首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
付旭  张德会  印贤波 《地质通报》2011,30(4):595-604
地壳中岩石的变形模式受构造应力、流体压力和上覆岩层重力共同作用的影响。岩石组成和构造应力的大小、方向决定着岩石的变形过程,同时岩石的破裂还受先存断裂构造的影响。流体压力增大,岩石可以发生水力破裂,而引起水力引张破裂的条件是σ1-σ3<4T和Pf=σ3+T。随着深度的增加,受地温梯度的影响,岩石由脆性变形向韧性变形转变。在无流体超压影响的情况下,脆韧性转换的温度在300~450℃之间,大约在地壳15km处。当流体压力和应变速率增大时,韧性条件下的岩石变形行为由韧性向脆性变化,脆韧性转变的深度随之增大。从构造角度探讨热液成矿作用,热液矿床形成的深度与流体压力、应变速率、裂隙的发育、介质的渗透率、温度变化等相关。岩石断裂的类型和方向影响岩石的渗透率,提供流体运移的通道和聚集场所,控制矿床形成的深度、位置和矿体产状。  相似文献   

2.
开展断层脆塑性转化带的变形机制、断层带流体-岩石相互作用、断层愈合作用等研究,对理解间震期、同震加载、震后滑动阶段断层的变形机制转化、强震孕育和发生具有重要意义。笔者采用Carrara大理岩,在温度300~700℃、围压300 MPa和600~800 MPa、应变速率1×10-4/s~1×10-5/s和1×10-7/s~2.5×10-6/s、水含量0.005%~0.01%和0.1%~0.5%条件下,开展了轴向压缩变形实验与裂隙愈合实验。通过偏光显微镜、扫描电镜与能谱分析,研究了实验变形样品的微观结构与变形机制,讨论了水、温度、围压、应变速率对脆塑性转化和变形机制的影响,以及裂隙愈合对断层强度和流体压力变化的制约作用。实验结果表明:(1)Carrara大理岩在低温(300~400℃)、低应变速率和高含水条件下发生了压溶,其中,在低温低应变速率(1×10-7/s)条件下为压溶蠕变,在低温中等应变速率(5×10-7/s)条件下为压溶+碎裂流动。(2)在低温(400℃)、中-高应变速率和低含水条件下发生了位错滑移(双晶滑移、机械双晶)与碎裂流动,局部伴有压溶作用。(3)在中温(500℃)、各应变速率和各含水条件下发生了位错滑移(双晶滑移、机械双晶)与动态重结晶作用。(4)在高温(600~700℃)条件下,动态重结晶作用成为主要变形机制。(5)在压溶和动态重结晶作用下,在脆性变形阶段产生的裂隙与孔隙被愈合。断层强度恢复程度受裂隙和孔隙愈合程度控制。温度、水和应变速率对大理岩脆塑性转化和变形机制的影响非常显著,在相同温度与应变速率条件下,水降低了样品强度,促进了压溶和塑性变形。增加应变和水含量,能够显著促进裂缝和孔隙愈合。根据实验结果推测:在快速变形的同震和震后滑动阶段,断层脆塑性转化带以碎裂变形为主;在缓慢变形的间震期,断层脆塑性转化带以压溶和动态重结晶为主。在塑性变形作用下,同震滑动产生的裂隙被愈合,不仅恢复了断层带强度,而且为断层带内部形成高压流体创造了条件。  相似文献   

3.
不同变质变形煤储层包括低煤级、中煤级和高煤级变质变形环境中的脆性变形煤、韧性变形煤和过渡型变形煤,不同变质、变形程度和机制对煤层气的吸附/解吸影响较大。干燥煤和平衡水煤的甲烷吸附量随变质程度的增强呈现出不同的变化趋势,干燥煤呈横"S"形且易于解吸,而平衡水煤呈倒"U"字形且吸附/解吸强度皆低于干燥煤样,且解吸过程较干燥煤滞后。构造变形导致煤的大分子结构和纳米级孔隙发生不同程度的改变,进而影响气体的吸附/解吸能力,脆性变形主要增加煤的大、中孔,其基本结构单元堆砌度略有增大,甲烷吸附/解吸程度有所增强;韧性变形主要增加煤的微孔-超微孔,其基本结构单元堆砌度增加较快,煤层气吸附能力增强,降压时韧性变形煤比脆性变形煤具有较高的瞬时解吸速率。由此可见,不同变质变形环境中的煤储层吸附/解吸能力差异较大,这主要是由煤储层内部结构及其影响因素对其制约所决定的。  相似文献   

