首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Stresses and effective viscosities in the asthenosphere to a depth of 400 km are calculated on the basis of Weertmans “temperature method” i.e., on relating viscosity to the ratio of the temperature to the melting point (=homologous temperature). Some oceanic and continental geotherms and two melting point—depth curves, the dry pyrolite solidus and the forsterite90 melting curve are used for the conversion of the homologous temperature to the effective viscosity. Two creep laws are considered, the linear, grain-size-dependent Nabarro—Herring (NH) creep law, and a power creep law, in which the creep rate is proportional to the third power of the stress. A plate tectonic model yields creep rates of 2 · 10−14 s−1 for the oceanic and 3 · 10−15 s−1 for the continental asthenosphere. These values are held constant for the calculations and may be valid for regions inside plates.The dry pyrolite mantle model results in high homologous temperatures in the asthenosphere below oceans (0.9), very low stresses (a few bars and lower) and shows a low viscosity “layer” of about 200-km thickness. Below continental shields the homologous temperature has a maximum value of 0.73, stresses are around 5–20 bar and the low-viscosity region is thicker and less pronounced than in the oceanic case. The Fo90 mantle model generally gives lower homologous temperatures (maximum value below oceans beside active ridges 0.75). The stresses in the asthenosphere beneath oceans vary from a few bars to about 50 bar and below continents to about 100 bar. The low-viscosity region seems to reach great depths without forming a “channel”. The Figs. 1 and 2 show the approximate viscosity—depth distribution for the two mantle models under study.Assuming a completely dry mantle and a mean grain size of 5 mm, power law creep will be the dominating creep process in the asthenosphere. However, grains may grow in a high-temperature—low-stress regime (i.e., below younger oceans), an effect which will further diminish the influence of NH creep. In the upper 100–150 km of the earth some fluid phases may affect considerably creep processes.  相似文献   

2.
Summary. Most currently used techniques for analysing the stability of near surface structures, such as rock slopes, are based on the application of the effective Coulomb shear strength parameters cohesion c′, and the angle of friction φ′ on some known or anticipated shear surface subjected to an effective normal stress σ′n. The most widely used of these techniques are the variants of the method of slices and related upper bound techniques. If the Hoek-Brown criterion is to be used to model the strength of near surface fractured rocks, it is necessary to determine equivalent Coulomb shear strength parameters for the specified level of effective normal stress. Calculation of the equivalent Coulomb parameters for the Hoek-Brown criterion for cases when a ≠ 0.5 is not a straightforward matter. A simple procedure for calculating instantaneous values of ci and φ′i has been developed based on spreadsheet calculations and the application of a numerical optimisation routine. This procedure can also be applied to calculating the Hoek-Brown envelope plotted in shear stress/normal stress space. A simple closed form solution for ci and tan φ′i has also been developed for the special case when a = 1. A three-dimensional version of the Hoek-Brown criterion has been developed by combining it with the Drucker-Prager criterion. This new yield criterion has been implemented by numerical solution of the governing equations. A simplification of this three-dimensional yield criterion has been developed by introducing an intermediate principal stress weighting factor. Comparison with published results demonstrates that this simplified criterion has the capacity to model the results of true triaxial tests for a range of different rock types over a wide range of stress levels. The new three-dimensional yield criterion has the advantage that its input parameters can be determined from routine uniaxial compression tests and mineralogical examination.  相似文献   

3.
This paper discusses the occurrence of 28,30-dinor-17α,18α,21β-hopane (bisnorhopane) in stratigraphically, fairly well preserved Viking Group sections from wells in local depressions in the North Viking Graben Area. The results show the presence of high relative amounts of bisnorhopane in the “Syn-rift sections”, whilst the “Post-rift sections” contain little or no bisnorhopane. Since most exploration wells are drilled on structural highs, primarily penetrating the “Post-rift Draupne”, this may explain why many analyzed source rock sections in this area contain little bisnorhopane.As a correlation of Draupne sections using the vertical, relative bisnorhopane distributions, it is suggested to be a potential stratigraphic marker for the area, indicating the presence of “Syn-rift Draupne” sediments.The relative bisnorhopane amounts follow a logarithmic reduction with depth and thermal maturity. The bisnorhopane signal is nearly extinguished at 3700 m depth at a maturity of Ro = 0.9–1.0%.  相似文献   

