首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluid inclusion salinities from quartz veins in the Otago Schist, New Zealand, range from 1.0 to 7.3 wt% NaCl eq. in the Torlesse terrane, and from 0.4 to 3.1 wt% NaCl eq. in the Caples terrane. Homogenization temperatures from these inclusions range from 124 to 350  °C, with modal values for individual samples ranging from 163 to 229  °C, but coexisting, low-salinity inclusions exhibiting metastable ice melting show a narrower range of T  h from 86 to 170  °C with modes from 116 to 141  °C. These data have been used in conjunction with chlorite chemistry to suggest trapping conditions of ≈350–400  °C and 4.1–6.0  kbar for inclusions showing metastable melting from lower greenschist facies rocks, with the densities of many other inclusions reset at lower pressures during exhumation of the schist. The fluid inclusion salinities and Br/Cl ratios from veins from the Torlesse terrane are comparable to those of modern sea-water, and this suggests direct derivation of the vein fluid from the original sedimentary pore fluid. Some modification of the fluid may have taken place as a result of interaction with halogen-bearing minerals and dehydration and hydration reactions. The salinity of fluids in the Caples terrane is uniformly lower than that of modern sea-water, and this is interpreted as a result of the dilution of the pore fluid by dehydration of clays and zeolites. The contrast between the two terranes may be a result of the original sedimentary provenance, as the Torlesse terrane consists mainly of quartzofeldspathic sediments, whilst the Caples terrane consists of andesitic volcanogenic sediments and metabasites which are more prone to hydration during diagenesis, and hence may provide more fluid via dehydration at higher grades.  相似文献   

2.
Apatite occurs in the zeolite to greenschist facies metamorphic rocks of the Otago Schist, South Island, New Zealand, as both a groundmass constituent and as a hydrothermal phase hosted in metamorphic quartz veins. Groundmass apatite from low-grade rocks, ranging from the zeolite facies to the pumpellyite–actinolite zone, has chloride contents ranging from 0–1.4 wt%, and fluoride contents ranging from 2.2–4.2 wt%, whilst groundmass apatite from the greenschist facies (chlorite to biotite zone) is virtually pure fluorapatite. Vein apatite from all grades is also fluorapatite with little or no chloride. This difference in composition is interpreted as resulting from the preservation of the primary magmatic compositions of detrital Cl-apatite grains, out of equilibrium with the metamorphic fluid, at low grades, whilst higher-grade groundmass apatite and neoformed apatite in quartz veins have compositions in equilibrium with an aqueous metamorphic fluid. The presence of detrital Cl-bearing apatite during the early stages of metamorphism may constitute a significant reservoir of Cl, given the low porosities of compacted sediments undergoing prograde metamorphism. Calculations indicate that the release of Cl from detrital apatite in the Otago Schist, as a result of re-equilibration of apatite with the pore fluid, may have had a significant effect on the salinity of the metamorphic fluid.  相似文献   

3.
The Macraes orogenic gold deposit is hosted by a graphitic micaceous schist containing auriferous porphyroblastic sulphides. The host rock resembles zones of unmineralised micaceous graphitic pyritic schists, derived from argillaceous protoliths, that occur locally in background pelitic Otago Schist metasediments. This study was aimed at determining the relationship between these similar rock types, and whether the relationship had implications for ore formation. Argillites in the protolith turbidites of the Otago Schist metamorphic belt contain minor amounts of detrital organic matter (<0.1 wt.%) and diagenetic pyrite (<0.3 wt.% S). The detrital organic carbon was mobilised by metamorphic–hydrothermal fluids and redeposited as graphite in low-grade metaturbidites (pumpellyite–actinolite and greenschist facies). This carbon mobility occurred through >50 million years of evolution of the metamorphic belt, from development of sheared argillite in the Jurassic, to postmetamorphic ductile extension in the Cretaceous. Introduced graphite is structurally controlled and occurs with metamorphic muscovite and chlorite as veins and slicken-sided shears, with some veins having >50% noncarbonate carbon. Graphitic foliation seams in low-grade micaceous schist and metamorphic quartz veins contain equant graphite porphyroblasts up to 2 mm across that are composed of crystallographically homogeneous graphite crystals. Graphite reflectance is anisotropic and ranges from ~1% to ~8% (green light). Texturally similar porphyroblastic pyrite has grown in micaceous schist (up to 10 wt.% S), metamorphic quartz veins and associated muscovite-rich shears. These pyritic schists are weakly enriched in arsenic (up to 60 ppm). The low-grade metamorphic mobility and concentration of graphite in micaceous schists is interpreted to be a precursor process that structurally and geochemically prepared parts of the Otago Schist belt for later (more restricted) gold mineralisation. Economic amounts of gold, and associated arsenic, were subsequently introduced to carbonaceous sulphidic schists in the Macraes gold deposit by a separate metamorphic fluid derived from high-grade metaturbidites. Fluid flow at all stages in these processes occurred at metamorphic rates (mm/year), and fluids were broadly in equilibrium with the rocks through which they were passing.  相似文献   

