首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modified profile method for determining the vertical deposition (or/and exhalation) fluxes of NO, NO2, ozone, and HNO3 in the atmospheric surface layer is presented. This method is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these trace gases. The analysis (aerodynamic profile method) includes a detailed determination of the micrometeorological quantities (such as the friction velocity, the fluxes of sensible and latent heat, the roughness length and the zero plane displacement), and of the height-invariant fluxes of the composed chemically conservative trace gases with group concentrations c 1=[NO]+[NO2]+[HNO3], c 2=[NO2]+[O3]+3/2·[HNO3], and c 3=[NO]–[O3]–1/2·[HNO3]. The fluxes of the individual species are finally determined by the numerical solution of a system of coupled nonlinear ordinary differential equations for the concentrations of ozone and HNO3 (decoding method). The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The model requires only the vertical profile data of wind velocity, temperature and humidity and concentrations of NO, NO2, ozone, and HNO3.The method has been applied to vertical profile data obtained at Jülich (September 1984) and collected in the BIATEX joint field experiment LOVENOX (Halvergate, U.K., September 1989).  相似文献   

2.
We present a comparison between several methods used to reconstruct fluxes and vertical profiles of wind, temperature and humidity from measurements at two levels in the atmospheric surface layer for different practical applications. An analytical method and an iterative method are tested by evaluating the quality of estimations of surface fluxes from detailed field measurements obtained during a campaign on the site of Lannemezan in the south-west of France. The iterative method yields better results, but the analytical one can give results of the same level of accuracy provided that specific constants in its formulation are modified. Then these techniques are applied to wind and temperature reconstruction for an experiment dedicated to wind power estimates over flat terrain. If turbulent fluxes are not needed, a simple power law appears to be sufficient, as the method based on Monin–Obukhov theory does not improve the accuracy of the vertical profile reconstruction.  相似文献   

3.
For flow over natural surfaces, there exists a roughness sublayer within the atmospheric surface layer near the boundary. In this sublayer (typically 50z 0 deep in unstable conditions), the Monin-Obukhov (M-O) flux profile relations for homogeneous surfaces cannot be applied. We have incorporated a modified form of the M-O stability functions (Garratt, 1978, 1980, 1983) in a mesoscale model to take account of this roughness sublayer and examined the diurnal variation of the boundary-layer wind and temperature profiles with and without these modifications. We have also investigated the effect of the modified M-O functions on the aerodynamic and laminar-sublayer resistances associated with the transfer of trace gases to vegetation. Our results show that when an observation height or the lowest level in a model is within the roughness sublayer, neglect of the flux-profile modifications leads to an underestimate of resistances by 7% at the most.  相似文献   

4.
5.
Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NOx transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O3 at the surface.The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NOx loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.  相似文献   

6.
Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10–50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a non-orthogonal transducer orientation were estimated for over 100 combinations of angle-of-attack and wind direction using a novel technique to measure the true angle-of-attack and wind speed within the turbulent atmospheric surface layer. Corrections to the vertical wind speed varied from −5 to 37% for all angles-of-attack and wind directions examined. When applied to eddy-covariance data from three NOAA flux sites, the wind-velocity corrections increased the magnitude of CO2 fluxes, sensible heat fluxes, and latent heat fluxes by ≈11%, with the actual magnitude of flux corrections dependent upon sonic anemometer, surface type, and scalar. A sonic anemometer that uses vertically aligned transducers to measure the vertical wind speed was also tested at four angles-of-attack, and corrections to the vertical wind speed measured using this anemometer were within ±1% of zero. Sensible heat fluxes over a forest canopy measured using this anemometer were 15% greater than sensible heat fluxes measured using a sonic anemometer with a non-orthogonal transducer orientation. These results indicate that sensors with a non-orthogonal transducer orientation, which includes the majority of the research-grade three-dimensional sonic anemometers currently in use, should be redesigned to minimize sine errors by measuring the vertical wind speed using one pair of vertically aligned transducers.  相似文献   

7.
DMS oxidation in the marine boundary layer has been simulated with a mesoscale meteorological model including detailed physical parameterizations. The impact of vertical turbulent transport on the DMS and SO2 diurnal cycles with and without in-cloud SO2 oxidation has been studied in a one-dimensional version of the model and compared to results obtained with a zero-dimensional box model. Initialisation has been done using balanced values issued from the imposed sea-air fluxes, dry deposition fluxes and chemical source/sink terms. Particular emphasis has been put on the important role played by evolving vertical mixing in the marine boundary layer.  相似文献   

