首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
伊犁盆地南缘中-下侏罗统碎屑岩的物源特征,可为南天山造山带的演化提供重要证据。对其碎屑岩锆石U-Pb定年研究结果表明,伊犁盆地南缘坎乡下侏罗统八道湾组砂岩的碎屑锆石年龄集中在290~260 Ma,而下侏罗统三工河组的碎屑锆石年龄集中在350~290 Ma和460~390 Ma,中侏罗统西山窑组的碎屑锆石年龄集中在370~320 Ma和450~390 Ma。所有测试样品中前寒武纪的年龄记录非常少。这些特征表明,伊犁盆地南缘中生代碎屑沉积物主要来自于伊犁-中天山地块南部。测试样品中几乎不存在晚二叠世-中三叠世的碎屑锆石,与南天山造山带的岩浆岩记录一致,暗示在晚二叠世-中三叠世南天山地区并没有发生强烈的与碰撞或后碰撞相关的岩浆活动。该结果不支持塔里木克拉通与伊犁-中天山地块在晚二叠世-中三叠世碰撞的观点。结合高压-超高压变质岩的数据和地层记录,认为塔里木克拉通与伊犁-中天山地块的碰撞发生在晚石炭世。同时,样品中最年轻锆石的年龄数据从早侏罗世到中侏罗世逐渐增大,显示了揭顶沉积的特点。对伊犁盆地南部中生代的锆石年龄数据与同时代南天山地区的锆石年龄数据进行综合对比表明在早-中侏罗世发生构造沉积夷平的特征。  相似文献   

2.
《地学前缘》2017,(5):383-394
为正确划分六盘山地区具"上三叠统或下-中侏罗统"之争的中生代煤系地层,通过野外沉积现象观察、镜下矿物学研究并结合砂岩碎屑锆石LA-ICP-MS U-Pb同位素定年,重新厘定了该套煤系地层的时代。六盘山地区争议地层普遍发育铁质结核,砂岩差异风化严重,这与邻区下-中侏罗统延安组地层相似,而与邻区上三叠统延长组差异较大;争议地层砂岩样品中含13颗中生代年轻碎屑锆石((188±3)~(254±8)Ma)(占总数17%),其中3颗碎屑锆石U-Pb年龄小于200 Ma,最年轻的碎屑锆石年龄限制了争议地层最大沉积年龄小于(188±3)Ma。争议地层中发育的晚三叠世孢粉组合,是三叠系孢粉化石再旋回的结果,鄂尔多斯盆地西南缘强烈的印支运动导致三叠系很快抬升至地表遭受剥蚀,为近区早—中侏罗世地层提供物源,古生物化石亦随之混入近区沉积地层中。根据上述证据和讨论,将六盘山地区中生代煤系地层时代重新归为早—中侏罗世,这一结论具有重要科学研究和油气勘探价值。  相似文献   

3.
针对准噶尔盆地南缘(天山北麓)中生界及新生界4个砂岩样品的碎屑锆石,本文开展了LA-ICP-MS分析,解析了其U-Pb年代学、沉积物源及其构造属性等信息,探索了天山及其邻近盆地的表壳演化过程及动力学机制。研究显示,准噶尔盆地南缘上三叠统-中侏罗统碎屑锆石年龄构成总体宽泛复杂,在490~160 Ma之间出现多个谱峰:除310~260 Ma主峰外,尚有180~160 Ma、240~210 Ma、370~340 Ma、450~390 Ma和490~460 Ma等5个次峰; 上侏罗统-下白垩统碎屑锆石年龄构成相对简单,但仍然保留400~250 Ma较宽范围内的2~3个谱峰:除310~260 Ma主峰外,尚有340~315 Ma等次峰; 上白垩统-古近统,主物源碎屑锆石年龄构成趋向单一,峰值区间集中于310~260 Ma。研究说明天山与准噶尔盆地之间的构造分异活动可以分为4个阶段:中晚三叠世-中侏罗世平稳或渐弱,向准噶尔盆地输运碎屑物的天山水系较宽,可达南天山北缘; 晚侏罗世-早白垩世欧亚板块与拉萨块体碰撞的远程效应对天山古生代构造格局造成了强烈的叠加改造,天山区域整体抬升剥露加剧,并伴随主分水岭相对北移; 晚白垩世-古近纪北天山继续隆升(尽管相对变弱),并直接构成向准噶尔盆地(南缘)输运碎屑物的主水系,新近纪由于欧亚板块与印度板块碰撞引发的天山陆内强烈隆升并未明显改变这一物源输运系统。  相似文献   