4.
D Craw 《Chemical Geology》2002,191(4):257-275
The Macraes gold deposit in the Otago Schist, New Zealand, formed during late metamorphic fluid flow through a lower greenschist facies shear zone. Mineralisation occurred near to the brittle-ductile transition at about 300 °C. Large volumes of host rock in a shear zone up to 120 m thick have been hydrothermally altered by this fluid activity. Most alteration is not structurally controlled apart from proximity to the shear zone. Ductile and brittle microshears traverse the most mineralised rocks and some structural control of fluid flow occurred as well. Fluid flow was slow, similar to that in metamorphic rocks (mm/year) and diffusion through interconnected fluid was a significant chemical process. Localised extensional hydrofractures (m scale) are filled with mineralised quartz. Most alteration of the host rocks was isochemical with respect to the lithophile elements, and mineralised rocks have been variably enriched in As, Au, Sb, W, Mo and Bi, but not Co or Cd. Addition of sulphur has occurred to both host rocks and mineralised rocks, up to 1 wt.% above a background of 0.1 wt.%. Host rock sulphur is mainly pyritic and is not structurally controlled. Mineralised rocks have pyrite and arsenopyrite along microshears. Pyrite, chalcopyrite, sphalerite and galena have formed from sulphidation of silicates with no addition of metals. Graphite has been added to mineralised rocks along microshears, up to 3 wt.% locally, above a background of 0.1 wt.% noncarbonate carbon. Graphite deposition may have occurred as a result of mixing of two fluids, water+methane, and water+carbon dioxide. Graphitisation and sulphidation reactions released low δD water, which accumulated in the slow-moving mineralising fluid. Distinction between this low δD reaction water and meteoric water incursion is difficult.  相似文献   

5.
Although subgreenschist facies metamorphic rocks are widespread in the upper crust, mineralogical processes affecting these rocks are poorly understood. Subgreenschist mineralogical transitions have been invoked as critical controls on the mechanical behaviour of rocks within the crustal seismogenic zone, calling for further study of very low‐grade metamorphic assemblages. In this study a multi‐technique thermobarometric study of the Chrystalls Beach Complex mélange, which is located within the Otago Schist accretion‐collision assemblage of the South Island of New Zealand, is presented. The Chrystalls Beach Complex comprises highly sheared trench‐fill sedimentary rocks and scattered pillow basalts, and is inferred to have formed during Jurassic subduction under the paleo‐Pacific Gondwana margin. Equilibrium mineral assemblages indicate peak PT conditions in the range 400–550 MPa and 250–300 °C, which is supported by chlorite thermometry. Relatively high pressures of burial and accretion during foliation development are inferred from phengite content and b0 spacing analyses of white mica. Rare lawsonite occurs in a post‐foliation vein, and illite ‘crystallinity’ measurements indicate a thermal overprint during exhumation. These PT estimates and their relative chronology indicate that the mineral assemblages developed along a clockwise PT path. Based on variability in PT estimates from different techniques, mineral assemblages developed during burial are largely overprinted during exhumation at similar or higher‐T than experienced along the prograde path. Observed subduction‐related subgreenschist assemblages are therefore likely to indicate lower‐P than experienced during subduction, as higher‐P mineral compositions re‐equilibrate during exhumation. The PT path inferred in this study is similar in shape to PT paths for higher grade parts of the Otago Schist, and other exhumed accretionary prisms around the world, and is therefore probably common for rocks buried, accreted and exhumed in accretionary prisms.  相似文献   

