首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The task of determining the origin of a drifting object after it has been located is highly complex due to the uncertainties in drift properties and environmental forcing (wind, waves, and surface currents). Usually, the origin is inferred by running a trajectory model (stochastic or deterministic) in reverse. However, this approach has some severe drawbacks, most notably the fact that many drifting objects go through nonlinear state changes underway (e.g., evaporating oil or a capsizing lifeboat). This makes it difficult to naively construct a reverse-time trajectory model which realistically predicts the earliest possible time the object may have started drifting. We propose instead a different approach where the original (forward) trajectory model is kept unaltered while an iterative seeding and selection process allows us to retain only those particles that end up within a certain time–space radius of the observation. An iterative refinement process named BAKTRAK is employed where those trajectories that do not make it to the goal are rejected, and new trajectories are spawned from successful trajectories. This allows the model to be run in the forward direction to determine the point of origin of a drifting object. The method is demonstrated using the leeway stochastic trajectory model for drifting objects due to its relative simplicity and the practical importance of being able to identify the origin of drifting objects. However, the methodology is general and even more applicable to oil drift trajectories, drifting ships, and hazardous material that exhibit nonlinear state changes such as evaporation, chemical weathering, capsizing, or swamping. The backtracking method is tested against the drift trajectory of a life raft and is shown to predict closely the initial release position of the raft and its subsequent trajectory.  相似文献   

2.
We compared the estimates of surface drifter trajectories from 1 to 7?days in the equatorial Atlantic over an 18-month period with five eddying ocean general circulation model (OGCM) reanalyses and one observational product. The cumulative distribution of trajectory error was estimated using over 7,000?days of drifter trajectories. The observational product had smaller errors than any of the individual OGCM reanalyses. Three strategies for improving trajectory estimates using the ensemble of five operational ocean analysis and forecasting products were explored: two methods using a multi-model ensemble estimate and also spatial low-pass filtering. The results were insensitive to the method used to create the ensemble estimates, and by most measures, the results were better than the observational product. Comparison of relative skill of the various OGCM reanalyses suggested promising avenues for exploration for further improvements: forcing with higher frequency wind stress and quality control of input data. One of the lowest horizontal resolution OGCMs, with 1/4° longitude horizontal resolution, made the best trajectory estimates. The individual OGCMs were dominated by errors at spatial scales smaller than about 100 to 200?km, i.e., less than the local deformation radius. But buried in those errors were valuable signals that could be retrieved by combining all the OGCM velocity fields to produce a multi-model ensemble-based estimate. This estimate had skill down to spatial scales about 75?km. Results from this study are consistent with previous work showing that ensemble-mean forecast skill is superior to individual forecasts.  相似文献   

3.
An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.  相似文献   

4.
Lagrangian trajectory methods are often applied as deterministic transport models, where transport is due strictly to advection without taking into account stochastic elements of particle dispersion, which raises questions about validity of the model results. The present work investigates the impact of horizontal eddy diffusivity for a case study of coastal pollution in the Gulf of Finland, where the pollutants are assumed to originate from a major fairway and are transported to the coast by surface currents. Lagrangian trajectories are calculated using the TRACMASS model from velocity fields calculated by the Rossby Centre circulation model for 1982 to 2001. Three cases are investigated: (1) trajectory calculation without eddy diffusivity, (2) stochastic modelling of eddy diffusivity with a constant diffusion coefficient and (3) stochastic modelling of eddy diffusivity with a time- and space-variable diffusion coefficient. It is found that the eddy diffusivity effect increases the spreading rate of initially closely packed trajectories and the number of trajectories that eventually reach the coast. The pattern of most frequently hit coastal sections, the probability of hit to each such section and the time the pollution spends offshore are virtually invariant with respect to inclusion of eddy diffusivity.  相似文献   

