首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have carried out a program of continuous Interplanetary Scintillation (IPS) monitoring of the interplanetary activity using Ooty Radio Telescope (ORT). From May 1990 to March 1991, during the 22nd, solar maximum, a few radio sources were monitored to provide long stretches of IPS data with a high-time resolution of few minutes. These observations covered 0.3 to 0.8 AU region (12° to 70° elongations) around the sun at several heliographic latitudes. During the observation, we detected 33 short-time scale IPS events which had significant variation in the scintillation index and solar wind velocity. These were considered to be due to travelling interplanetary disturbances.A multi-component model of plasma density enhancement was developed to estimate the geometry and physical properties of these IPS events. Detailed analysis of 20 of these events suggests, 1. fast IPS events were interplanetary signatures of Coronal Mass Ejections (CMEs), 2. the average mass and energy of these events was 1016 gm and 1033 erg respectively,3. 80% of IPS events were associated with X-ray flares on the sun and 50% were associated with geomagnetic activity at earth. Detailed study of the multicomponent model suggests IPS observations at smaller elongations (hence at higher radio frequencies) are more suited to detect fast-moving interplanetary disturbances such as produced by CMEs.  相似文献   

2.
Imaging of the heliosphere is a burgeoning area of research. As a result, it is awash with new results, using novel applications, and is demonstrating great potential for future research in a wide range of topical areas. The STEREO (Solar TErrestrial RElations Observatory) Heliospheric Imager (HI) instruments are at the heart of this new development, building on the pioneering observations of the SMEI (Solar Mass Ejection Imager) instrument aboard the Coriolis spacecraft. Other earlier heliospheric imaging systems have included ground-based interplanetary scintillation (IPS) facilities and the photometers on the Helios spacecraft. With the HI instruments, we now have routine wide-angle imaging of the inner heliosphere, from vantage points outside the Sun-Earth line. HI has been used to investigate the development of coronal mass ejections (CMEs) as they pass through the heliosphere to 1 AU and beyond. Synoptic mapping has also allowed us to see graphic illustrations of the nature of mass outflow as a function of distance from the Sun – in particular, stressing the complexity of the near-Sun solar wind. The instruments have also been used to image co-rotating interaction regions (CIRs), to study the interaction of comets with the solar wind and CMEs, and to witness the impact of CMEs and CIRs on planets. The very nature of this area of research – which brings together aspects of solar physics, space-environment physics, and solar-terrestrial physics – means that the research papers are spread among a wide range of journals from different disciplines. Thus, in this special issue, it is timely and appropriate to provide a review of the results of the first two years of the HI investigations.  相似文献   

3.
Balachandran  Bala 《Solar physics》2000,195(1):195-208
Since the 1970s, the Solar-Terrestrial Environment Laboratory, Japan, has been publishing synoptic maps of solar wind velocity prepared using the technique of interplanetary scintillation. These maps, known as V-maps, are useful to study the global distribution of solar wind in the heliosphere. As the Earth-orbiting satellites are unable to probe regions outside the ecliptic, it is important to exploit the scope of interplanetary scintillation to study the solar wind properties at these regions and their relation with coronal features. It has been shown by Wang and Sheeley that there exists an inverse correlation between rate of magnetic flux expansion and the solar wind velocity. The NOAA/Space Environment Center daily updated version of the Wang and Sheeley model has been used to produce synoptic maps of solar wind velocity and magnetic field polarity for individual Carrington rotations. The predictions of the model at 1 AU have been found to be in good agreement with the observed values of the same. The present work is a comparison of the synoptic maps on the source surface using the interplanetary scintillation measurements from Japan and the NOAA/SEC version of the Wang and Sheeley model. The two results agree near the equatorial regions and the slow solar wind locations are consistent most of the times. However, at higher latitudes within ±60°, the wind velocities differ considerably. In the Wang and Sheeley model the highest speed obtained is 600 km s–1 whereas in the IPS results velocities as high as 800 km s–1 have been detected. The paper discusses the possible causes for this discrepancy and suggestion to improve the agreement between the two results.  相似文献   

4.
The ground-based radio astronomy method of interplanetary scintillations (IPS) and spacecraft observations have shown, in the past 25 years, that while coronal holes give rise to stable, reclining high speed solar wind streams during the minimum of the solar activity cycle, the slow speed wind seen more during the solar maximum activity is better associated with the closed field regions, which also give rise to solar flares and coronal mass ejections (CME’s). The latter events increase significantly, as the cycle maximum takes place. We have recently shown that in the case of energetic flares one may be able to track the associated disturbances almost on a one to one basis from a distance of 0.2 to 1 AU using IPS methods. Time dependent 3D MHD models which are constrained by IPS observations are being developed. These models are able to simulate general features of the solar-generated disturbances. Advances in this direction may lead to prediction of heliospheric propagation of these disturbances throughout the solar system.  相似文献   