8.
The mean flow profile within and above a tall canopy is well known to violate the standard boundary-layer flux–gradient relationships. Here we present a theory for the flow profile that is comprised of a canopy model coupled to a modified surface-layer model. The coupling between the two components and the modifications to the surface-layer profiles are formulated through the mixing layer analogy for the flow at a canopy top. This analogy provides an additional length scale—the vorticity thickness—upon which the flow just above the canopy, within the so-called roughness sublayer, depends. A natural form for the vertical profiles within the roughness sublayer follows that overcomes problems with many earlier forms in the literature. Predictions of the mean flow profiles are shown to match observations over a range of canopy types and stabilities. The unified theory predicts that key parameters, such as the displacement height and roughness length, have a significant dependence on the boundary-layer stability. Assuming one of these parameters a priori leads to the incorrect variation with stability of the others and incorrect predictions of the mean wind speed profile. The roughness sublayer has a greater impact on the mean wind speed in stable than unstable conditions. The presence of a roughness sublayer also allows the surface to exert a greater drag on the boundary layer for an equivalent value of the near-surface wind speed than would otherwise occur. This characteristic would alter predictions of the evolution of the boundary layer and surface states if included within numerical weather prediction models.  相似文献   

9.
This study investigates the convective boundary layer (CBL) that develops over anon-homogeneous surface under different thermal and dynamic conditions. Analysesare based on data obtained from a Russian research aircraft equipped with turbulentsensors during the GAME-Siberia experiment over Yakutsk in Siberia, from April to June 2000.Mesoscale thermal internal boundary layers (MTIBLs) that radically modified CBLdevelopment were observed under unstable atmospheric conditions. It was found thatMTIBLs strongly influenced the vertical and horizontal structures of virtual potentialtemperature, specific humidity and, most notably, the vertical sensible and latent heatfluxes. MTIBLs in the vicinity of the Lena River lowlands were confirmed by clouddistributions in satellite pictures.MTIBLs spread through the entire CBL and radically modify its structure if the CBL isunstable, and strong thermal features on the underlying surface have horizontal scalesexceeding 10 km. MTIBL detection is facilitated through the use of special parameterslinking shear stress and convective motion.The turbulent structure of the CBL with and without MTIBLs was scaled usingthe mosaic or flux aggregate approach. A non-dimensional parameterLRau/Lhetero (where LRau is Raupach's length and Lhetero is the horizontal scale of the surface heterogeneity)estimates the application limit of similarity and local similarity scaling models forthe mosaic parts over the surface. Normalized vertical profiles of wind speed, airtemperature, turbulent sensible and latent heat fluxes for the mosaic parts withLRauLhetero < 1 could be estimated by typical scalingcurves for the homogeneous CBL. Traditional similarity scaling models for the CBLcould not be applied for the mosaic parts with LRau/Lhetero > 1.For some horizontally non-homogeneous CBLs, horizontal sensible heat fluxes werecomparable with the vertical fluxes. The largest horizontal sensible heat fluxes occurred at the top of the surface layer and below the top of the CBL.Formerly affiliated to the Frontier Observational Research System for Global ChangeFormerly affiliated to the Frontier Observational Research System for Global Change  相似文献   

10.
北京北郊冬季大风过程湍流通量演变特征的分析研究   总被引:4,自引:0,他引:4  
张宏升  刘新建  朱好 《大气科学》2010,34(3):661-668
利用中国科学院大气物理研究所325 m气象观测塔1993年12月~1994年1月大气边界层实验资料, 计算分析了大风过境过程中47 m和120 m高度湍流通量演变特征及其影响因子, 以及与风速、 稳定度等参数的关系。结果表明: 大风过程对近地面层的物质能量输送有着重要影响, 大风之前出现短时间动量上传和热量下传; 大风过程中的湍流通量数值明显高于过境后, 水平方向湍流通量数值和能量增加幅度大于垂直方向; 当风速大于临界值5 m/s时, 湍流通量与风速、 湍流动能的相关迅速增大; 湍流谱特征表现为湍流能量的低频部分增加、 湍流谱曲线变宽; 大风能强烈影响近地面层的能量收支。  相似文献   