4.
天山乌鲁木齐艾维尔沟二叠系芦草沟组与三叠系小泉沟组之间发育一典型不整合面,是该地区一次重要地质事件的标志。国内外针对该不整合发表了多篇相关论文,提出了不同观点。本文在对前人研究对比的基础上,系统分析了该不整合面的结构和沉积特征。同时,对不整合面上下地层进行了U-Pb碎屑锆石定年。定年结果显示,不整合面下伏的上二叠统芦草沟组和上覆的上三叠统小泉沟组碎屑锆石特征基本无差别,都表现为明显的单峰特征。表明在晚二叠世-晚三叠世之间天山北缘没有经历大的构造环境变动,因此前人关于艾维尔沟不整合标志的洋盆闭合或者区域性挤压事件的结论就不成立。综合地层学和碎屑锆石研究结果,我们认为该不整合是一个沉积不整合,是盆地在经由早二叠世的不对称断陷作用之后,在晚二叠世-三叠纪时期进一步发生坳陷作用,从而导致晚期地层超覆于早期地层之上而形成。这种断坳转换期形成的不整合现象,在中国东部以及世界其他地区的断陷盆地中都很普遍。  相似文献   

5.
目前对天山地区,特别是天山南缘中生代盆山格局认识尚存分歧。本文着眼于侏罗纪-白垩纪这一盆山演化关键阶段,利用碎屑锆石LA-ICP-MS U-Pb定年法对西南天山前陆盆地康苏剖面中侏罗统杨叶组、下白垩统克孜勒苏群沉积开展物源分析。发现中侏罗统杨叶组碎屑锆石U-Pb年龄分布于369~2687 Ma间,基本分布在369~404 Ma(约占4%)、418~501 Ma(约占19%)和544~2687 Ma(约占77%)3个范围;下白垩统克孜勒苏群碎屑锆石U-Pb年龄分布于243~2820 Ma间,集中于253~414 Ma(约占35%)、423~489 Ma(约占27%)和668~2820 Ma(约占37%)3个范围。中侏罗统碎屑锆石年龄分布范围广,各年龄组分均较突显,反映中侏罗世西南天山前缘流域体系宽广,天山内各主要源区均得到沟通,物源范围广阔。下白垩统克孜勒苏群锆石年龄分布明显集中,反映早白垩世西南天山前缘源区范围有所缩小。西南天山前缘与库车前陆盆地的物源构成在中侏罗世存在一定差异,而在早白垩世呈现相似特征。包括西南天山前陆盆地在内的天山南缘或于早白垩世经历一期小规模构造反转,导致山-盆构造分异与抬升-剥蚀增强。  相似文献   

6.
在对鄂尔多斯盆地中侏罗统直罗组地层矿产资源的勘探中,于其西缘部分地区的直罗组地层发现油气及铀矿的相关性显示,以此判定其物源区对进一步的勘探开发具有重要作用。应用碎屑锆石LA-ICP-MS U-Pb年代学研究方法准确分析和确定直罗组地层物源区位置,实验样品选取直罗组中碎屑锆石所得年代学结果显示缺少加里东期碎屑锆石,且锆石Th/U比值均0.1,结合CL图像确定锆石均为岩浆成因,测定结果表明其年龄可以分为3个年龄段:1230 Ma~310 Ma年龄段,峰值年龄为268.8 Ma;属于天山-兴蒙褶皱带在晚海西—印支期提供大量沉积物源。2340Ma~400Ma年龄段,峰值年龄为391.2 Ma;碎屑锆石少,海西早期构造热事件不强烈,该时期物源由天山-兴蒙褶皱带供给。31 600 Ma~2 600 Ma年龄段,表现出3个峰值年龄,分别为1 912.9 Ma,2 134.7Ma和2 494.1 Ma;对应吕梁—晋宁时期,存在3期构造热事件,物源来自于华北板块结晶基底及贺兰山杂岩。综上所述,鄂尔多斯盆地西缘直罗组存在3个物源区,以天山-兴蒙褶皱带作为主要的物源区。  相似文献   