4.
A note on fault reactivation   总被引:2,自引:0,他引:2  
Reactivation of existing faults whose normal lies in the σ1σ3 plane of a stress field with effective principal compressive stresses σ1 >σ2 >σ3 is considered for the simplest frictional failure criterion, τ = μσn = μ(σnP), where τ and σn are respectively the shear and normal stresses to the existing fault, P is the fluid pressure and μ is the static friction. For a plane oriented at θ to σ1, the stress ratio for reactivation is (σ1/σ3) = (1 + μ cot θ)/(1 − μ tan θ). This ratio has a minimum positive value at the optimum angle for reactivation given by (1/μ) but reaches infinity when θ = 2θ*, beyond which σ3 < 0 is a necessary condition for reactivation. An important consequence is that for typical rock friction coefficients, it is unlikely that normal faults will be reactivated as high-angle reverse faults or thrusts as low-angle normal faults, unless the effective least principal stress is tensile.  相似文献   

5.
Klaus-G. Hinzen   《Tectonophysics》2003,377(3-4):325-356
Fault plane solutions (FPS) from 110 earthquakes in the northern Rhine area with local magnitudes, ranging from 1.0 to 6.1, and occurring between 1976 and 2002 are determined. FPS are retrieved from P-wave first motions using a grid search approach allowing a detailed exploration of the parameter space. The influence of the 1D velocity model on take-off angles and resulting FPS is examined. All events were relocated with a recently developed minimum 1D model of the velocity structure [J. Geophys. Res. (2003)]. Rose diagrams of the orientation of P, T and B axes show a clear preference of trends of P and T axes at N292°E and N27°E, respectively. The majority of B axes trend in northerly directions. Plunges of P and T axes are mostly around 45° while most B axes are subhorizontal. The main direction of the maximum horizontal stress directly inferred from the fault plane solutions is N118°E.To calculate the orientations of the principal stress axes and the shape of the stress tensor, the inversion method of Gephard and Forsyth [J. Geophys. Res. 89 (1984) 9305] was applied to the whole data set and to several subsets of data. The subsets were formed by grouping events from various geological and tectonic areas and by grouping events into different depth ranges. The subset areas include the Lower Rhine Embayment, the Rhenish Massif, the middle Rhine area, the Neuwied Basin and the area known as the Stavelot–Venn Massif. Inversion of the entire data set shows some ambiguity between a strike-slip and extensional stress regime, with a vertical axis for the medium principal stress and a trend of N305°E and N35°E for the σ1 and σ3 axis, respectively, as the best fitting tensor. Earthquakes from the Lower Rhine Embayment and, to some degree, from the middle Rhine area indicate an extensional stress regime. In the Lower Rhine Embayment, plunge and trend of the σ1 axis are 76° and N162°E and for the σ3 axis 7° and N42°E. The best fitting solution for the area of the Stavelot–Venn Massif is a strike-slip regime with subhorizontal σ1 and σ3 axes with a trend of N316°E and N225°E, respectively. Stress orientations found here agree overall with the results from earlier studies based on smaller data sets. The directions of the maximum and minimum horizontal stresses inverted from focal mechanisms agree well with the stress field predicted by the European Stress Map. This confirms earlier interpretations that the stress field of the Rhine Graben system is controlled by plate driving forces acting on the plate boundaries. However, amplitudes of the stresses change on a local scale and with depth. Estimates of the absolute magnitude of principal stresses favor a normal faulting regime in the shallow crust (above 12-km depth) and a strike-slip regime in the lower crust.  相似文献   

