.  相似文献   

11.
The effect of Hall currents on the hydromagnetic free-convection flow of an electrically conducting and incompressible viscous fluid past a uniformly accelerated infinite vertical porous plate is discussed. The magnetic Reynolds number is assumed to be small so that the induced magnetic field can be neglected. The governing equations of the flow are solved by defining a complex velocity with the help of the Laplace transform method when the Prandtl number is equal to unity. The influence of the various parameters on the unsteady flow field is presented for both the cases, cooling and heating of the porous plate by free-convection currents.  相似文献   

12.
Rotation effect on the hydromagnetic free-convection flow of an electrically conducting, viscous, and incompressible fluid past a steadily moving vertical porous plate has been analysed in the presence of a transverse magnetic field. The free-stream velocity oscillates in time about a constant mean, while the suction velocity, normal to the porous plate, is constant. The magnetic Reynolds number of the flow is taken small enough so that the induced magnetic field can be neglected. The plate temperature is constant and the difference between the temperature of the plate and the free stream is moderately large causing the free-convection currents. The flow field is described by nonlinar coupled system of equations. With viscous dissipative heat taken into account, approximate solutions of the problem are obtained for the components of velocity field and temperature field as well as for the skin-friction components and rate of heat transfer.  相似文献   

13.
The negative effective magnetic pressure instability discovered recently in direct numerical simulations (DNSs) may play a crucial role in the formation of sunspots and active regions in the Sun and stars. This instability is caused by a negative contribution of turbulence to the effective mean Lorentz force (the sum of turbulent and non-turbulent contributions) and results in the formation of large-scale inhomogeneous magnetic structures from an initially uniform magnetic field. Earlier investigations of this instability in DNSs of stably stratified, externally forced, isothermal hydromagnetic turbulence in the regime of large plasma ?? are now extended into the regime of larger scale separation ratios where the number of turbulent eddies in the computational domain is about 30. Strong spontaneous formation of large-scale magnetic structures is seen even without performing any spatial averaging. These structures encompass many turbulent eddies. The characteristic time of the instability is comparable to the turbulent diffusion time, L 2/?? t, where ?? t is the turbulent diffusivity and L is the scale of the domain. DNSs are used to confirm that the effective magnetic pressure does indeed become negative for magnetic field strengths below the equipartition field. The dependence of the effective magnetic pressure on the field strength is characterized by fit parameters that seem to show convergence for larger values of the magnetic Reynolds number.  相似文献   

14.
Y. Nakagawa 《Solar physics》1970,12(3):419-437
A comprehensive examination of the stability of prominences is presented, and the gross behavior of prominences is considered in terms of the stability of an optically thin plasma supported by a magnetic field against gravity, including thermal effects on the energy balance. It is shown that (1) hydromagnetic as well as hydrodynamic waves of short wavelengths could induce instability which leads to the formation of prominences, and (2) in quiescent prominences, the dominant factor which controls the instability is the shear between the permeated and the supporting magnetic fields. The dependence of these instabilities on the radiative loss and other hydromagnetic effects are discussed. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
Certain classes of micropulsations are customarily explained in terms of guided (toroidal) and isotropic (poloidal) hydromagnetic waves m the magnetosphere. The physical properties of these waves are not well understood and their utility in explaining observed polarization patterns is questionable. In an effort to understand and explain the physics underlying these modes, a study is made of a cylindrical cavity (the hydromagnetic wedge), filled with a plasma having a large but finite conductivity and magnetized by an azimuthal magnetic field. Coupling between the toroidal and poloidal modes is effected by the inclusion of the Hall current in the generalized Ohm's law. Physically meaningful solutions to the wave equation are obtained and the toroidal eigenfunctions are demonstrated to be non-degenerate and well-behaved throughout the configuration, and exhibit for each mode a unique spatial resonance whose location, given by a line of force, is specified by the corresponding eigenvalue. The non-degenerate, discrete and spatially independent eigenvalues for the modes are shown to obey a selection rule that limits the spectrum. For a given mode, the states of polarization of the transverse field are determined and it is shown (as has been observed) that, depending on the line of force singled out, the magnetic polarization may be linear, elliptical or circular, right or left-handed, and whatever the state, it is immutable along the line of force. More complicated polarization patterns are derived and explained by superposing different modes vectorially. Classical concepts such as guided and isotropic modes and vibrating field lines are reinterpreted and evaluated in terms of the model. To examine the dependence of modal amplitude on source, the amplitude is expressed in terms of a sinusoidal driving pressure for a simple steady-state case. Symmetries of the model and the magnetosphere are specified and the detailed numerical results are ‘scaled’ for plasmaspheric application. The resonant spectrum, encompassing pc 2–4, is described and the variation of period spectrum with magnetic latitude and activity is presented. The agreement between the semi-quantitative analysis and the observational results is sufficiently close to indicate that the basic physics of the model encompasses the fundamental dynamics of pc activity.  相似文献   