11.
12.
Summary Measuring turbulent fluxes with the eddy covariance method has become a widely accepted and powerful tool for the determination of long term data sets for the exchange of momentum, sensible and latent heat, and trace gases such as CO2 between the atmosphere and the underlying surface. Several flux networks developed continuous measurements above complex terrain, e.g. AmeriFlux and EUROFLUX, with a strong focus on the net exchange of CO2 between the atmosphere and the underlying surface. Under many conditions basic assumptions for the eddy covariance method in its simplified form, such as stationarity of the flow, homogeneity of the surface and fully developed turbulence of the flow field, are not fulfilled. To deal with non-ideal conditions which are common at many FLUXNET sites, quality tests have been developed to check if these basic theoretical assumptions are valid.In the framework of the CARBOEUROFLUX project, we combined quality tests described by Foken and Wichura (1996) with the analytical footprint model of Schmid (1997). The aim was to identify suitable wind sectors and meteorological conditions for flux measurements. These tools were used on data of 18 participating sites. Quality tests were applied on the fluxes of momentum, sensible and latent heat, and on the CO2-flux, respectively. The influence of the topography on the vertical wind component was also checked. At many sites the land use around the flux towers is not homogeneous or the fetch may not be large enough. So the relative contribution of the land use type intended to be measured was also investigated. Thus the developed tool allows comparative investigations of the measured turbulent fluxes at different sites if using the same technique and algorithms for the determination of the fluxes as well as analyses of potential problems caused by influences of the surrounding land use patterns.  相似文献   

13.
A wind tunnel investigation of the wind erosion of uranium mine-tailings material typical of a northern Ontario site has been carried out. The aim of the study was to measure the effects of various parameters, including mean and turbulent wind characteristics of the boundary layer and surface moisture content, upon the erosion process. The analysis of experimental data has yielded a mathematical model for predicting the net vertical mass fluxes. The results show that the dry vertical flux is proportional to u * 2.3and the wet flux to u * 5.0 Partical size analysis was also carried out.  相似文献   

14.
In the roughness sublayer (RSL), Monin–Obukhov surface layer similarity theory fails. This is problematic for atmospheric modelling applications over domains that include rough terrain such as forests or cities, since in these situations numerical models often have the lowest model level located within the RSL. Based on empirical RSL profile functions for momentum and scalar quantities, and scaling the height with the RSL height z *, we derive a simple bulk transfer relation that accounts for RSL effects. To verify the validity of our approach, these relations are employed together with wind speed and temperature profiles measured over boreal forest during the BOREAS experimental campaign to estimate momentum and heat fluxes. It is demonstrated that, when compared with observed flux values, the inclusion of RSL effects in the transfer relations yields a considerable improvement in the estimated fluxes.  相似文献   

15.
Abstract

Airborne measurements of mean wind velocity and turbulence in the atmospheric boundary layer under wintertime conditions of cold offshore advection suggest that at a height of 50 m the mean wind speed increases with offshore distance by roughly 20% over a horizontal scale of order 10 km. Similarly, the vertical gust velocity and turbulent kinetic energy decay on scales of order 3.5 km by factors of 1.5 and 3.2, respectively. The scale of cross‐shore variations in the vertical fluxes of heat and downwind momentum is also 10 km, and the momentum flux is found to be roughly constant to 300 m, whereas the heat flux decreases with height. The stability parameter, z/L (where z = 50 m and L is the local Monin‐Obukhov length), is generally small over land but may reach order one over the warm ocean. The magnitude and horizontal length scales associated with the offshore variations in wind speed and turbulence are reasonably consistent with model results for a simple roughness change, but a more sophisticated model is required to interpret the combined effects of surface roughness and heat flux contrasts between land and sea.

Comparisons between aircraft and profile‐adjusted surface measurements of wind speed indicate that Doppler biases of 1–2 m s?1 in the aircraft data caused by surface motions must be accounted for. In addition, the wind direction measurements of the Minimet anemometer buoy deployed in CASP are found to be in error by 25 ± 5°, possibly due to a misalignment of the anemometer vane. The vertical fluxes of heat and momentum show reasonably good agreement with surface estimates based on the Minimet data.  相似文献   

16.
应用含湍流频散效应的近地面层的运动方程求解了不同层结下的风速廓线,着重分析了湍流频散效应对近地面层平稳运动的影响。分析指出:湍流的频散效应对经典的幂律廓线一对数修正,该修正在不稳定层结时比稳定层时明显;利用相似理论也得到了该常数。  相似文献   

17.
A model is described, in which the mean vertical wind profile and turbulence spectra at different heights are calculated for a turbulent boundary layer without thermal stratification. The model makes use of Heisenberg's formula for the transfer of turbulent energy and is based on the assumption of a constant shearing stress in that boundary layer. As a result, a logarithmic wind profile follows with 0.39 as the value of von Kármán's constant, which is — in this model — strongly related to the inertial subrange of the turbulent energy spectra and therefore to the Kolmogoroff constant.This paper is based on studies done by the author during a one-year visit to CSIRO Division of Meteorological Physics, Aspendale, Australia, and was presented at the AGARD Specialists Meeting on The Aerodynamics of Atmospheric Shear Flows sponsored by the Fluid Dynamics Panel at Munich, Germany, during 15–17 Sept. 1969.  相似文献   