6.
In normal faulting regimes, the magnitudes and orientations of the maximum and minimum principal compressive stresses may be known with some confidence. However, the magnitude of the intermediate principal compressive stress is generally much more difficult to constrain and is often not considered to be an important factor. In this paper, we show that the slip characteristics of faults and fractures with complex or nonoptimal geometry are highly sensitive to variation or uncertainty in the ambient effective intermediate principal stress (σ2). Optimally oriented faults and fractures may be less sensitive to such variations or uncertainties. Slip tendency (Ts) analysis provides a basis for quantifying the effects of uncertainty in the magnitudes and orientations of all principal stresses and in any stress regime, thereby focusing efforts on the most important components of the system. We also show, for a normal faulting stress regime, that the proportion of potential surfaces experiencing high slip tendency (e.g., Ts ≥ 0.6) decreases from a maximum of about 38% where σ2 = σ3, to a minimum of approximately 14% where σ2 is halfway between σ3 and σ1, and increases to another high of approximately 29% where σ2 = σ1. This analysis illustrates the influence of the magnitude of σ2 on rock mass strength, an observation previously documented by experimental rock deformation studies. Because of the link between fault and fracture slip characteristics and transmissivity in critically stressed rock, this analysis can provide new insights into stress-controlled fault transmissivity.  相似文献   

7.
This paper describes a new procedure for assessing the ratio between in situ stresses in rock masses by means of K (K = σH / σv, being σH and σv principal stress) and tectonics for purposes of engineering geology and rock mechanics. The method combines the use of the logic decision tree and the empirical relationship between the Tectonic Stress Index, TSI, and a series of K in situ values obtained from an extensive database. The decision tree considers geological and geophysical factors affecting stress magnitudes both on the regional and local scale. The TSI index is defined by geological and geomechanical parameters. The method proposed provides an assessment of the magnitude of horizontal stresses of tectonic origin. Results for several regions of Europe are presented and the possible applications of the procedure are discussed.  相似文献   

8.
Katsuyuki Abe   《Tectonophysics》1975,27(3):223-238
The source mechanism of the Saitama earthquake (36.07°N,139.40°E, Ms = 5.4) of July 1, 1968, is studied on the basis of P-wave first motion, aftershock, long-period surface-wave data and low-magnification long-period seismograms recorded in the nearfield. A precise location of the aftershocks is made using P and S—P time data obtained by a micro-earthquake observatory network. The synthetic near-field seismograms based on the Haskell model are directly compared with the observed near-field seismograms for wave form and amplitude to determine the dynamic fault parameters. The results obtained are as follows: source geometry, reverse dip slip with considerable right-lateral strike-slip component; dip direction, N6°E; dip angle 30°; fault dimension, 10 × 6 km2; rupture velocity, 3.4 km/sec in the direction S30°E; average dislocation, 92 cm; average dislocation velocity, 92 cm/sec; seismic moment, 1.9 · 1025 dyn-cm; stress drop, 100 bar. The effective stress is about the same as the stress drop. For major earthquakes in the Japanese Islands, the dislocation velocity, .D, is found to be proportional to the stress drop, σ. This relation can be expressed by .D - (β/μ)σ, where β is the shear velocity and μ is the rigidity. This result has an importance in engineering seismology because the stress drop scales the seismic motion in the vicinity of an earthquake fault.  相似文献   