7.
李忠  彭守涛 《岩石学报》2013,29(3):739-755
大批量、原位高精度碎屑矿物同位素分析为盆地(盆山)动力学等前沿领域的研究注入了新的活力.针对天山北麓(准噶尔盆地南缘)、天山南麓(塔里木盆地北缘)中生界及新生界露头剖面,重点通过13个(新补充4个)砂岩样品的碎屑锆石U-Pb同位素的LA-ICP-MS分析,本文解析了其年代学、物源特征及其构造属性等高分辨率信息,并开展了沉积记录与物源体系对比,探索了天山及其邻近盆地的表壳演化过程与地球动力学机制.研究显示,上三叠统-中侏罗统天山南麓碎屑锆石U-Pb年龄构成相对单一,年龄偏老(峰值区间380~450Ma),而同层位天山北麓碎屑锆石物源年龄构成总体宽泛复杂(160 ~470Ma);上侏罗统-下白垩统天山南麓碎屑锆石年龄构成复杂化(150 ~ 470Ma),而天山北麓则趋于相对简单(但仍然保留250~ 430Ma较宽范围);新近统以上,天山南、北麓主物源碎屑锆石年龄构成均趋向单一,即南麓年龄偏老(峰值区间380 ~460Ma),而北麓偏新(峰值区间260~310Ma).可能说明山盆构造分异活动可以分为四个阶段:中晚三叠世-中侏罗世平稳或渐弱,天山主分水岭位于南天山;晚侏罗世-早白垩世天山区域整体抬升剥露加剧,并伴随主分水岭相对北移;晚白垩世-古近纪相对较弱,而新近纪再度活跃并达到最强,南、北天山强烈隆升,分水岭各成系统.这也反映同期在欧亚板块南缘的一系列拼合-碰撞作用中,拉萨、印度板块对天山地区陆内构造变形和改造作用效果明显,而羌塘块体的影响较小;另一方面,与晚侏罗-早白垩世拉萨板块碰撞事件相关的天山隆升导致陆内区域气候-沉积演化的重要转折,但天山南北盆地局域气候-沉积记录的分异在新近纪印度板块碰撞以前是有限的.  相似文献   

8.
沉积物中的锆石裂变径迹分析可以用于示踪沉积盆地的源区性质及其构造演化信息。济阳坳陷新生界9块砂岩样品的锆石裂变径迹中值年龄介于183.1±15.0 Ma~100.0±5.6 Ma之间,锆石单颗粒年龄均大于其地层沉积年龄。对没有通过χ2检验的6块样品进行了多组分年龄分离分析,表明多数样品主要由2个年龄组分组成。总体上,砂岩锆石裂变径迹单组分年龄具有较好的一致性,主要介于389.1±5.1 Ma~272.7±14.6 Ma(P1)、238.1±7.8 Ma~203.6±6.6 Ma(P2)、179.3±13.9 Ma~96.8±17.8 Ma(P3)、80.3±15.7 Ma~55.3±6.0 Ma(P4)之间。这4组年龄组分分别记录了晚古生代、三叠纪、晚侏罗—早白垩世及晚白垩世—古新世时期内锆石裂变径迹完全退火时的年龄。结合区域地质背景认为,济阳坳陷新生界的主要物源是燕山运动中期强烈的构造岩浆活动期内发育的上侏罗统—下白垩统的火山岩和火山—碎屑岩系; 海西期、印支期以及燕山晚期—喜马拉雅山早期过渡时期的构造岩浆活动也对坳陷有少量物源贡献。  相似文献   