18.
A simple time-dependent one-dimensional model of the planetary boundary layer (PBL) is described and used to examine the degree to which model design decisions affect model output variables. The model's sensitivity to changes in the environmental conditions is also explored. Averages of the surface fluxes, near-ground wind speeds and other PBL properties from 48 h simulations are compared to control runs. The model-calculated surface fluxes are most sensitive, in decreasing order of importance, to the vertical grid spacing, the form of closure between the surface temperature and the atmosphere, the use of vertical diffusivity smoothing, the choice of maximum time step and choice of turbulence closure scheme. These fluxes are relatively insensitive to mixing-length scaling or choice of implicit time step weighting factor. Sensitivity to changes in soil type exceeds any of the design criteria tested. The modeled fluxes are moderately sensitive to small variations in the horizontal pressure gradient, to unsteadiness in the geostrophic wind and to variations in surface roughness. They are relatively insensitive to uncertainties in local vertical velocities and small (25%) variations applied separately to soil thermal diffusivity or heat capacity. The sensitivity of the average PBL depth (Z i ) to model and environmental changes are similar to those of surface fluxes except thatZ i is more sensitive to changes in mixing length, albedo and imposed vertical velocity then are the surface fluxes.  相似文献   

19.
A nocturnal gravity wave was detected over a south-western Amazon forest during the Large-Scale Biosphere–Atmosphere experiment in Amazonia (LBA) in the course of the dry-to-wet season campaign on October 2002. The atmospheric surface layer was stably stratified and had low turbulence activity, based on friction velocity values. However, the passage of the wave, an event with a period of about 180–300 s, caused negative turbulent fluxes of carbon dioxide (CO2) and positive sensible heat fluxes, as measured by the eddy-covariance system at 60 m (≈30 m above the tree tops). The evolution of vertical profiles of air temperature, specific humidity and wind speed during the wave movement revealed that cold and drier air occupied the sub-canopy space while high wind speeds were measured above the vegetation. The analysis of wind speed and scalars high frequency data was performed using the wavelet technique, which enables the decomposition of signals in several frequencies allowed by the data sampling conditions. The results showed that the time series of vertical velocity and air temperature were −90° out of phase during the passage of the wave, implying no direct vertical transport of heat. Similarly, the time series of vertical velocity and CO2 concentration were 90° out of phase. The wave was not directly associated with vertical fluxes of this variable but the mixing induced by its passage resulted in significant exchanges in smaller scales as measured by the eddy-covariance system. The phase differences between horizontal velocity and both air temperature and CO2 concentration were, respectively, zero and 180°, implying phase and anti-phase relationships. As a result, the wave contributed to positive horizontal fluxes of heat and negative horizontal fluxes of carbon dioxide. Such results have to be considered in nocturnal boundary-layer surface-atmosphere exchange schemes for modelling purposes.  相似文献   

20.
Intermittent breakdowns that accompany wind gusts at the surface are responsible for a large fraction of the turbulent exchange between the surface and the upper boundary layer in the core of clear nights. Vertical and horizontal structure of the breakdowns are investigated using data from a network of 26 stations in an area of 30 km × 30 km. Surface heterogeneity in the area includes complex terrain with different types of land cover. We treat the fine-scale landscape structure near sensors (sheltering) as a separate component of heterogeneity. These features have important consequences on the spatial distribution of mean variables and surface fluxes. We found that breakdowns connect the surface layer to a higher level (level HC). Weak wind gusts below a threshold (approximately 1.5 m s-1) mix the air down to the colder ground, cooling the surface layer. On the other hand, wind gusts above this threshold promote mixing with upper levels, warming the surface layer. The spatial maximum of surface temperature over the network can be used as an estimate of the temperature at HC, allowing vertical gradients and stability to be approximated. Minimum temperature is a function of topography and sheltering. Appreciable surface fluxes at night occur primarily at high, open locations, and can be large enough there to influencearea-averaged values. Surface-fluxparameterizations currently used in mesoscale models were tested first by estimating fluxes at each station and aggregating, and then by formingarea-averages before estimating fluxes. Results show that these formulations underestimate the average surface fluxes over a region for most of the nights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号