5.
The prediction of drifting object trajectories in the ocean is a complex problem plagued with uncertainties. This problem is usually solved simulating the possible trajectories based on wind and advective numerical and/or instrumental data in real time, which are incorporated into Lagrangian trajectory models. However, both data and Lagrangian models are approximations of reality and when comparing trajectory data collected from drifter exercises with respect to Lagrangian models results, they differ considerably. This paper introduces a stochastic Lagrangian trajectory model that allows quantifying the uncertainties related to: (i) the wind and currents numerical and/or instrumental data, and (ii) the Lagrangian trajectory model. These uncertainties are accounted for within the model through random model parameters. The quantification of these uncertainties consists in an estimation problem, where the parameters of the probability distribution functions of the random variables are estimated based on drifter exercise data. Particularly, it is assumed that estimated parameters maximize the likelihood of our model to reproduce the trajectories from the exercise. Once the probability distribution parameters are estimated, they can be used to simulate different trajectories, obtaining location probability density functions at different times. The advantage of this method is that it allows: (i) site specific calibration, and (ii) comparing uncertainties related to different wind and currents predictive tools. The proposed method is applied to data collected during the DRIFTER Project (eranet AMPERA, VI Programa Marco), showing very good predictive skills.  相似文献   

6.
Local ensemble assimilation scheme with global constraints and conservation   总被引:1,自引:1,他引:0  
Ensemble assimilation schemes applied in their original, global formulation respect linear conservation properties if the ensemble perturbations are set up accordingly. For realistic ocean systems, only a relatively small number of ensemble members can be calculated. A localization of the ensemble increment is therefore necessary to filter out spurious long-range correlations. The conservation of the global properties will be lost if the assimilation is performed locally, since the conservation requires a coupling between all model grid points which is removed by the localization. The distribution of ocean observations is often highly inhomogeneous. Systematic errors of the observed parts of the ocean state can lead to spurious adjustment of the non-observed parts via data assimilation and thus to a spurious increase or decrease in long-term simulations of global properties which should be conserved. In this paper, we propose a local assimilation scheme (with different variants and assumptions) which can satisfy global conservation properties. The proposed scheme can also be used for non-local observation operators. Different variants of the proposed scheme are tested in an idealized model and compared to the traditional covariance localization with an ad-hoc step enforcing conservation. It is shown that the inclusion of the conservation property reduces the total RMS error and that the presented stochastic and deterministic schemes avoiding error space rotation provide better results than the traditional covariance localization.  相似文献   

7.
A Bayesian post‐processor is used to generate a representation of the likely hydrograph forecast flow error distribution using raingauge and radar input to a stochastic catchment model and its deterministic equivalent. A hydrograph ensemble is so constructed. Experiments are analysed using the model applied to the River Croal in north‐west England. It is found that for rainfall input to the model having errors less than 3mm h?1, corresponding to about a 15% error in peak flow, the stochastic model outperforms the deterministic model. The range of hydrographs associated with the different model simulations and the measured hydrographs are compared. The significant improvement possible using a stochastic approach is demonstrated for a specific case study, although the mean hydrograph derived using the stochastic model has an error range associated with it. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, we addressed the effects of wind-induced drift on Lagrangian trajectories of surface sea objects using high-resolution ocean forecast and atmospheric data. Application of stochastic Leeway model for prediction of trajectories drift was considered for the numerical reconstruction of the Elba accident that occurred during the period 21.06.2009–22.06.2009: a person on an inflatable raft was lost in the vicinity of the Elba Island coast; from the initial position, the person on a raft drifted southwards in the open sea and later he was found on a partially deflated raft during rescue operation. For geophysical forcing, we used high-resolution currents from the Mediterranean Forecasting System and atmospheric wind from the European Centre for Medium-Range Weather Forecasts. To investigate the effect of wind on trajectory behavior, numerical simulations were performed using different categories of drifter-like particles similar to a person on an inflatable raft. An algorithm of spatial clustering was used to differentiate the most probable search areas with a high density of particles. Our results showed that the simulation scenarios using particles with characteristics of draft-limited sea drifters provided better prediction of an observed trajectory in terms of the probability density of particles.  相似文献   