9.
地层不整合接触是研究地质发展历史及鉴定沉积盆地性质、地壳运动特征和运动阶段的重要依据。通过区域地质调查,结合不同时代地层沉积体系特征,在雪峰山西侧的石门—桑植复向斜早古生代末期—中生代地层中厘定出5个不整合面,由下而上分别是文洛克统小溪峪组与上覆中泥盆统云台观组、中二叠统梁山组或栖霞组之间的平行不整合面,上泥盆统黄家蹬组或写经寺组与中二叠统梁山组或栖霞组之间的平行不整合面,中三叠统巴东组与上三叠统九里岗组之间的平行不整合面,中三叠统巴东组与下—中侏罗统之间的角度不整合面,下白垩统石门组与下伏老地层之间的角度不整合面。这几个不同时代的不整合面代表了石门—桑植复向斜早古生代晚期—中生代地质演化时期中特定的构造事件。其中,小溪峪组与上覆泥盆系、二叠系系平行不整合关系反映雪峰古陆西侧隆后前陆盆地于文洛克世晚期受加里东运动影响隆升成陆并接受风化剥蚀;中泥盆统与中二叠统平行不整合是"柳江上升"和"黔桂上升"两次构造运动的产物;巴东组与九里岗组之间的平行不整合反映中三叠世晚期的早印支运动在研究区以水平抬升为主,横向挤压缩短较微弱;下—中侏罗统与巴东组角度不整合反映中三叠世晚期—早侏罗世晚印支运动NNW—SSE向强烈挤压使石门—桑植复向斜进一步收缩变窄,且形成一系列次级背向斜构造和挤压凹陷盆地;下—中白垩统呈串珠状角度不整合在下伏地层之上,主要反映早燕山构造运动。这些不整合面的厘定及其代表的相应构造事件为湘西北地区构造演化研究提供了更为详尽的地质信息,同时,对合理分析雪峰山西侧地区早古生代晚期—中生代沉积盆地属性提供了更仔细、更可靠的参考数据。  相似文献   

10.
鲁西地块中生代构造格局及其形成背景   总被引:31,自引:0,他引:31  
结合近几年来鲁西地区1∶5万区域地质调查等成果,重点论述了鲁西地区中生代构造特征与盆地原型。提出中生代构造层次总体在垂向上可分为三个主要构造层,分别称为上部、中部和下部,并分别被中—下侏罗统、上侏罗统—下白垩统和上白垩统角度不整合覆盖,所以,相应地可将鲁西地块的中生代构造变形分为三个阶段:印支期、燕山中期和燕山晚期;平面上变形样式总体表现为三种构造样式,即:1印支期的近东西走向的宽缓—紧闭褶皱及逆冲构造;2燕山中期的北北东或南北走向的厢状褶皱—坡坪式逆冲系统;3燕山晚期的北东走向的冲断—走滑断裂带。但是,鲁西地区燕山期的构造变形特征和原型盆地有所变化,这种变化是基底构造格局及构造变形在空间上差异叠合的结果。综合研究表明,鲁西地块及邻区燕山期构造是在西太平洋大陆边缘弧的挤压构造背景下,陆内壳下拆沉和壳内挤出—逃逸构造的综合动力作用下形成的。  相似文献   

11.
合肥盆地中生代地层时代与源区的碎屑锆石证据   总被引:3,自引:0,他引:3  
王薇  朱光  张帅  刘程  顾承串 《地质论评》2017,63(4):955-977
合肥盆地位于大别造山带北侧、郯庐断裂带西侧,其发育过程与这两大构造带演化密切相关。本次工作对合肥盆地南部与东部出露的中生代砂岩与火山岩进行了锆石年代学研究,从而限定了各组地层的沉积时代,确定了火山岩喷发时间,指示了沉积物的源区。这些年代学数据表明,合肥盆地南部的中生代碎屑岩自下而上分别为下侏罗统防虎山组、中侏罗统圆筒山组或三尖铺组、下白垩统凤凰台组与周公山组(或黑石渡组)与上白垩统戚家桥组,其间缺失上侏罗统。盆地东部白垩系自下而上为下白垩统朱巷组与响导铺组和上白垩统张桥组。该盆地出露的毛坦厂组或白大畈组火山岩喷发时代皆为早白垩世(130~120 Ma)。盆地南部的下——中侏罗统及白垩系源区皆为大别造山带,分别对应该造山带的后造山隆升与造山后伸展隆升。而盆地东部白垩系的源区始终为东侧的张八岭隆起带,后者属于郯庐断裂带伸展活动中的上升盘。  相似文献   