6.
D.R. Gray  D.A. Foster   《Tectonophysics》2004,385(1-4):181-210
Structural thickening of the Torlesse accretionary wedge via juxtaposition of arc-derived greywackes (Caples Terrane) and quartzo-feldspathic greywackes (Torlesse Terrane) at 120 Ma formed a belt of schist (Otago Schist) with distinct mica fabrics defining (i) schistosity, (ii) transposition layering and (iii) crenulation cleavage. Thirty-five 40Ar/39Ar step-heating experiments on these micas and whole rock micaceous fabrics from the Otago Schist have shown that the main metamorphism and deformation occurred between 160 and 140 Ma (recorded in the low grade flanks) through 120 Ma (shear zone deformation). This was followed either by very gradual cooling or no cooling until about 110 Ma, with some form of extensional (tectonic) exhumation and cooling of the high-grade metamorphic core between 109 and 100 Ma. Major shear zones separating the low-grade and high-grade parts of the schist define regions of separate and distinct apparent age groupings that underwent different thermo-tectonic histories. Apparent ages on the low-grade north flank (hanging wall to the Hyde-Macraes and Rise and Shine Shear Zones) range from 145 to 159 Ma (n=8), whereas on the low-grade south flank (hanging wall to the Remarkables Shear Zone or Caples Terrane) range from 144 to 156 Ma (n=5). Most of these samples show complex age spectra caused by mixing between radiogenic argon released from neocrystalline metamorphic mica and lesser detrital mica. Several of the hanging wall samples with ages of 144–147 Ma show no evidence for detrital contamination in thin section or in the form of the age spectra. Apparent ages from the high-grade metamorphic core (garnet–biotite–albite zone) range from 131 to 106 Ma (n=13) with a strong grouping 113–109 Ma (n=7) in the immediate footwall to the major Remarkables Shear Zone. Most of the age spectra from within the core of the schist belt yield complex age spectra that we interpret to be the result of prolonged residence within the argon partial retention interval for white mica (430–330 °C). Samples with apparent ages of about 110–109 Ma tend to give concordant plateaux suggesting more rapid cooling. The youngest and most disturbed age spectra come from within the ‘Alpine chlorite overprint’ zone where samples with strong development of crenulation cleavage gave ages 85–107 and 101 Ma, due to partial resetting during retrogression. The bounding Remarkables Shear zone shows resetting effects due to dynamic recrystallization with apparent ages of 127–122 Ma, whereas overprinting shear zones within the core of the schist show apparent ages of 112–109 and 106 Ma. These data when linked with extensional exhumation of high-grade rocks in other parts of New Zealand indicate that the East Gondwana margin underwent significant extension in the 110–90 Ma period.  相似文献   

7.
The Otago and Alpine Schist belts of southern New Zealand have traditionally been treated as structurally continuous metamorphic belts with minor modification by brittle faulting. Mapping of biotite and garnet isograds has been hindered by rock types unfavourable for index mineral growth. Closer examination of well-exposed boundaries between metamorphic zones shows that they juxtapose rocks of different type and structural history. Apparent structural continuity across these zones is due to development of a locally pervasive boundary-parallel foliation on both sides of the boundary, in a broad boundary zone (up to 2  km wide). This feature has implications for mapping and metamorphic petrology in other metamorphic belts, where structural continuity has traditionally been assumed. True metamorphic isograds may be rare, and metamorphic zones may more commonly represent structural slices of complex, tectonically disrupted metamorphic piles.  相似文献   

8.
The protection of groundwater dependent ecosystems in Otago, New Zealand   总被引:1,自引:0,他引:1  
Surface waters (streams, rivers, and wetlands) are the most important groundwater dependent ecosystems (GDEs) in Otago, New Zealand. Pumping wells in the vicinity can deplete water in the GDE. In Otago, most of the surface water resources are allocated and a method, which would assist in the implementation of water management policy, is needed to acknowledge the strong hydraulic link between surface and shallow groundwater. A simplified method has been developed which derives a numerical relationship between the bore pumping rate and the distance between the bore and surface water body beyond which depletion is considered insignificant. A range of GDE depletion scenarios are examined at various combinations of hydraulic parameters to find a minimum distance for a given pumping rate, at which 90% of the modelled surface water depletion scenarios become less than a threshold GDE depletion after a specified time. A buffer zone, based on the minimum distance is placed around GDEs, and groundwater abstraction rights within the buffer are subject to stricter rules. Applicants wishing to abstract from bores within the buffer zone will need to address the environmental impact of the proposed activity on the GDE.  相似文献   