9.
Numerical and experimental investigation of symmetric fracture bifurcation (Kalthoff, 1972), has shown that for forks with small branch angles α<αc, where αc is approximately 14°, the propagation of the branches tends to enlarge the angle. For forks with larger branch angles, α>αc, the propagation of the branches tends to diminish the angle. Forks with the critical angle αc will propagate in their original direction. Kalthoff theorized that the branch angle changes as a function of KI/KII, where KI and KII are the stress intensity factors for tensile and shear (sliding) modes, respectively, and KI is considerably larger than KII. In this study I test the hypothesis that this fracture mechanic theory applies to the analysis of fault bifurcation in the crust, particularly in cases of rapid fracture.Fractures produced during the 1968 earthquake at the Coyote Creek fault in California are intensively branched and an example of rapid rupture. The angular behaviour of the branching ruptures in eight forks follows Kalthoffs theory unusually well. This implies that fracture at the surface was dominated by the tensile mode. Additional observations that support this implication are: series of prominent ruptures which show openings (of 20–30 mm per rupture), the symmetrical and bilateral forking, the high-intensity and angular shapes of individual branches, the opening of grabens associated with several bifurcations, lack of bifurcation in the southern break of the Coyote Creek fault, and the patterns of en echelon fractures which reflect mixed mode surfacial rupture.Hence, contrary to previous interpretations, according to field evidence and fracture mechanic theory, the fault bifurcation and opening along the Coyote Creek fault are not compatible with local tension caused by the primary shear. Fracture probably occurred by different mechanical modes at depth and at the surface. While faulting may have originated by shear at depth, rupture at the surface was dominated by far-field tension associated with NE-SW extension in South California. The present model predicts the directions of fracture propagation along the fault.  相似文献   

10.
A general form of a “fracture function” for isotropic brittle materials is expressed in terms of the three invariants of the stress tensor. The coefficients in the function are determined by use of the small number of experimental data under specific conditions. This function is applicable to an estimate of the fracture condition of brittle rocks under a general stress state i.e., σ1σ2σ3. The application of this function is attempted for the data of three brittle rocks i.e., Dunham dolomite, Mizuho trachyte, and Westerly granite, reported by previous workers. For the first two, this criterion gives a good estimation of the effect of the intermediate principal stress σ2 on failure. For the last, the fracture strength at high confining pressure is estimated by use of the several data obtained under very low confining pressures, and the agreement with experimental data is also satisfactory.  相似文献   

11.
C.T. Klootwijk   《Tectonophysics》1974,21(3):181-195
From alternating-field and thermal demagnetization studies on two dolerite “Traps” in the Gwalior Series (Central India), dated at 1830 ±200 m.y., three different palaeomagnetic directions could be distinguished. The characteristic magnetization component, which is considered as the primary magnetization, has a mean direction: D=78°, I=+34.5°, α95=5°, k=369, N=4 (Pole): 155.5°E19°N, dp=3°, dm=5.5°.A comparison of the presented data with other Precambrian and Phanerozoic data from the Indian subcontinent might suggest that the Indian subcontinent underwent a continuous anticlockwise rotational movement during the last 1800 m.y.  相似文献   

12.
Marine, organic-rich rock units commonly contain little for vitrinite reflectance (VR0) measurement, the most commoly used method of assessing thermal maturity. This is true of the Lower Jurassic “Nordegg Member”, a type I/II, sulphur-rich source rock from the Western Canada Sedimentary Basin. This study examines the advantages and pitfalls associated with the use of Rock-Eval Tmax and solid bitumen reflectance (BR0) to determined maturity in the “Nordegg”. Vitrinite reflectance data from Cretaceous coals and known coalification gradients in the study area are used to extrapolate VR0 values for the “Nordegg”.Tmax increases non-linearly with respect to both BR0 and extrapolated VR0 values. A sharp increase in the reflectaance of both solid bitumen and vitrinite occurs between Tmax 440–450°C, and is coincident with a pronounced decrease in Hydrogen Index values and the loss of solid bitumen and telalginite fluorescence over the same narrow Tmax interval. This Tmax range is interpreted as the main zone of hydrocarbon generation in the “Nordegg”, and corresponds to extrapolated VR0 values of 0.55–0.85%. The moderate to high sulphur contents in the kerogen played a significant role in determining the boundaries of the “Nordegg” oil window.A linear relationship between BR0 and extrapolated VR0, as proposed elsewhere, is not true for the “Nordegg”. BR0 increases with respect to extrapolated VR0 according to Jacob's (1985) formula (VR0=0.618×(BR0)+0.40) up to VR0≈0.72% (BR0≈0.52%). Beyond this point, BR0 increases sharply relative to extrapolated VR0, according to the relatioship VR0 = 0.277 × (BR0) + 0.57 (R2 = 0.91). The break in the BR0−VR0 curve at 0.72%VR0 is thought to signifiy the peak of hydrocarbon generation and represents a previously unrecognized coalification jump in the solid bitumen analogous to the first coalification jump of liptinites.  相似文献   