4.
构造煤特有的孔裂隙系统决定了其不同类型具有独特的储层物性,而以脆性变形为主的碎裂煤发育区是煤层气勘探的有利区。根据贵州发耳煤矿9件煤样的显微镜观测和压汞实验数据,分析了构造煤微观变形和显微裂隙分形特征,进而对煤样孔隙渗透特征进行了研究。结果表明:碎裂煤显微裂隙信息维数分布在1.2~1.8;以信息维数为指标,可将碎裂煤划分为3类,信息维数分布范围分别为1.2~1.4、1.4~1.7和1.7~1.8;脆性构造变形增加了孔隙系统中大孔和中孔的孔容,构造变形越强烈,脆性系列构造煤的渗透性能越好。   相似文献   

5.
煤孔隙结构是煤层气勘探开发与煤矿安全研究中的关键问题之一。构造煤相比于原生结构煤非均质性强,是煤储层研究中的热点和难点。采用原子力显微镜,结合NanoScope Analysis和Gwyddion分析软件,对脆性变形序列构造煤的孔隙结构和表面粗糙度特征进行研究。结果表明:构造作用整体上促进了脆性变形煤孔隙的发育,但不同脆性变形构造煤受构造作用影响的程度存在明显差异。根据煤受构造作用影响的程度,脆性变形煤孔隙结构演化可划分为强弱2个阶段:弱脆性变形阶段(原生结构煤—碎裂煤—片状煤—碎斑煤)构造作用对煤体的孔隙结构影响较小,平均孔数量缓慢增长,平均孔径缓慢减小,该阶段构造作用主要促进了100~200 nm大孔的发育;强脆性变形阶段(碎斑煤—碎粒煤—薄片煤)构造作用对煤体孔隙结构产生了显著影响,平均孔数量迅速增长,平均孔径迅速减小,这一阶段构造作用主要促进了10~50 nm介孔和50~100 nm大孔的发育。这表明脆性变形构造煤孔隙结构并非简单的线性演变。不同脆性变形煤的算术平均粗糙度和均方根粗糙度参数分别为3.00~6.05 nm和3.94~7.62 nm,其中,弱脆性变形阶段粗糙度整体较高且无明显变化,而强脆性变形阶段粗糙度迅速降低。通过AFM剖面分析,建立了煤表面孔隙形态的数学模型。基于该模型的算术平均粗糙度模拟结果表明,大孔是煤表面粗糙度的主要贡献者,构造作用主要通过影响煤中的孔隙结构,进而影响煤的表面粗糙度。   相似文献   

6.
头道桥韧性剪切带是研究区一条较典型的、发育比较完整的韧性剪切带,形成糜棱岩、碎裂岩系列.镜下观察区内糜棱岩具多种显微变形结构,主要表现为粒间位移、晶内变形、恢复作用、重结晶作用,从变形环境分析该韧性剪切带具分带性.其变形温度在350~500℃,压力在300~500 MPa,发育最大深度约为22 km.估算差异应力和应变速率分别在39.96~96.48 MPa和(2.17~23.60)×10-12 s-1之间,表明该区糜棱岩是缓慢变形的结果.  相似文献   