9.
Abstract. Pink piemontite-spessartine-bearing and grey-green spessartine-bearing manganiferous quartzose schists derived from siliceous pelagites, and green quartzofeldspathic schists, are described from the greenschist facies of the Haast Schist terrane, near Arrow Junction, western Otago. Electron microprobe data are reported for sphene, spessartine-rich garnet, manganoan epidote, piemontite, tourmaline, phengitic muscovite, chlorite, albite, haematite, rutile, manganoan calcite and chalcopyrite. Metamorphism occurred at about 6.4kbar, 400°C. Xco2 was above the quartz-rutile-calcite-sphene buffer (Xco2± 0.02) throughout the recorded metamorphic history of the piemontite schists. It dropped from above to below this critical buffering value in a spessartine-rich schist and it was close to or below the buffering value in the quartzofeldspathic schists. Production of piemontite required high fO2, believed to be inherited from MnOx in the parent pelagite. Substantial loss of O2 (e.g. minimum of 0.19% by weight in one rock) during diagenesis and/or metamorphism is inferred. In the grey-green schists this inhibited piemontite formation. Slight loss of O2 and Ca2+ accompanied minor late-stage replacement of piemontite by second generation spessartine. Observed zoning and mineral replacements indicate rise of temperature, drop in pressure, or invasion by solutions of lower fO2 and XCO2 equilibrated with surrounding schists. The detailed chemistry of the minerals studied correlates with available Mn and with bulk-rock (Fe3+ x 100)/(Fe2++ Fe3+). The oxidation ratio ranges from 24 in average green quartzofeldspathic schist, through 78 in average grey-green manganiferous quartzose schist, to almost 100 in some piemontite-bearing schists. As Fe2+ gives way to Fe3+, Mg/Fe ratios tend to rise in chlorite, phengite, tourmaline, spessartine, and calcite, Mn increases and Ti decreases in haematite, Mn increases in spessartine and calcite, and Fe increases in rutile. Available divalent cations are depleted relative to Al; chlorite is more aluminous, and phengite more paragonitic than in typical Haast schists.  相似文献   

10.
Uranium–lead age patterns of detrital zircons in Otago Schist meta-sandstones from eastern Otago, including areas of orogenic gold mineralisation, are mostly consistent with a Rakaia Terrane (Torlesse Composite Terrane) accretionary wedge protolith. Southwest of the Hyde-Macraes and Rise & Shine shear zones the depositional age is regarded as Middle–Late Triassic. At the south and west margins, there are two areas in the Late Triassic Waipapa Terrane protolith. Northeast of the Hyde-Macraes Shear Zone, the schist protolith has Middle to Late Triassic and middle to late Permian depositional ages of Rakaia Terrane affinity. At the northeastern margin of the Hyde-Macraes Shear Zone, there is a narrow strip with a mid-Carboniferous protolith, which may be a counterpart of the Carboniferous accretionary wedge in the New England Orogen, eastern Australia. Ordovician–Silurian zircons are a minor but distinctive feature in many of the protolith age patterns and form significant age components at hard-rock gold locations. These constrain the provenance of Rakaia Terrane protolith sediments to Late Triassic time and within the Permian–Triassic magmatic arcs at the northeastern Australian continental margin and partly within the Ordovician–Silurian granitoids of the Charters Towers Province hinterland and environs. The latter have extensive gold mineralisation and thus upon exhumation might be the origin of Otago gold.  相似文献   

11.
The Pikikiruna Schist of Nelson, New Zealand, displays a fabric in which the patterns of quartz c-axes, the poles to planes of inequidimensional quartz grains, and the statistical maxima of poles to sheet-silicate cleavages are oblique to each other. The quartz c-axes patterns consist of type-1 and type-2 crossed-girdles. The triclinic fabric can be explained in terms of one complex rotational deformation of an essentially plane strain nature. Rotation of approximately 90° about the intermediate strain-axis was combined at a late stage with subsidiary rotations about the extension axis. The quartz c-axes patterns can be related to the kinematic framework rather than the finite strain-axes. On the other hand, the dimensional quartz preferred orientation may be closely related to the finite strain-axes, though the quantity of strain can not be measured because of recrystallisation.  相似文献   