12.
The modern Tianshan Mountains and their surrounding basins have mainly been shaped by the far field effects of the Cenozoic India-Asia collision. However, precollision topographic evolution of the Tianshan Mountains and its impacts on the Junggar and Turpan Basins remain unclear due to the scarcity of data. Detrital zircon U-Pb dating of 14 new and 23 published samples from Permian to Neogene strata in the northern Western Tianshan Mountains, northern and southern Bogda Mountains and Central Turpan Basin, are combined with sedimentary characteristics (lithofacies, petrofacies and paleocurrent data) to investigate the temporal and spatial changes in sediment provenances. Based on the age characteristics of the source rocks in the Tianshan Mountains, the detrital zircons are divided into three groups: pre-Carboniferous zircons, mainly from the Central Tianshan Mountains; Carboniferous to Permian zircons, mainly from the North Tianshan and Bogda Mountains; and Mesozoic zircons, mainly from syn-depositional volcanic activity. The topographic evolution of the Tianshan Mountains and their relation to the Junggar and Turpan Basins can be generally divided into six stages. (1) Positive-relief Tianshan and Bogda Mountains and a rifted marine basin formed during the Early Permian to early Middle Permian following late Carboniferous orogenesis, as evidenced by interbedded alluvial fan conglomerates and postcollisional extension-related volcanic rocks along the basin margins, by marine deposits far from the basin margins and by the predominance of Carboniferous to Permian detrital zircons. (2) Fluvial to lacustrine deposits in the modern southern Junggar and Turpan Basins are characterized by abundant pre-Carboniferous zircons and consistently northward-flowing paleocurrents, indicating the submergence of the Bogda Mountains and a contiguous Junggar-Turpan continental depression basin during the late Middle Permian to the Triassic. (3) The Bogda Mountains began to uplift in the Early Jurassic, resulting in opposing paleocurrent directions, a sudden increase in sedimentary lithic detritus and the dominance of Carboniferous to Permian detrital zircons along the southern and northern margins of this range. (4) In contrast to the uplift of the Bogda Mountains, the other parts of the Tianshan Mountains experienced gradual peneplanation from the Early Jurassic to the Middle Jurassic, as confirmed by widespread fluvial to lacustrine deposits, even inside the modern Tianshan Mountains, and by the dominance of pre-Carboniferous detrital zircons. (5) The dominance of Carboniferous to Permian zircons in the southern Junggar Basin suggests the West Tianshan Mountains were uplifted during the Late Jurassic, while the dominance of pre-Carboniferous zircons in the Central Turpan Basin indicates continuous peneplanation in the Eastern Tianshan Mountains. (6) The initial shape of the Tianshan Mountains-Junggar Basin-Turpan Basin system was constructed in the Late Jurassic but was modified in the Cenozoic by the India-Asia collision, resulting in much higher Western Tianshan and Bogda Mountains, low Eastern Tianshan Mountains and well-developed foreland basins. These Cenozoic changes were recorded by the rapid cooling of apatites, the dominance of Carboniferous to Permian zircons in the southern Junggar Basin and northern Turpan Basin, and the dominance of pre-Carboniferous zircons in the Central Turpan Basin.  相似文献   