9.
10.
11.
As continental to global scale high-resolution meteorological datasets continue to be developed, there are sufficient meteorological datasets available now for modellers to construct a historical forcing ensemble. The forcing ensemble can be a collection of multiple deterministic meteorological datasets or come from an ensemble meteorological dataset. In hydrological model calibration, the forcing ensemble can be used to represent forcing data uncertainty. This study examines the potential of using the forcing ensemble to identify more robust parameters through model calibration. Specifically, we compare an ensemble forcing-based calibration with two deterministic forcing-based calibrations and investigate their flow simulation and parameter estimation properties and the ability to resist poor-quality forcings. The comparison experiment is conducted with a six-parameter hydrological model for 30 synthetic studies and 20 real data studies to provide a better assessment of the average performance of the deterministic and ensemble forcing-based calibrations. Results show that the ensemble forcing-based calibration generates parameter estimates that are less biased and have higher frequency of covering the true parameter values than the deterministic forcing-based calibration does. Using a forcing ensemble in model calibration reduces the risk of inaccurate flow simulation caused by poor-quality meteorological inputs, and improves the reliability and overall simulation skill of ensemble simulation results. The poor-quality meteorological inputs can be effectively filtered out via our ensemble forcing-based calibration methodology and thus discarded in any post-calibration model applications. The proposed ensemble forcing-based calibration method can be considered as a more generalized framework to include parameter and forcing uncertainties in model calibration.  相似文献   

12.
The leeway of 20-ft containers in typical distress conditions is established through field experiments in a Norwegian fjord and in open-ocean conditions off the coast of France with a wind speed ranging from calm to 14 m s−1. The experimental setup is described in detail, and certain recommendations were given for experiments on objects of this size. The results are compared with the leeway of a scaled-down container before the full set of measured leeway characteristics are compared with a semianalytical model of immersed containers. Our results are broadly consistent with the semianalytical model, but the model is found to be sensitive to choice of drag coefficient and makes no estimate of the crosswind leeway of containers. We extend the results from the semianalytical immersion model by extrapolating the observed leeway divergence and estimates of the experimental uncertainty to various realistic immersion levels. The sensitivity of these leeway estimates at different immersion levels are tested using a stochastic trajectory model. Search areas are found to be sensitive to the exact immersion levels, the choice of drag coefficient, and somewhat less sensitive to the inclusion of leeway divergence. We further compare the search areas, thus, found with a range of trajectories estimated using the semianalytical model with only perturbations to the immersion level. We find that the search areas calculated without estimates of crosswind leeway and its uncertainty will grossly underestimate the rate of expansion of the search areas. We recommend that stochastic trajectory models of container drift should account for these uncertainties by generating search areas for different immersion levels and with the uncertainties in crosswind and downwind leeway reported from our field experiments.  相似文献   

13.
Knowledge of upper ocean currents is needed for trajectory forecasts and is essential for search and rescue operations and oil spill mitigation. This paper addresses effects of surface waves on ocean currents and drifter trajectories using in situ observations. The data set includes colocated measurements of directional wave spectra from a wave rider buoy, ocean currents measured by acoustic Doppler current profilers (ADCPs), as well as data from two types of tracking buoys that sample the currents at two different depths. The ADCP measures the Eulerian current at one point, as modelled by an ocean general circulation model, while the tracking buoys are advected by the Lagrangian current that includes the wave-induced Stokes drift. Based on our observations, we assess the importance of two different wave effects: (a) forcing of the ocean current by wave-induced surface fluxes and the Coriolis–Stokes force, and (b) advection of surface drifters by wave motion, that is the Stokes drift. Recent theoretical developments provide a framework for including these wave effects in ocean model systems. The order of magnitude of the Stokes drift is the same as the Eulerian current judging from the available data. The wave-induced momentum and turbulent kinetic energy fluxes are estimated and shown to be significant. Similarly, the wave-induced Coriolis–Stokes force is significant over time scales related to the inertial period. Surface drifter trajectories were analysed and could be reproduced using the observations of currents, waves and wind. Waves were found to have a significant contribution to the trajectories, and we conclude that adding wave effects in ocean model systems is likely to increase predictability of surface drifter trajectories. The relative importance of the Stokes drift was twice as large as the direct wind drag for the used surface drifter.  相似文献   