13.
A rare metachert pebble containing amphibole grains with microboudin structures in a wide range of orientations provides an opportunity to perform stress analysis in two orthogonal orientations on the foliation surface. The sample was analysed by the microboudin method to infer the triaxial stress state during microboudinage. Stress parameters proportional to the far-field differential stress were determined for sodic amphibole grains in the two orientations. The ratio of the stresses in the two orthogonal orientations (σ1σ2)/(σ1σ3) was calculated to be 0.64, indicating that σ2 lies closer to the midpoint between σ1 and σ3 than to σ3.  相似文献   

14.
Diopside single-crystals, oriented favorably for twin gliding on both systems: (001) [100] and (100)[001] have been deformed in a Griggs apparatus using talc as pressure medium. The latter mechanism is dominant at temperatures (T) below 1050° C at strain rates () of 10−3 sec−1, and below 800° C at ; at higher temperatures translation gliding on (100)[001] accompanied by syntectonic recrystallization is dominant but other glide systems also operate. Tests at a single set of conditions, T- and -incremental tests and stress-relaxation experiments have been carried out on websterite (68% CPX, 32% OPX), both in talc (“wet”) and talc-AlSiMag (“dry”) assemblies. Most tests were performed in the high-T regime, where syntectonic recrystallization and “relatively nonselective” glide are dominant. The mean size of recrystallized clinopyroxenes (D, μm) appears to be related to stress (σ, kb) as D = 60σ−0.9. The mechanical data fit the power law exp(-Q/RT)σn, where for the “wet” experiments A = 105.9kb−nsec−1, Q = 91.2 kcal/mole, n = 5.3; for σ < 3.5 kb n appears to decrease to 3.3. For the “dry” experiments A = 102.2, Q = 77.9, and n = 4.3 for σ < 7.0 kb. Clinopyroxene in the upper mantle occurs as ca. 0–15% mixed phase in peridotites and websterites occur as thin layers. Stresses in these materials will then be near those in the olivine-rich matrix. At , the equivalent viscosity of dry websterite is less than that of dry dunite at depths to 60 km but it increases rapidly at higher pressures; at 240 km it is 106 greater than that of dunite. This may account for the low strains and passive behavior observed for clinopyroxene crystals in most peridotites and websterites, that presumably have formed at great depth. Attenuated folds of websterite in peridotite—evidence of more ductile behavior—may then have formed at shallower levels; alternatively they may have formed under “wet” conditions.  相似文献   