13.
乌伦古坳陷位于准噶尔盆地东北部、阿尔泰山南缘,由北西-南东走向的红岩断阶带、索索泉凹陷和南部斜坡带组成。坳陷内上三叠统直接覆盖在石炭系基底之上,上三叠统和侏罗系发育生长地层,白垩系向红岩断阶带方向超覆沉积在侏罗系顶削蚀不整合面之上,古近系、新近系和第四系较稳定地沉积在白垩系顶小角度不整合面之上。索索泉凹陷中生界底面最深,往南部斜坡带逐渐抬高。红岩断阶带中生界被抬升剥蚀,古生界之上直接覆盖新生界。根据生长地层、不整合面、卷入变形的地层时代判断:早-中三叠世乌伦古坳陷延续了二叠纪的隆升剥蚀格局,地层缺失;晚三叠世-侏罗纪陆梁隆起隆升,在坳陷内沉积生长地层,局部发育逆冲断层;白垩纪为红岩断阶带主形成期,白垩系朝着红岩断阶带超覆沉积于侏罗系之上;古近纪构造变形微弱,沉积较为稳定;新近纪-第四纪发育挤压构造和正断层。乌伦古坳陷中生代受阿尔泰陆内造山作用制约,属于阿尔泰中生代陆内前陆盆地系统的一部分:楔顶带从阿尔泰山不断往南扩展,到白垩纪扩展到乌伦古坳陷红岩断阶带;前隆带位于陆梁隆起,并于晚三叠世-侏罗纪挠曲隆升。古近纪造山作用减弱,乌伦古坳陷区域沉降,地层较稳定沉积。新近纪-第四纪受印度-欧亚板块碰撞作用的远程效应影响,北天山发生陆内造山作用,乌伦古坳陷远离北天山,挤压构造变形相对较弱。新近纪-第四纪正断层为造山间歇期形成的区域性伸展构造,代表了中亚地区晚新生代脉动式冲断作用的一个间歇期。  相似文献   

14.
地层不整合接触是研究地质发展历史和鉴定地壳运动特征的重要依据。通过大范围露头尺度和填图尺度不整合面的识别,结合不同时代地层沉积体系的特征及构造变形样式的对比研究,发现东昆仑造山带东段晚古生代—中生代地层由底到顶共发育有4个不同类型的不整合面,分别是上二叠统格曲组与上石炭统浩特洛哇组之间的角度不整合面、中三叠统希里可特组与闹仓坚沟组之间的微角度不整合面、上三叠统八宝山组与下伏不同时代地层之间的角度不整合面、下侏罗统羊曲组与上三叠统八宝山组之间的平行不整合面。这几个不同时代的不整合面分别代表了东昆仑东段晚古生代—中生代地质演化时期中特定的构造事件。其中,格曲组与浩特洛哇组角度不整合关系代表东昆仑造山带南缘阿尼玛卿—布青山古特提斯洋晚二叠世开始向北俯冲的构造事件;希里可特组与闹仓坚沟组微角度不整合关系与陆(弧)陆局部差异性初始碰撞的洋陆转换构造事件密切相关;八宝山组与下伏不同时代地层角度不整合关系是东昆仑地区分布较广、意义重大的一个不整合面,代表中三叠世晚期—晚三叠世早期东昆仑地区陆(弧)陆全面碰撞的主造山构造事件,同时该期碰撞造山事件铸就了东昆仑及其周缘地区的基本构造格架。羊曲组与八宝山组之间平行不整合面则与晚三叠世晚期—早侏罗世早期陆内演化过程中地壳垂向抬升事件相关。这些不整合面的厘定及其代表的相应构造事件对于合理建立东昆仑地区晚古生代—中生代构造演化过程具有重要意义。  相似文献   

15.
王思恩  高林志 《地质通报》2012,31(04):503-509
报道了准噶尔盆地获得侏罗纪齐古组凝灰岩精确的SHRIMP锆石 U-Pb年龄164.6 Ma ± 1.4 Ma(MSWD=1.3)。该年龄值几乎相当于国际地质年表中Callovian阶的底界年龄(164.7Ma±4.0Ma)。根据地层沉积速率推算,齐古组上界年龄值应为161.8Ma,接近Callovian阶的上界(161.2Ma±4.0Ma);其上的喀拉扎组上界年龄大致在160.0 Ma左右,此年龄值应位于牛津阶(Oxfordian)的下部。另外,下白垩统下部清水河组的时代为早白垩世早期(Berriasian)。由此得出:齐古组的主体时代为中侏罗世卡洛期(Callovian), 其下部跨入了巴通期最晚期(late Late Bathonian);喀拉扎组的时代可能仅为牛津期最早期(early Early Oxfordian),反映白垩系与侏罗系之间的不整合几乎缺失了整个上侏罗统,由此推断晚侏罗世曾发生过一次较强烈的构造运动。  相似文献   