5.
We use dual-site radio observations of interplanetary scintillation (IPS) with extremely long baselines (ELB) to examine meridional flow characteristics of the ambient fast solar wind at plane-of-sky heliocentric distances of 24?–?85 solar radii (R ). Our results demonstrate an equatorwards deviation of 3?–?4° in the bulk fast solar wind flow direction over both northern and southern solar hemispheres during different times in the declining phase of Solar Cycle 23.  相似文献   

6.
The Low Frequency array (LOFAR) will be a next generation digital aperture synthesis radio telescope covering the frequency range from 10 to 240 MHz. The instrument will feature full polarisation and multi-beaming capability, and is currently in its design phase. This work highlights the solar, heliospheric and space weather applications where LOFAR, with its unique and unprecedented capabilities, can provide useful information inaccessible by any other means. The relevant aspects of the LOFAR baseline design are described, and the most promising techniques of interest are enumerated. These include tracking coronal mass ejections (CMEs) out to large distances using interplanetary scintillation (IPS) methods, tomographic reconstruction of the solar wind in the inner heliosphere using IPS, direct imaging of the radio emission from CMEs and finally possible Faraday rotation studies of the magnetic field structure of the heliosphere and the CMEs. This work is a part of an effort directed towards ensuring the compatibility of LOFAR design with solar and space weather applications, in collaboration with the wider community.  相似文献   

7.
P. K. Manoharan 《Solar physics》2010,265(1-2):137-157
In this paper, I investigate the three-dimensional evolution of solar wind density and speed distributions associated with coronal mass ejections (CMEs). The primary solar wind data used in this study has been obtained from the interplanetary scintillation (IPS) measurements made at the Ooty Radio Telescope, which is capable of measuring scintillation of a large number of radio sources per day and solar wind estimates along different cuts of the heliosphere that allow the reconstruction of three-dimensional structures of propagating transients in the inner heliosphere. The results of this study are: i) three-dimensional IPS images possibly show evidence for the flux-rope structure associated with the CME and its radial size evolution; the overall size and features within the CME are largely determined by the magnetic energy carried by the CME. Such a magnetically energetic CME can cause an intense geomagnetic storm, even if the trailing part of the CME passes through the Earth; ii) IPS measurements along the radial direction of a CME at ~?120 R show density turbulence enhancements linked to the shock ahead of the CME and the core of the CME. The density of the core decreases with distance, suggesting the expansion of the CME. However, the density associated with the shock increases with distance from the Sun, indicating the development of a strong compression at the leading edge of the CME. The increase of stand-off distance between ~?120 R and 1 AU is consistent with the deceleration of the CME and the continued outward expansion of the shock. The key point in this study is that the magnetic energy possessed by the transient determines its radial evolution.  相似文献   

8.
The technique of interplanetary scintillation (IPS) is the observation of rapid fluctuations of the radio signal from an astronomical compact source as the signal passes through the ever-changing density of the solar wind. Cross-correlation of simultaneous observations of IPS from a single radio source, received at multiple sites of the European Incoherent SCATter (EISCAT) radio antenna network, is used to determine the velocity of the solar wind material passing over the lines of sight of the antennas. Calculated velocities reveal the slow solar wind to contain rapid velocity variations when viewed on a time-scale of several minutes. Solar TErrestrial RElations Observatory (STEREO) Heliospheric Imager (HI) observations of white-light intensity have been compared with EISCAT observations of IPS to identify common density structures that may relate to the rapid velocity variations in the slow solar wind. We have surveyed a one-year period, starting in April 2007, of the EISCAT IPS observing campaigns beginning shortly after the commencement of full science operations of the STEREO mission in a bid to identify common density structures in both EISCAT and STEREO HI datasets. We provide a detailed investigation and presentation of joint IPS/HI observations from two specific intervals on 23 April 2007 and 19 May 2007 for which the IPS P-Point (point of closest approach of the line of sight to the Sun) was between 72 and 87 solar radii out from the Sun’s centre. During the 23 April interval, a meso-scale (of the order of 105 km or larger) transient structure was observed by HI-1A to pass over the IPS ray path near the P-Point; the observations of IPS showed a micro-scale structure (of the order of 102 km) within the meso-scale transient. Observations of IPS from the second interval, on 19 May, revealed similar micro-scale velocity changes, however, no transient structures were detected by the HIs during that period. We also pose some fundamental thoughts on the slow solar wind structure itself.  相似文献   