7.
李瑞红  刘育  李海林  郑小礼  赵海  孙政 《岩石学报》2014,30(9):2546-2558
新城金矿床是典型的"焦家式"破碎带蚀变岩型金矿,矿体形态和规模都严格受到断裂破碎带控制,是探讨复杂构造-流体耦合成矿系统控矿构造变形环境研究的理想选区。断裂破碎带中构造岩既是构造变形行为的载体,也是相应变形环境的受体。论文在新城金矿详细露头构造解析的基础上,系统采集该矿床控矿断裂破碎带定向构造岩样品,进行显微构造和EBSD组构分析。研究区构造岩显微构造特征主要表现为韧性变形和脆性变形。韧性变形有波状消光、带状消光、亚晶粒、动态重结晶、核幔构造、丝带构造、碎(残)斑系、扭折带、变形纹、机械双晶、蠕英结构、云母鱼等;脆性变形有书斜构造和显微裂隙等。长石(残)斑系、扭折带、变形纹、蠕英结构和石英颗粒边界迁移动态重结晶、丝带构造等矿物变形特征表明断裂带成矿前以高温韧性变形为主;石英波状消光、亚晶粒、亚颗粒旋转和膨凸动态重结晶、方解石机械双晶、长石显微裂隙充填物等矿物变形反映成矿期兼有中低温韧性变形和脆性变形;压剪性穿晶裂隙则反映出成矿后主要是低温脆性变形。根据差应力、应变测量和EBSD组构分析,将新城金矿床控矿构造变形环境可以分为3个构造期:成矿前在NW-SE向挤压作用下发生韧-脆性左行剪切变形,600~700℃,差应力61.37~111.09MPa,应变测量轴比a/c为2.295~3.978,动态重结晶石英颗粒边界分维值为1.466~1.599,反映矿区为高温中高压高应变带变形环境,应变速率较大;成矿期为NW-SE向逐渐NEE-SWW向转变的挤压作用,发生压剪性脆性变形,200~500℃,差应力65.91~135.68MPa,应变测量轴比a/c为1.403~2.204,动态重结晶石英颗粒边界分维值为1.321~1.378,反映矿区成矿期为中低温中高压低应变带变形环境,反应速率较小;成矿后在NWW-SEE向挤压作用下发生压剪变形,150~300℃,反映低温低压脆性变形环境。  相似文献   

8.
金淑燕  孙天泽 《地球科学》2000,25(6):565-572
以天然叶腊石为传压介质, 在温度800~100 0℃、围压0.6~1.0 GPa和应变速率10-4~10-5 s-1条件下, 对Maryland辉绿岩的脆性-塑性转化进行了实验研究.实验结果表明, 在10-4~10-5 s-1应变速率和固定围压1.0 GPa条件下, 当温度低于800℃时, 岩石变形为典型脆性破裂; 温度高于1000℃时岩石变形以准稳态蠕变为主; 温度在800~950℃之间, 岩石变形从脆性破裂向准塑性流动转化.温度变化对岩石脆-塑性转化影响敏感度高于压力变化对变形的敏感度.显微构造观察显示, 辉绿岩脆-塑性转化以稀疏弥漫状共轭塑性流动网络为特征.   相似文献   

9.
辉长岩脆-塑性转化及其影响因素的高温高压实验研究   总被引:9,自引:1,他引:8  
本文利用高温高压多功能三轴实验装置,以NaCl为固体围压传压介质,在围压为450MPa~800MPa,温度区间为600℃~1150℃和应变速率为1×10-4~3.125×10-6/s条件下,对攀枝花辉长岩进行了流变学实验研究。实验结果表明,辉长岩围压在450MPa~800MPa条件下,温度在600℃时为脆性变形,700℃~850℃时为半塑性流动,含微破裂,大于900℃时为塑性流动。辉长岩的脆-塑性转化温度为700℃~900℃,主要影响因素为温度、围压和应变速率,同时存在双相流变学问题。   相似文献   