16.
The magnetic fields of celestial bodies are usually supposed to be due to a ‘hydromagnetic dynamo’. This term refers to a number of rather speculative processes which are supposed to take place in the liquid core of a celestial body. In this paper we shall follow another approach which is more closely connected with hydromagnetic processes well-known from the laboratory, and hence basically less speculative. The paper should be regarded as part of a general program to connect cosmical phenomena with phenomena studied in the laboratory. As has been demonstrated by laboratory experiments, a poloidal magnetic field may be increased by the transfer of energy from a toroidal magnetic field through kink instability of the current system. This mechanism can be applied to the fluid core of a celestial body. Any differential rotation will produce a toroidal field from an existing poloidal field, and the kink instability will feed toroidal energy back to the poloidal field, and hence amplify it. In the Earth-Moon system the tidal braking of the Earth's mantle acts to produce a differential angular velocity between core and mantle. The braking will be transferred to the core by hydromagnetic forces which at the same time give rise to a strong magnetic field. The strength of the field will be determined by the rate of tidal braking. It is suggested that the magnetization of lunar rocks from the period ?4 to ?3 Gyears derives from the Earth's magnetic field. As the interior of the Moon immediately after accretion probably was too cool to be melted, the Moon could not produce a magnetic field by hydromagnetic effects in its core. The observed lunar magnetization could be produced by such an amplified Earth field even if the Moon never came closer than 10 or 20 Earth's radii. This hypothesis might be checked by magnetic measurements on the Earth during the same period.  相似文献   

17.
As was demonstrated in earlier studies, turbulence can result in a negative contribution to the effective mean magnetic pressure, which, in turn, can cause a large‐scale instability. In this study, hydromagnetic mean‐field modelling is performed for an isothermally stratified layer in the presence of a horizontal magnetic field. The negative effective magnetic pressure instability (NEMPI) is comprehensively investigated. It is shown that, if the effect of turbulence on the mean magnetic tension force vanishes, which is consistent with results from direct numerical simulations of forced turbulence, the fastest growing eigenmodes of NEMPI are two‐dimensional. The growth rate is found to depend on a parameter β* characterizing the turbulent contribution of the effective mean magnetic pressure for moderately strong mean magnetic fields. A fit formula is proposed that gives the growth rate as a function of turbulent kinematic viscosity, turbulent magnetic diffusivity, the density scale height, and the parameter β*. The strength of the imposed magnetic field does not explicitly enter provided the location of the vertical boundaries are chosen such that the maximum of the eigenmode of NEMPI fits into the domain. The formation of sunspots and solar active regions is discussed as possible applications of NEMPI (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The structure of the slow mode coupled with Alfvén mode in the axially symmetric magnetosphere is studied in the paper. Due to the coupling, the slow magnetosonic wave gets dispersion across magnetic shells and becomes not strictly guided. The slow mode is found to be captured between the resonant and cutoff surfaces, where the wave vector radial component goes to infinity and to zero, accordingly. The resonant surface is farther from the Earth than the cutoff surface. The slow mode resonance frequency is much lower than the Alfvén resonance frequency due to small value of the sound velocity near the equator. The maximum of the slow mode amplitude expressed in terms of the parallel magnetic field is concentrated near the equator, but expressed in hydromagnetic terms is concentrated near the ionospheres.  相似文献   

19.
Effect of Hall current on the hydromagnetic free-convection flow of an electrically-conducting viscous incompressible fluid past an impulsively accelerated vertical porous plate in the presence of a uniform transverse magnetic field subjected to a constant transpiration velocity is analyzed for the case of small magnetic Reynolds number. Numberical solutions are obtained for the axial and transverse components of the velocity as well as the skin-friction by employing the Crank-Nicolson implicit finite-difference method for all probable values of the Prandtl number. The results are discussed with the effects of the Grashof number Gr, the transpiration velocity parameter , the Hall current parameterm, and the magnetic field parameterM for the Prandtl number Pr=0.71 which represents air at 20° C.  相似文献   

20.
The problem of unsteady hydromagnetic axial flow near the porous surface of a sphere or a cylinder is studied numerically. The fluid is considered to be electrically conducting, viscous and incompressible subjected to a magnetic field. Results are presented for the case of injected or sucked fluid with a constant velocity through the porous surfaces. The magnetic Prandtl number is set equal to one, while the magnetic Reynolds number is taken to be small enough so that the inducted magnetic field is negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号