9.
太阳风行星际闪烁(interplanetary scintillation,IPS)研究在太阳物理,日地空间物理和空间天气学研究中具有重要科学意义,经过近30年重点研究太阳风后,从90年代初开始,IPS研究在太阳风与日球观测的对比分析、行星际扰动与地磁活动预报,观测数据的层析分析三方面都取得了新的进展。  相似文献   

10.
P. K. Manoharan 《Solar physics》2006,235(1-2):345-368
Knowledge of the radial evolution of the coronal mass ejection (CME) is important for the understanding of its arrival at the near-Earth space and of its interaction with the disturbed/ambient solar wind in the course of its travel to 1 AU and further. In this paper, the radial evolution of 30 large CMEs (angular width > 150, i.e., halo and partial halo CMEs) has been investigated between the Sun and the Earth using (i) the white-light images of the near-Sun region from the Large Angle Spectroscopic Coronagraph (LASCO) onboard SOHO mission and (ii) the interplanetary scintillation (IPS) images of the inner heliosphere obtained from the Ooty Radio Telescope (ORT). In the LASCO field of view at heliocentric distances R≤30 solar radii (R), these CMEs cover an order of magnitude range of initial speeds, VCME≈260–2600 km s−1. Following results have been obtained from the speed evolution of these CMEs in the Sun–Earth distance range: (1) the speed profile of the CME shows dependence on its initial speed; (2) the propagation of the CME goes through continuous changes, which depend on the interaction of the CME with the surrounding solar wind encountered on the way; (3) the radial-speed profiles obtained by combining the LASCO and IPS images yield the factual view of the propagation of CMEs in the inner heliosphere and transit times and speeds at 1 AU computed from these profiles are in good agreement with the actual measurements; (4) the mean travel time curve for different initial speeds and the shape of the radial-speed profiles suggest that up to a distance of ∼80 R, the internal energy of the CME (or the expansion of the CME) dominates and however, at larger distances, the CME's interaction with the solar wind controls the propagation; (5) most of the CMEs tend to attain the speed of the ambient flow at 1 AU or further out of the Earth's orbit. The results of this study are useful to quantify the drag force imposed on a CME by the interaction with the ambient solar wind and it is essential in modeling the CME propagation. This study also has a great importance in understanding the prediction of CME-associated space weather at the near-Earth environment.  相似文献   

11.
Jackson  Bernard V.  Hick  P. Paul 《Solar physics》2002,211(1-2):345-356
The Air Force/NASA Solar Mass Ejection Imager (SMEI) will provide two-dimensional images of the sky in visible light with high (0.1%) photometric precision, and unprecedented sky coverage and cadence. To optimize the information available from these images they must be interpreted in three dimensions. We have developed a Computer Assisted Tomography (CAT) technique that fits a three-dimensional kinematic heliospheric model to remotely-sensed Thomson scattering observations. This technique is designed specifically to determine the corotating background solar wind component from data provided by instruments like SMEI. Here, we present results from this technique applied to the Helios spacecraft photometer observations. The tomography program iterates to a least-squares solution of observed brightnesses using solar rotation, spacecraft motion and solar wind outflow to provide perspective views of each point in space covered by the observations. The corotational tomography described here is essentially the same as used by Jackson et al. (1998) for the analysis of interplanetary scintillation (IPS) observations. While IPS observations are related indirectly to the solar wind density through an assumed (and uncertain) relationship between small-scale density fluctuations and density, Thomson scattering physics is more straightforward, i.e., the observed brightness depends linearly on the solar wind density everywhere in the heliosphere. Consequently, Thomson scattering tomography can use a more direct density-convergence criterion to match observed Helios photometer brightness to brightness calculated from the model density. The general similarities between results based on IPS and Thomson scattering tomography validate both techniques and confirm that both observe the same type of solar wind structures. We show results for Carrington rotation 1653 near solar minimum. We find that longitudinally segmented dense structures corotate with the Sun and emanate from near the solar equator. We discuss the locations of these dense structures with respect to the heliospheric current sheet and regions of activity on the solar surface.  相似文献   