15.
Understanding the electromagnetic response to geodynamic processes occurring in the earth's upper crust, in particular pre-seismic and seismic processes, is a challenging task in modern geophysics. There is increasing evidence that seismo-electromagnetic (SEM) phenomena are difficult to describe quantitatively by “linear” models using “averaged” parameters of the medium, such as electrical and hydraulic conductivities. Because the upper crust is highly inhomogeneous (at all scales), porous, and can be fully or partially water-saturated, the most natural way to describe its parameters is via fractal-theoretic and percolation-theoretic models.Recent studies indicate that the electrokinetic effect is the most likely driving mechanism for the various types of SEM signals. Here we considered the hydraulic, electric, and electrokinetic conductances of a porous water-saturated medium as a function of porosity () and moisture content (θ), utilizing a percolation/fractal approach. We show that the electric conductivity and electrokinetic current in such a medium are both proportional to (c)2 and (θθc)2, where c and θc are the critical values of porosity and moisture content, respectively. This behavior admits the possibility of a relatively large change in the respective electric and electrokinetic parameters due to a small change in the mechanical strain field. This is significant because it may account for the appearance of some types of SEM signals at large distances from the earthquake origin, which is the main deficiency of most models. Indeed, the anticipated strain changes related to pre-earthquake processes is usually very small except near the focal area. The expected ‘averaged’ electromagnetic response also would be very small, unless a local underground water system exists, not necessarily near the focal area, but which is close to critical point(s).We discuss the conditions under which electrotelluric and geomagnetic variations can accompany mechanical disturbances in the earth's crust.  相似文献   

16.
Chemical composition, unit cell parameters, and trace elements of tourmalines from Mesozoic gold-quartz-sulphide and gold-bearing copper-porphyry ore-magmatic systems of the Trans-Baikal area and Mongolia show that they belong to the specific schorl-dravite highly ferruginous oxytourmaline series. They are low in alumina (Al2O3 = 16–33%) and have MgO contents (up to 10%) and Fe2O3 (1%). There is a direct correlation of unit cell parameters (a,c,V) with total iron, which permits composition estimates from X-ray diffraction analyses. As a rule, these tourmalines contain high concentrations of Au, Pb and Cu, which are mainly hosted by inclusions of native gold and ore minerals. The highest As abundances are contained in the tourmalines of the copper-porphyry field.Two trends of isomorphic replacement are related to increasing Fe content of oxyferruginous tourmalines:(1) “Acid leaching” trend (less ferruginous part of the series) Mg + Fe2+ + 4Al + 40 4Fe3+ + 2 + 4(OH,F); and (2) “conjugate deposition” trend Mg + 1.5Fe2+ + 1.5Al + 4(OH,F) 4Fe3+ + 4O.These features distinguish tourmalines from gold-bearing systems from schorl-dravites of tin and rare-metal deposits. They may be used in metallogenic analyses, interpretation of the origin of primary and secondary anomalies, and assessment of the type and zonation of ore fields.  相似文献   

17.
In general, the long axis of the tension gashes and stylolitic columns developed in limestones during a single phase of compressional deformation occur parallel to the direction of the maximum compressive stress (σ1). This is the case in the Languedoc for structures developed in the Jurassic limestones during the N-S Pyrenean compression. Exceptionnally, however, these microstructures turn in direction and become oblique (even orthogonal) one to the other, probably as a consequence of a variation in intensity and direction of the stress field at the end of a microfault. This mechanism also occurs in a larger scale structure involving segments of pre-tectonic joints that act as “en échelon” microfaults in a brittle “kink-band” equivalent to a peculiar type of potential wrench-fault.  相似文献   

18.
In order to study the Pyrenean tectonic phase, a quantitative method of stress analysis using microfault measurements is used on a calcareous plateau located in southern France. The method developed here allows the determination of several tectonic events and the evaluation of (with σ σ2 σ3).The Pyrenean compression is seen to occur in two stages, confirming previous geological studies.A recent canyon allows the study of the variation with depth of the R ratio on a vertical cross-section (300 m). With a simple model of gravity and tectonic stresses, the vertical variation of R can be used to estimate quantitatively the Pyrenean tectonic stresses. For realistic values of the parameters in this model, the horizontal tectonic stresses are obtained in the following range: 50–200 bar for the maximum horizontal principal stress, 10–25 bar for the other horizontal stress.These results seem to be consistent with in situ stress measurements, but they are much lower than those predicted by experimental rock mechanics.  相似文献   