14.
A coupled ocean–atmosphere mesoscale ensemble prediction system has been developed by the Naval Research Laboratory. This paper describes the components and implementation of the system and presents baseline results from coupled ensemble simulations for two tropical cyclones. The system is designed to take into account major sources of uncertainty in: (1) non-deterministic dynamics, (2) model error, and (3) initial states. The purpose of the system is to provide mesoscale ensemble forecasts for use in probabilistic products, such as reliability and frequency of occurrence, and in risk management applications. The system components include COAMPS® (Coupled Ocean/Atmosphere Mesoscale Prediction System) and NCOM (Navy Coastal Ocean Model) for atmosphere and ocean forecasting and NAVDAS (NRL Atmospheric Variational Data Assimilation System) and NCODA (Navy Coupled Ocean Data Assimilation) for atmosphere and ocean data assimilation. NAVDAS and NCODA are 3D-variational (3DVAR) analysis schemes. The ensembles are generated using separate applications of the Ensemble Transform (ET) technique in both the atmosphere (for moving or non-moving nests) and the ocean. The atmospheric ET is computed using wind, temperature, and moisture variables, while the oceanographic ET is derived from ocean current, temperature, and salinity variables. Estimates of analysis error covariance, which is used as a constraint in the ET, are provided by the ocean and atmosphere 3DVAR assimilation systems. The newly developed system has been successfully tested for a variety of configurations, including differing model resolution, number of members, forecast length, and moving and fixed nest options. Results from relatively coarse resolution (~27-km) ensemble simulations of Hurricanes Hanna and Ike demonstrate that the ensemble can provide valuable uncertainty information about the storm track and intensity, though the ensemble mean provides only a small amount of improved predictive skill compared to the deterministic control member.  相似文献   

15.
In distributed and coupled surface water–groundwater modelling, the uncertainty from the geological structure is unaccounted for if only one deterministic geological model is used. In the present study, the geological structural uncertainty is represented by multiple, stochastically generated geological models, which are used to develop hydrological model ensembles for the Norsminde catchment in Denmark. The geological models have been constructed using two types of field data, airborne geophysical data and borehole well log data. The use of airborne geophysical data in constructing stochastic geological models and followed by the application of such models to assess hydrological simulation uncertainty for both surface water and groundwater have not been previously studied. The results show that the hydrological ensemble based on geophysical data has a lower level of simulation uncertainty, but the ensemble based on borehole data is able to encapsulate more observation points for stream discharge simulation. The groundwater simulations are in general more sensitive to the changes in the geological structure than the stream discharge simulations, and in the deeper groundwater layers, there are larger variations between simulations within an ensemble than in the upper layers. The relationship between hydrological prediction uncertainties measured as the spread within the hydrological ensembles and the spatial aggregation scale of simulation results has been analysed using a representative elementary scale concept. The results show a clear increase of prediction uncertainty as the spatial scale decreases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.

Knowledge of upper ocean currents is needed for trajectory forecasts and is essential for search and rescue operations and oil spill mitigation. This paper addresses effects of surface waves on ocean currents and drifter trajectories using in situ observations. The data set includes colocated measurements of directional wave spectra from a wave rider buoy, ocean currents measured by acoustic Doppler current profilers (ADCPs), as well as data from two types of tracking buoys that sample the currents at two different depths. The ADCP measures the Eulerian current at one point, as modelled by an ocean general circulation model, while the tracking buoys are advected by the Lagrangian current that includes the wave-induced Stokes drift. Based on our observations, we assess the importance of two different wave effects: (a) forcing of the ocean current by wave-induced surface fluxes and the Coriolis–Stokes force, and (b) advection of surface drifters by wave motion, that is the Stokes drift. Recent theoretical developments provide a framework for including these wave effects in ocean model systems. The order of magnitude of the Stokes drift is the same as the Eulerian current judging from the available data. The wave-induced momentum and turbulent kinetic energy fluxes are estimated and shown to be significant. Similarly, the wave-induced Coriolis–Stokes force is significant over time scales related to the inertial period. Surface drifter trajectories were analysed and could be reproduced using the observations of currents, waves and wind. Waves were found to have a significant contribution to the trajectories, and we conclude that adding wave effects in ocean model systems is likely to increase predictability of surface drifter trajectories. The relative importance of the Stokes drift was twice as large as the direct wind drag for the used surface drifter.