10.
构造变形可以引起煤纳米级孔隙结构的变化,变形机制的不同对孔隙结构的影响程度也不同。煤的孔隙非均质性极强,传统实验方法难以准确地描述孔隙结构的复杂性,而分形理论提供了描述这一复杂性的量化方法。基于渭北煤田韩城矿区不同类型构造煤的低温氮吸附实验,采用分形FHH方法,定量表征了构造变形对煤纳米级孔隙结构的影响程度。结果表明:韧性变形煤比脆性变形煤的孔隙分形维数高,孔隙结构复杂,非均质性增强,导致毛细凝聚效应增强,吸附滞后突出;构造煤分形维数随着平均孔径的降低和中孔含量的升高而增大,说明构造变形程度越大,平均孔径越小,孔隙结构越复杂。研究认为,分形维数定量反映了煤构造变形的强弱,可以指示煤中纳米级孔隙结构的变形程度。   相似文献   

11.
秦岭石人山岩块的构造岩石学特征及其意义   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对石人山岩块进行系统的矿物学、岩石学特征分析,总结出在洛南—栾川断裂带的影响下,该岩块的变质-变形特征,并阐述其变化规律。石人山岩块的南部边缘发育有一套混合岩带,褶皱强烈,基性岩条带十分清晰。岩石的变质程度由南向北逐渐变浅,从低角闪岩相和角闪岩相的片岩到片麻岩,再到花岗岩,暗色矿物逐渐减少,与花岗岩呈过渡关系;由南向北,随着远离断裂带,岩石结构由碎裂结构向变晶结构—变余结构变化;岩石构造由片状构造向片麻状构造—变余构造变化,变质程度总体是由强变弱、连续的渐变过程;石英的重结晶型式和边界形态、长石变形情况显示:洛南—栾川断裂带和石人山岩块岩石的变质温度范围在300~550℃,属中高温条件;由于后期构造作用的影响,出现温度的非协调现象;动态重结晶石英颗粒边界的分维数为1.332~1.243,从洛南—栾川断裂带往北,随着远离断裂带,呈减小趋势;应变速率值为6.75577×10-16~1.81072×10-16,属于中应变速率条件,并且越靠近断裂带应变速率越大,远离断裂带应变速率逐渐减小。  相似文献   

12.
用动态重结晶石英颗粒的分形确定变形温度及应变速率   总被引:13,自引:0,他引:13  
韧性变形岩石中动态重结晶石英颗粒边界形态具有自相似性,表现出分形特征。动态重结晶石英颗粒边界的分形维数随温度的升高而减小,随应变速率的增加而增大,可作为韧性变形温度及应变速率的标度计。适合重结晶石英边界分维值的计算方法有封闭折线法和面积周长法。鲁西青邑韧性剪切带中糜棱岩动态重结晶石英颗粒边界具有自相似性,分维值为1.228~1.326,初步估算出古应变速率为10  相似文献   

13.
本文首次将分形法引入到对郯庐断裂浮槎山构造岩的分析上,经研究发现,郯庐断裂肥东浮槎山韧性剪切带构造岩动态重结晶石英颗粒边界具有统计意义上的自相似性和明显的分形特征。利用“周长-直径法”得出,随着样品糜棱岩化程度的增强,分维值逐渐增大,依次为1.204、1.213、1.222、1.229,动态重结晶石英颗粒粒径逐渐变小,依次相应为33.79μm、26.00μm、22.82μm、15.01μm,利用两种不同的求算方法进行比较分析,得出应变速率值逐渐增大,依次相应为4.837×10-13s-1、7.688×10-13s-1、9.682×10-13s-1、2.031×10-12s-1。研究区的岩石变形环境达到高绿片岩-低角闪岩相,形成温度为500℃左右。Kruhl温度计适用于该地区;而Takahashi应变速率计不适合自然界较深层次形成的韧性剪切带。  相似文献   