19.
Assuming a relation of “b” to stress state, the possibility of globe-wide stress variation and transmission was investigated. The NOAA earthquake data file served to determine the temporal change in “b” of log N = abM from 1963 to 1975.Periods of six to eight years are observed in the b-values (stress pattern) for most circum-Pacific areas (South America, Tonga, Kermadec, New Hebrides, Kamchatka and Eastern Aleutians).In the Kurils, fore- and aftershock sequences of large earthquakes seem to mask any characteristic global pattern that might exist. These sequences exhibit low b-values (high stress) through the time of foreshocks and early stages of aftershocks, followed by rapid increase in b-values (decrease in stress).Use of a worldwide earthquake data file clearly yields less resolution of the temporal “b” variation than the use of local network studies published by other authors.Incidental to the study, 1124 earthquakes of the NOAA data file yield the Msmb relations: Ms = 1.16mb − 0.835 for 4.5 mb 6 and: log10Ms = 0.1432mb − 0.0629 formb > 6 with correlative coefficients of 0.994 and 0.992 respectively.  相似文献   

20.
Microstructures and quartz c-axis fabrics were analyzed in five quartzite samples collected across the eastern aureole of the Eureka Valley–Joshua Flat–Beer Creek composite pluton. Temperatures of deformation are estimated to be 740±50 °C based on a modified c-axis opening angle thermometer of Kruhl (J. Metamorph. Geol. 16 (1998) 142). In quartzite layers located closest (140 m) to the pluton-wall rock contact, flattened detrital grains are plastically deformed and partially recrystallized. The dominant recrystallization process is subgrain rotation (dislocation creep regime 2 of Hirth and Tullis (J. Struct. Geol. 14 (1992) 145)), although grain boundary migration (dislocation creep regime 3) is also evident. Complete recrystallization occurs in quartzite layers located at a distance of 240 m from the contact, and coincides with recrystallization taking place dominantly through grain boundary migration (regime 3). Within the quartzites, strain is calculated to be lowest in the layers closest to the pluton margin based on the aspect ratios of flattened detrital grains.The c-axis fabrics indicate that a slip operated within the quartzites closest to the pluton-wall rock contact and that with distance from the contact the operative slip systems gradually switch to prism [c] slip. The spatial inversion in microstructures and slip systems (apparent “high temperature” deformation and recrystallization further from the pluton-contact and apparent “low temperature” deformation and recrystallization closer to the pluton-contact) coincides with a change in minor phase mineral content of quartzite samples and also in composition of the surrounding rock units. Marble and calc-silicate assemblages dominate close to the pluton-wall rock contact, whereas mixed quartzite and pelite assemblages are dominant further from the contact.We suggest that a thick marble unit located between the pluton and the quartzite layers acted as a barrier to fluids emanating from the pluton. Decarbonation reactions in marble layers interbedded with the inner aureole quartzites and calc-silicate assemblages in the inner aureole quartzites may have produced high XCO2 (water absent) fluids during deformation. The presence of high XCO2 fluid is inferred from the prograde assemblage of quartz+calcite (and not wollastonite)+diopside±K-feldspar in the inner aureole quartzites. We suggest that it was these “dry” conditions that suppressed prism [c] slip and regime 3 recrystallization in the inner aureole and resulted in a slip and regime 2 recrystallization, which would normally be associated with lower deformation temperatures. In contrast, the prograde assemblage in the pelite-dominated outer part of the aureole is biotite+K-feldspar. These “wet” pelitic assemblages indicate fluids dominated by water in the outer part of the aureole and promoted prism [c] slip and regime 3 recrystallization. Because other variables could also have caused the spatial inversion of c-axis fabrics and recrystallization mechanisms, we briefly review those variables known to cause a transition in slip systems and dislocation creep regimes in quartz. Our conclusions are based on a small number of samples, and therefore, the unusual development of crystal fabrics and microstructures in the aureole to the EJB pluton suggests that further study is needed on the effect of fluid composition on crystal slip system activity and recrystallization mechanisms in naturally deformed rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号