首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first star formation in the Universe is expected to take place within small protogalaxies, in which the gas is cooled by molecular hydrogen. However, if massive stars form within these protogalaxies, they may suppress further star formation by photodissociating the H2. We examine the importance of this effect by estimating the time-scale on which significant H2 is destroyed. We show that photodissociation is significant in the least massive protogalaxies, but becomes less so as the protogalactic mass increases. We also examine the effects of photodissociation on dense clumps of gas within the protogalaxy. We find that while collapse will be inhibited in low-density clumps, denser ones may survive to form stars.  相似文献   

2.
Paramount among the processes that ended the cosmic dark ages must have been the emergence of a first generation of stars. I review recent results on their formation out of metal-free gas, and discuss related open questions that still defy our understanding. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
We study the coorbital flow for embedded, low-mass planets. We provide a simple semi-analytic model for the corotation region, which is subsequently compared to high-resolution numerical simulations. The model is used to derive an expression for the half-width of the horseshoe region, x s, which in the limit of zero softening is given by   x s/ r p= 1.68( q / h )1/2  , where q is the planet to central star mass ratio, h is the disc aspect ratio and   r p  is the orbital radius. This is in very good agreement with the same quantity measured from simulations. This result is used to show that horseshoe drag is about an order of magnitude larger than the linear corotation torque in the zero-softening limit. Thus, the horseshoe drag, the sign of which depends on the gradient of specific vorticity, is important for estimates of the total torque acting on the planet. We further show that phenomena, such as the Lindblad wakes, with a radial separation from corotation of approximately a pressure scaleheight H can affect x s, even though for low-mass planets   x s≪ H   . The effect is to distort streamlines and reduce x s through the action of a back pressure. This effect is reduced for smaller gravitational softening parameters and planets of higher mass, for which x s becomes comparable to H .  相似文献   

4.
5.
6.
Galaxy discs are characterized by star formation histories that vary systematically along the Hubble sequence. We study global star formation, incorporating supernova feedback, gas accretion and enriched outflows in discs modelled by a multiphase interstellar medium in a fixed gravitational potential. The star formation histories, gas distributions and chemical evolution can be explained in a simple sequence of models which are primarily regulated by the cold gas accretion history.  相似文献   

7.
Using the “Updated Nearby Galaxy Catalog”, we consider different properties of companion galaxies around luminous hosts in the Local Volume. The data on stellar masses, linear diameters, surface brightnesses, HI‐richness, specific star formation rate (sSFR), and morphological types are discussed for members of the nearest groups, including the Milky Way and M 31 groups, as a function of their separation from the hosts. Companion galaxies in groups tend to have lower stellar masses, smaller linear diameters, and fainter mean surface brightnesses as the distance to their host decreases. The hydrogen‐to‐stellar mass ratio of the companions increases with their linear projected separation from the dominant luminous galaxy. This tendency is more expressed around the bulge‐dominated hosts. While linear separation of the companions decreases, their mean sSFR becomes lower, accompanied with the increasing sSFR scatter. the typical linear projected separation of dSphs around the bulge‐dominated hosts, 350 kpc, is substantially larger than that around the disk‐dominated ones, 130 kpc. This difference probably indicates the presence of larger hot/warm gas haloes around the early‐type host galaxies. The mean fraction of dSph (quenched) companions in the 11 nearest groups as a function of their projected separation Rp can be expressed as ƒ(E) = (0.55–0.69)×Rp. The fraction of dSphs around the Milky Way and M 31 looks much higher than in other nearby groups because the quenching efficiency dramatically increases towards the ultra‐low mass companions. We emphasize that the observed properties of the Local Group are not typical for other groups in the Local Volume due to the role of selection effects caused by our location inside the Local Group. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
9.
10.
11.
We study the torque on low-mass protoplanets on fixed circular orbits, embedded in a protoplanetary disc in the isothermal limit. We consider a wide range of surface density distributions including cases where the surface density increases smoothly outwards. We perform both linear disc response calculations and non-linear numerical simulations. We consider a large range of viscosities, including the inviscid limit, as well as a range of protoplanet mass ratios, with special emphasis on the co-orbital region and the corotation torque acting between disc and protoplanet.
For low-mass protoplanets and large viscosity, the corotation torque behaves as expected from linear theory. However, when the viscosity becomes small enough to enable horseshoe turns to occur, the linear corotation torque exists only temporarily after insertion of a planet into the disc, being replaced by the horseshoe drag first discussed by Ward. This happens after a time that is equal to the horseshoe libration period reduced by a factor amounting to about twice the disc aspect ratio. This torque scales with the radial gradient of specific vorticity, as does the linear torque, but we find it to be many times larger. If the viscosity is large enough for viscous diffusion across the co-orbital region to occur within a libration period, we find that the horseshoe drag may be sustained. If not, the corotation torque saturates leaving only the linear Lindblad torques. As the magnitude of the non-linear co-orbital torque (horseshoe drag) is always found to be larger than the linear torque, we find that the sign of the total torque may change even for mildly positive surface density gradients. In combination with a kinematic viscosity large enough to keep the torque from saturating, strong sustained deviations from linear theory and outward or stalled migration may occur in such cases.  相似文献   