14.
江南造山带东段皖赣相邻区璜茅-五城-屯溪韧性剪切带野外现象、室内显微构造特征表明其经历了较为强烈的韧性剪切变形。岩石经历了NNE向右行剪切改造,变质变形程度为初糜棱岩-糜棱岩阶段,少量达超糜棱岩阶段。结合石英普遍发育边界迁移重结晶、长石多以塑性拉长和少量膨凸重结晶的变形行为特征、石英C轴组构显示出中-高温柱面和菱面滑移为主、重结晶石英颗粒大小-频数及分形维数(1.1646~1.2007),Kruhl温度计测算,揭示了璜茅-五城-屯溪韧性剪切带以中高温位错蠕变变形为主,变形和糜棱岩化环境在450~600℃的中深地壳范围,相当于中高绿片岩相-低角闪岩相。同时,岩石变形的古差异应力为20.76~30.04 MPa,估算所得应变速率主要介于10~(-14)~10~(-11) s~(-1),指示了中高温、低应变速率的韧性变形条件。已有的变形年龄显示,该韧性剪切带为加里东构造事件产物,主要的动力来源与江山-绍兴断裂带发育的陆内俯冲作用主应力在远离造山带的转变相关。  相似文献   

15.
在温度为25~700℃、压力为500~1500MPa和应变率10~(-5)S~(-1)的条件下,对布什维尔德斜长石(An_(75),粒度350μm,5%其它物质)展开了一系列实验。在所施加的P—T范围内布什维尔德杂岩的强度都保持对压力敏感,而弱化则出现在给定压力条件下增温的情况。由粘滑向稳定滑移的转变出现在200~300℃和≥500MPa条件下。在200~300℃时强度的降低,局部出现的碎裂流及缺少晶内塑性变形的微观证据都有利地说明一种可能性,即这种转变对应于一定量随机分布的热破裂的扩展。均匀韧性流动仅出现在600℃和700℃温度,1000~1500MPa压力条件下,它与机械双晶,不均匀和带状波状消光的发育对应,这可能是由半脆性变形引起的。在这些条件下,变形持续至应变高达44%。  相似文献   

16.
杨光  刘俊来 《地质学报》2008,82(10):1335-1340
本文开展了在25~150℃和25~100 MPa同时升温和升压条件下,鄂尔多斯盆地中煤阶煤岩变形实验研究。结果表明, 25℃/25 MPa条件下煤岩强度显著低于其他温度和压力条件下煤岩的强度。在实验变形条件下,煤岩主体的变形表现以破裂与微破裂作用为主。不同温度和压力条件下的煤岩变形特点表现出一定的差异。随着温度和压力的降低,煤岩样品破裂的延伸逐渐减小,破裂发育的透入性逐渐升高。变形煤岩样品中破裂的发育往往定向性较强,发育相对较为均匀。随着应变的增加,破裂多扩展为较大的规模。伴随天然煤降温、降压过程,导致煤岩从韧性向脆性的转变,在转变的早期和中期,大量煤层气将解吸储集于尚未贯通的密集微裂隙内,随着温压的缓慢降低,煤岩储集性和渗透性在变好,较为适宜煤层气的运移与保存。而在转变的后期,煤岩形成贯穿性破裂系,造成煤层气的散失,可能成为演化程度和孔隙度低的煤岩吸附煤层气能力弱的主要原因。  相似文献   

17.
基于不同变形类型和程度煤样品的X 射线衍射分析(XRD),研究了构造煤的结构演化及其应力- 应变环境。结果显示, 弱变形构造煤芳香结构参数面网间距(d 002)随煤化程度增高呈阶跃式减小,阶跃点为最大油浸镜质组反射率等于0.69% 左 右,阶跃点后变化不大;鳞片煤Ⅱ的面网间距最小,揉皱糜棱煤与片状碎裂煤Ⅱ相当,介于弱变形构造煤与鳞片煤Ⅱ之间, 揉皱煤的面网间距稍大于揉皱糜棱煤;堆砌度随煤芳香结构演化与面网间距协调变化。认为应力- 应变作用类型和程度的 差异控制了不同变形类型和程度构造煤的形成,应力- 应变作用不仅改变煤体宏观和微观结构,也影响着煤芳香结构的演 化,且不同类型和程度应力-应变作用的影响程度存在较大差异。形成构造煤的应力- 应变环境可分为脆性碎裂变形环境、 韧性变形环境和剪切变形环境三类。弱和中等脆性碎裂变形作用对煤芳香结构影响不大;韧性和剪切变形作用分别以一定 的温压条件和定向的应力作用为主要特征,前者有利于煤中杂原子团的脱落和新芳环的形成,后者有助于煤中分子结构的 有序化,均可促进煤中芳核的生长。  相似文献   