12.
D. Oberoi  L. Benkevitch 《Solar physics》2010,265(1-2):293-307
The Murchison Widefield Array (MWA) is one of the new technology low frequency radio interferometers currently under construction at an extremely radio-quiet location in Western Australia. The MWA design brings to bear the recent availability of powerful high-speed computational and digital signal processing capabilities on the problem of low frequency high-fidelity imaging with a rapid cadence and high spectral resolution. Solar and heliosphere science are among the key science objectives of the MWA and have guided the array design from its very conception. We present here a brief overview of the design and capabilities of the MWA with emphasis on its suitability for solar physics and remote-sensing of the heliosphere. We discuss the solar imaging and interplanetary scintillation (IPS) science capabilities of the MWA and also describe a new software framework. This software, referred to as Haystack InterPlanetary Software System (HIPSS), aims to provide a common data repository, interface, and analysis tools for IPS data from all observatories across the world.  相似文献   

13.
Coronal Mass Ejections (CMEs) are important phenomena in coronal dynamics causing interplanetary signatures (ICMEs). They eject large amounts of mass and magnetic fields into the heliosphere, causing major geomagnetic storms and interplanetary shocks. Geomagnetic storms are often characterized by abrupt increases in the northward component of the earth’s field, called sudden commencements (SSC) followed by large decreases of the magnetic field and slow recovery to normal values. The SSCs are well correlated with IP shocks. Here a case study of 10–15 February 2000 and also the statistical study of CME events observed by IPS array, Rajkot, during the years 2000 to 2003 and Radio Astronomy Center, Ooty are described. The geomagnetic storm index Dst, which is a measure of geo-effectiveness, is shown to be well correlated with normalized scintillation index ‘g’, derived from Ooty Radio Telescope (ORT) observations.  相似文献   

14.
An analytical 3-D magnetohydrodynamic (MHD) solution of a magnetic-flux rope (FR) is presented. This FR solution may explain the uniform propagation, beyond ~?0.05 AU, of coronal mass ejections (CMEs) commonly observed by today’s missions like The Solar Mass Ejection Imager (SMEI), Solar and Heliospheric Observatory (SOHO) and Solar Terrestrial Relations Observatory (STEREO), tracked to tens of times the radius of the Sun, and in some cases up to 1 AU, and/or beyond. Once a CME occurs, we present arguments regarding its evolution based on its mass and linear momentum conservation. Here, we require that the gravitational and magnetic forces balance each other in the framework of the MHD theory for a simple model of the evolution of a CME, assuming it interacts weakly with the steady solar wind. When satisfying these ansätze we identify a relation between the transported mechanical mass of the interplanetary CME with its geometrical parameters and the intensity of the magnetic field carried by the structure. In this way we are able to estimate the mass of the interplanetary CME (ICME) for a list of cases, from the Wind mission records of ICME encountered near Earth, at 1 AU. We obtain a range for masses of ~?109 to 1013 kg, or assuming a uniform distribution, of ~?0.5 to 500 cm?3 for the hadron density of these structures, a result that appears to be consistent with observations.  相似文献   

15.
The earth is immersed in a hot, rarefied, energetic flow of particles and electromagnetic fields originating from the Sun and engulfing the entire solar system, forming the heliosphere. The existence of the solar wind has been established for almost 50 years now, and abundant data has been accumulated concerning both its average properties and the intermittent, violent energetic manifestations known as Coronal Mass Ejections which often impact the earth’s magnetosphere (causing geomagnetic storms and aurorae). The mystery of how the solar corona is heated and the solar wind is accelerated remains unsolved, however, because of the large gap in our knowledge of the inner region of the heliosphere, inside the orbit of mercury. The PHOIBOS mission, with a perihelion at 4 Rs, by accessing the regions where energy in the coronal plasma is channeled from internal, magnetic and turbulent energy into bulk energy of the solar wind flow aims to solve the question of why the Sun has a hot corona and produces a solar wind. The PHOIBOS mission builds on previous Solar Probe studies, but provides an alternative orbit scenario avoiding a Jupiter encounter in favor of multiple Venus encounters and SEP systems to work its way close to the Sun in a gradual manner, providing a much vaster data return.  相似文献   