  相似文献   

17.
A main conclusion following the oil spill from the Prestige tanker was that improvements in ocean circulation models were necessary; this was in order to predict, more accurately, the trajectories followed by the oil slicks and hence assist in fight against oil pollution operations. In this contribution, the results of the validation of a semi-empirical ocean circulation model, parameterised for the Bay of Biscay and forced with operational oceano-meteorological remote sensing observations, are shown. The model results have been validated with observations from drifting buoys, deployed in the Bay of Biscay during the crisis. The results show that the model explains a relatively large percentage of the current variability. The comparisons between the real and the estimated drifter trajectories indicate that for 3, 5 and 7 day-long trajectories, the drifter position is estimated with errors of approximately 23, 35 and 46km, respectively. The model reproduces relatively well the trajectory followed by the drifter with the shortest period (23 days).  相似文献   

18.
Model-based inversion of seismic reflection data is a global optimization problem when prior information is sparse. We investigate the use of an efficient, global, stochastic optimization method, that of simulated annealing, for determining the two-way traveltimes and the reflection coefficients. We exploit the advantage of an ensemble approach to the inversion of full-scale target zones on 2D seismic sections. In our ensemble approach, several copies of the model-algorithm system are run in parallel. In this way, estimation of true ensemble statistics for the process is made possible, and improved annealing schedules can be produced. It is shown that the method can produce reliable results efficiently in the 2D case, even when prior information is sparse.  相似文献   

19.
This paper presents the development of a probabilistic multi‐model ensemble of statistically downscaled future projections of precipitation of a watershed in New Zealand. Climate change research based on the point estimates of a single model is considered less reliable for decision making, and multiple realizations of a single model or outputs from multiple models are often preferred for such purposes. Similarly, a probabilistic approach is preferable over deterministic point estimates. In the area of statistical downscaling, no single technique is considered a universal solution. This is due to the fact that each of these techniques has some weaknesses, owing to its basic working principles. Moreover, watershed scale precipitation downscaling is quite challenging and is more prone to uncertainty issues than downscaling of other climatological variables. So, multi‐model statistical downscaling studies based on a probabilistic approach are required. In the current paper, results from the three well‐reputed statistical downscaling methods are used to develop a Bayesian weighted multi‐model ensemble. The three members of the downscaling ensemble of this study belong to the following three broad categories of statistical downscaling methods: (1) multiple linear regression, (2) multiple non‐linear regression, and (3) stochastic weather generator. The results obtained in this study show that the new strategy adopted here is promising because of many advantages it offers, e.g. it combines the outputs of multiple statistical downscaling methods, provides probabilistic downscaled climate change projections and enables the quantification of uncertainty in these projections. This will encourage any future attempts for combining the results of multiple statistical downscaling methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Hydrodynamic models are commonly used for predicting water levels and currents in the deep ocean, ocean margins and shelf seas. Their accuracy is typically limited by factors, such as the complexity of the coastal geometry and bathymetry, plus the uncertainty in the flow forcing (deep ocean tide, winds and pressure). In Southeast Asian waters with its strongly hydrodynamic characteristics, the lack of detailed marine observations (bathymetry and tides) for model validation is an additional factor limiting flow representation. This paper deals with the application of ensemble Kalman filter (EnKF)-based data assimilation with the purpose of improving the deterministic model forecast. The efficacy of the EnKF is analysed via a twin experiment conducted with the 2D barotropic Singapore regional model. The results show that the applied data assimilation can improve the forecasts significantly in this complex flow regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号