18.
黄达  岑夺丰  黄润秋 《岩土力学》2013,34(2):535-545
加载速率对裂隙岩体的力学性质及变形破坏均有重要影响。利用二维颗粒流程序PFC2D开展了不同倾角非贯通单裂隙砂岩试件的单轴压缩试验,研究了中等应变率对裂隙砂岩应力-应变曲线特征、裂隙尖端应力状态、特征应力状态、岩体损伤及裂隙扩展等力学响应的影响规律。裂隙岩体应力-应变曲线呈现明显的波动性,定义应力突变指标 对应力突变型波动剧烈程度进行了定量统计分析:随应变率的增加,曲线应力突变波动越剧烈,且峰后明显大于峰前;随裂隙倾角的增大,波动幅度峰前增大,而峰后减小。裂隙尖端破裂应力随应变率增大均有所提高,随裂隙倾角的增大,切向剪应力 总体上呈增加变化,而法向应力 明显减小。尖端破裂时岩样加载应力 、岩样临界扩容应力 及峰值应力 均随应变率增大而增大。裂隙尖端的破裂可立即引起岩体扩容,一般应变率越低,岩体裂隙尖端破裂点 和扩容点 越接近峰值强度 。随着应变率的提高,损伤裂纹及宏观裂隙类型越多,岩体试件损伤破裂程度越强,特别是试件端部效应愈显著。裂隙首先以I型翼裂纹在其尖端起裂,而I型翼裂纹的扩展长度与加载速率与裂隙倾角具有较强的相关性。  相似文献   

19.
华南武功山地区早古生代花岗岩发育强烈的韧性变形,其变形特征和形成机制是认识武功山地区构造样式和成因的关键。在详细的野外地质调查基础之上,对武功山早古生代片麻状状岩花岗岩进行了有限应变分析、运动学涡度测量以及温度估算。有限应变分析表明早古生代片麻状花岗岩主应变轴比X/Z介于1.33~5.07,Y/Z介于1.17~2.59;对数付林参数K值介于0.05~6.88之间;三个主方向应变强度ε1、ε2、ε3大小范围分别为0.13~1.35、-0.26~0.28、-0.54~-0.18;应变型式从边部到核部呈扁型—长型与扁型共存—长型的变化规律;应变大小从边部到核部呈增大又减小的趋势,即中间地带为应变较强的一个带。运动学涡度测量和温度估算表明武功山地区片麻状花岗岩经历了两期构造变形,早期以纯剪变形为主,形成温度为500~600℃;晚期变形表现为简单剪切,形成温度为300~400℃。结合年代学资料,探讨了武功山早古生代花岗岩韧性变形的形成机制。  相似文献   

20.
新庄煤矿立井采用冻结法施工技术,在井筒开挖的过程中,由于侧向卸荷作用导致围岩产生卸荷变形。从新庄煤矿立井现场采集白垩系中粒砂岩,对加工后的岩样进行饱水处理,然后利用GCTS电液伺服控制高低温高压岩石三轴测试系统进行冻结(-10 ℃)条件下的恒轴压、卸围压三轴试验,模拟在井筒开挖过程中围岩的应力变化路径,探索冻结砂岩的变形特性。研究表明:侧向卸荷条件下冻结砂岩表现出弹-脆性特征,轴向表现为压缩变形,径向表现为膨胀变形,径向变形量约为轴向变形量的2倍;当卸荷速率一定时,岩样的卸荷变形随初始围压的增大而增大,尤其是径向变形最为显著,这可能与卸荷回弹变形及岩样内部聚集的能量大小有关;围压卸荷到同一应力水平时,高卸荷速率下岩样的卸荷变形量较小,而变形速率较大;卸荷作用导致岩样变形模量减小,横向应变与纵向应变之比增大,卸荷速率越小,初始围压越大,应变之比变化越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号