16.
This paper will review the input of 65 years of radio observations to our understanding of solar and solar–terrestrial physics. It is focussed on the radio observations of phenomena linked to solar activity in the period going from the first discovery of the radio emissions to present days. We shall present first an overview of solar radio physics focussed on the active Sun and on the premices of solar–terrestrial relationships from the discovery to the 1980s. We shall then discuss the input of radioastronomy both at metric/decimetric wavelengths and at centimetric/millimetric and submillimetric wavelengths to our understanding of flares. We shall also review some of the radio, X-ray and white-light signatures bringing new evidence for reconnection and current sheets in eruptive events. The input of radio images (obtained with a high temporal cadence) to the understanding of the initiation and fast development in the low corona of coronal mass ejections (CMEs) as well as the radio observations of shocks in the corona and in the interplanetary medium will be reviewed. The input of radio observations to our knowledge of the interplanetary magnetic structures (ICMEs) will be summarized; we shall show how radio observations linked to the propagation of electron beams allow to identify small scale structures in the heliosphere and to trace the connection between the Sun and interplanetary structures as far as 4AU. We shall also describe how the radio observations bring useful information on the relationship and connections between the energetic electrons in the corona and the electrons measured in-situ. The input of radio observations on the forecasting of the arrival time of shocks at the Earth as well as on Space Weather studies will be described. In the last section, we shall summarize the key results that have contributed to transform our knowledge of solar activity and its link with the interplanetary medium. In conclusion, we shall indicate the instrumental radio developments at Earth and in space, which are from our point of view, necessary for the future of solar and interplanetary physics.  相似文献   

17.
The European Incoherent SCATter (EISCAT) radar has been used for remote-sensing observations of interplanetary scintillation (IPS) for a quarter of a century. During the April/May 2007 observing campaign, a large number of observations of IPS using EISCAT took place to give a reasonable spatial and temporal coverage of solar wind velocity structure throughout this time during the declining phase of Solar Cycle 23. Many co-rotating and transient features were observed during this period. Using the University of California, San Diego three-dimensional (3-D) time-dependent computer assisted tomography (C.A.T.) solar-wind reconstruction analysis, we show the velocity structure of the inner heliosphere in three dimensions throughout the time interval of 20 April through 20 May 2007. We also compare to white-light remote-sensing observations of an interplanetary coronal mass ejection (ICME) seen by the STEREO Ahead spacecraft inner Heliospheric Imager on 16 May 2007, as well as to in-situ solar-wind measurements taken with near-Earth spacebourne instrumentation throughout this interval. The reconstructions show clear co-rotating regions during this period, and the time-series extraction at spacecraft locations compares well with measurements made by the STEREO, Wind, and ACE spacecraft. This is the first time such clear structures have been revealed using this 3-D technique with EISCAT IPS data as input.  相似文献   

18.
Solar flare accelerated electrons escaping into the interplanetary space and seen as type III solar radio bursts are often detected near the Earth. Using numerical simulations we consider the evolution of energetic electron spectrum in the inner heliosphere and near the Earth. The role of Langmuir wave generation, heliospheric plasma density fluctuations, and expansion of magnetic field lines on the electron peak flux and fluence spectra is studied to predict the electron properties as could be observed by Solar Orbiter and Solar Probe Plus. Considering various energy loss mechanisms we show that the substantial part of the initial energetic electron energy is lost via wave–plasma processes due to plasma inhomogeneity. For the parameters adopted, the results show that the electron spectrum changes mostly at the distances before ~?20 R . Further into the heliosphere, the electron flux spectrum of electrons forms a broken power law relatively similar to what is observed at 1 AU.  相似文献   

19.
太阳风是日地空间的主要物质来源,太阳风的观测对日地空间环境及地球物理的研究具有重要意义。地基行星际闪烁观测是监测太阳风风速,测量太阳风等离子体不规则结构,研究遥远致密射电源角径的重要且有效的方法。介绍了行星际闪烁地基观测的单站单频模式的基本理论,针对单站单频模式观测的数据处理及自编软件。本文的工作是为行星际闪烁单站双频系统数据分析处理作前期准备。  相似文献   

20.
Comparative Study of MHD Modeling of the Background Solar Wind   总被引:3,自引:0,他引:3  
Knowledge about the background solar wind plays a crucial role in the framework of space-weather forecasting. In-situ measurements of the background solar wind are only available for a few points in the heliosphere where spacecraft are located, therefore we have to rely on heliospheric models to derive the distribution of solar-wind parameters in interplanetary space. We test the performance of different solar-wind models, namely Magnetohydrodynamic Algorithm outside a Sphere/ENLIL (MAS/ENLIL), Wang–Sheeley–Arge/ENLIL (WSA/ENLIL), and MAS/MAS, by comparing model results with in-situ measurements from spacecraft located at 1 AU distance to the Sun (ACE, Wind). To exclude the influence of interplanetary coronal mass ejections (ICMEs), we chose the year 2007 as a time period with low solar activity for our comparison. We found that the general structure of the background solar wind is well reproduced by all models. The best model results were obtained for the parameter solar-wind speed. However, the predicted arrival times of high-speed solar-wind streams have typical uncertainties of the order of about one day. Comparison of model runs with synoptic magnetic maps from different observatories revealed that the choice of the synoptic map significantly affects the model performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号