12.
13.
发展了的星系形成和演化的半解析理论,可以很好地再现不同红移时宇宙恒星形成率密度(SFR)和中性气体共动密度的最新观测结果。对该理论各个不确定性因素对结果的影响作了说尽的讨论,并指出在中等红移星系间的相互作用可能是主宰恒星形成的决定性因素,根据宇宙学模型对观测和半解析理论的影响,对宇宙学参数作出限制。  相似文献   

14.
15.
16.
17.
History of Star Formation and Chemical Enrichment in the Milky Way Disk   总被引:2,自引:0,他引:2  
Based on a physical treatment of the star formation law similar to that given by Efstathiou, we have improved our two-component chemical evolution model for the Milky Way disk. Two gas infall rates are compared, one exponential, one Gaussian. It is shown that the star formation law adopted in this paper depends more strongly on the gas surface density than that in Chang et al. It has large effects on the history of star formation and gas evolution of the whole disk. In the solar neighborhood, the history of chemical evolution and star formation is not sensitive to whether the infall rate is Gaussian or exponential. For the same infall time scale, both forms predict the same behavior for the current properties of the Galactic disk. The model predictions do depend on whether or not the infall time scale varies with the radius, but current available observations cannot decide which case is the more realistic. Our results also show that it would be inadequate to describe the gradient evolution along the Gala  相似文献   

18.
We argue that the first stars may have spanned the conventional mass range rather than be identified with the very massive objects  (∼100–103 M)  favoured by numerical simulations. Specifically, we find that magnetic field generation processes acting in the first protostellar systems suffice to produce fields that exceed the threshold for magneto-rotational instability (MRI) to operate, and thereby allow the MRI dynamo to generate equipartition-amplitude magnetic fields on protostellar mass scales below  ∼50 M  . Such fields allow primordial star formation to occur at essentially any metallicity by regulating angular momentum transfer, fragmentation, accretion and feedback in much the same way as occurs in conventional molecular clouds.  相似文献   

19.
20.
We used the star counts in 21 BATC fields obtained with the National Astronomical Observatories (NAOC) 60/90 cm Schmidt Telescope to study the structure of the Galactic halo.Adopting a de Vaucouleurs γ/4 law halo,we found that the halo is somewhat flatter (c/a~0.4) towards the Galactic center than in the anticentre and antirotation direction (c/a > 0.4).We also notice that the axial ratios are smaller (flatter) towards the low latitude fields than the high latitude fields,except for a few fields.We provide robust limits on the large-scale flattening of the halo.Our analysis shows that the axial ratio of the halo may vary with distance and the observation direction.At large Galactocentric radii,the halo may not have a smooth density distribution,but rather,it may be largely composed of overlapping streams or substructures,which provides a support for the hybrid formation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号