16.
本文通过收集研究甘肃省阿干煤田及周边以往钻孔资料,梳理了阿干煤田及周边构造单元中生代地层分布特点,还原了阿干煤田一带自中生代以来构造及沉积环境的演变过程,一是印支运动末期至燕山运动早期盆地沉降充填阶段,主要控制侏罗系地层沉积,中侏罗统含煤地层主要分布在兴隆山隆起区及周边的阿干煤田、水岔沟煤田、高家湾—羊寨坳陷等地区;二是燕山运动中晚期兴隆山隆起抬升阶段,主要控制白垩系地层沉积,主要分布在阿干煤田以西的广大地区。通过恢复侏罗系地层原始沉积范围及后期改造过程,确定了中侏罗统含煤地层赋存的有利区在阿干煤田、水岔沟煤田及高家湾—羊寨坳陷内,这些区域均为兴隆山隆起抬升剥蚀后中侏罗统含煤地层残留区。其中阿干煤田、水岔沟煤田已证实有可采煤层赋存,高家湾—羊寨坳陷面积是阿干煤田的近两倍,与阿干煤田、水岔沟煤田为同一套沉积体系,具备良好的找煤潜力。  相似文献   

17.
新疆准噶尔盆地侏罗系齐古组凝灰岩SHRIMP 锆石U-Pb年龄   总被引:3,自引:0,他引:3  
王思恩  高林志 《地质通报》2012,31(4):503-509
报道了准噶尔盆地获得侏罗纪齐古组凝灰岩精确的SHRIMP锆石 U-Pb年龄164.6 Ma ± 1.4 Ma(MSWD=1.3)。该年龄值几乎相当于国际地质年表中Callovian阶的底界年龄(164.7Ma±4.0Ma)。根据地层沉积速率推算,齐古组上界年龄值应为161.8Ma,接近Callovian阶的上界(161.2Ma±4.0Ma);其上的喀拉扎组上界年龄大致在160.0 Ma左右,此年龄值应位于牛津阶(Oxfordian)的下部。另外,下白垩统下部清水河组的时代为早白垩世早期(Berriasian)。由此得出:齐古组的主体时代为中侏罗世卡洛期(Callovian), 其下部跨入了巴通期最晚期(late Late Bathonian);喀拉扎组的时代可能仅为牛津期最早期(early Early Oxfordian),反映白垩系与侏罗系之间的不整合几乎缺失了整个上侏罗统,由此推断晚侏罗世曾发生过一次较强烈的构造运动。  相似文献   

18.
This paper reports results from detrital zircon U–Pb geochronology, Hf isotopic geochemistry, sandstone modal analysis, and palaeocurrent analysis of the early Mesozoic strata within the Ningwu basin, China, with the aims of constraining the depositional ages and sedimentary provenances and shedding new light on the Mesozoic tectonic evolution of the northcentral North China Craton (NCC). The zircons from early Mesozoic sandstones are characterized by three major populations: Phanerozoic (late Palaeozoic and early Mesozoic), late Palaeoproterozoic (with a peak at approximately 1.8 Ga), and Neoarchaean (with a peak at approximately 2.5 Ga). Notably, three Phanerozoic zircons in the Early Triassic Liujiagou Formation were found to have positive εHf(t) values and characteristics typical of zircons from the Central Asian Orogenic Belt (CAOB). Therefore, the CAOB began to represent the provenance of sediment in the sedimentary basins in the northern NCC no later than the Early Triassic (261 Ma), implying that the final amalgamation of the NCC and CAOB occurred before the Early Triassic. The U–Pb geochronologic and Hf isotopic results show that the Lower Middle Triassic sediments were mainly sourced from the Yinshan–Yanshan Orogenic Belt (YYOB), and that a sudden change in provenances occurred, shifting from a mixed YYOB and CAOB source in the Middle Jurassic to a primarily YYOB source in the Late Jurassic. The results of the sandstone modal analysis suggest that the majority of the samples from the Lower Middle Jurassic rocks were derived from either Continental Block or Recycled Orogen sources, whereas all the samples from the Upper Jurassic rocks were derived from Mixed sources. The change in source might be ascribed to the southward subduction and closure of the Okhotsk Ocean and the resulting intense uplift of the YYOB during the Late Jurassic. This uplift likely represents the start of the Yanshan Orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号