12.
D. Craw 《Lithos》1981,14(1):49-57
Biotite, chlorite and stilpnomelane have undergone post-metamorphic oxidation in situ in the Otago schist, due to surficial weathering. The oxidation results in changes in the chemistry of these minerals. Oxidation of biotite and stilpnomelane is accompanied by loss of potassium, and stilpnomelane with its full metamorphic potassium content is probably rare. analytical work such as KAr dating which depends critically on K2O contents of biotite and stilpnomelane should therefore proceed with due caution. Potassium in stilpnomelane is very mobile under the microprobe beam, and only approximate K2O analyses may be obtained.  相似文献   

13.
Abstract TEM and XRD techniques were used to study crystal growth characteristics of the fabric-forming phyllosilicates which developed in response to low-grade metamorphism and tectonic imbrication in part of the Southern Uplands thrust terrane. Prograde regional metamorphism, ranging from late diagenesis through the anchizone to the epizone, was accompanied by the development of a slaty cleavage which is commonly bedding-parallel. TEM-measured mean thicknesses of white mica and chlorite crystallite populations increase with advancing grade and correlate with XRD-measured crystallinity indices. Analytical TEM data show that prograde changes in composition lead to a net loss of Si, Ca and minor Fe from the fabric-forming phyllosilicates. White micas are paragonite-poor phengites with a mean b lattice parameter of 9.037 Å, and indicate an intermediate pressure series of metamorphism with a field gradient of <25° C km-1. Chlorite compositions evolved from diabantite (with intergrown corrensite) to ripidolite over an estimated temperature range of 150–320° C. Field gradient and temperature estimates suggest that crystal growth and fabric development occurred at burial depths ranging from 6 km to at least 13 km in the thrust terrane. During late diagenesis, crystal growth of white mica and chlorite was predominantly a consequence of polytypic and phase transitions, and resulted in similar size distributions which resemble typical Ostwald ripening curves. Under anchizonal and epizonal conditions, white mica grew more rapidly than chlorite because of its greater ability to store strain energy and recover from subgrain development; as a result crystal thickness distributions are not typical of Ostwald ripening. In contrast, chlorite crystals which grew under these conditions developed subgrain boundaries at high strain rates which were only partially recovered at low strain rates; these retained dislocations reduce the crystallite thicknesses detected by TEM and XRD, compared with those of white mica. These differences in strain-induced crystal growth indicate that white mica (illite) and chlorite crystallinity indices are likely to show significant differences where low-grade metamorphism is closely associated with tectonic fabric development.  相似文献   

14.
Chlorite and associated minerals from the volcanogenic Taveyanne metasediment of the western Helvetic nappes, Switzerland, were investigated by electron microprobe (EMP) and transmission electron microscopy (TEM) in order to determine their textural and chemical evolution during low-temperature metamorphism. EMP analyses of chloritic material from sub-greenschist facies outcrops show a decrease of Si and Σ(Ca, Na, K) with increasing metamorphic grade. A number of conclusions may be drawn from combined TEM images and analytical electron microscopy (AEM) data. 1 In diagenetic-grade samples, chlorite crystals (observed maximum defect-free distance=80 nm) always contain some 1 nm layers (with a maximum of 29% of all layers) and less frequently some 0.7 nm berthierine-like layers. With increasing grade, the amounts of 1 and 0.7 nm layers decrease, and most chlorite from the epizone is structurally pure or contains less than 2% of 1 nm layers. 2 A positive correlation was found between the amount of 1 nm layers and the Ca+K+Na content, indicating that the 1 nm layers are saponite. 3 Observations and calculations suggest that the transformation reaction of saponite to chlorite takes place by the replacement of the interlayer cations in saponite by brucite-like layers resulting in a local volume decrease. In contrast, the destruction of berthierine has only minor influence on the local bulk volume. These results confirm recent studies which show that the change in composition measured by EMP of diagenetic-grade chloritic material are mainly the result of mixtures of chlorite and saponite. The use of chlorite ‘geothermometry’ in such systems is greatly influenced by the presence of saponite and hence is not based on reaction equilibria, even though temperatures calculated in this study agree with temperatures derived from other methods. Therefore, chlorite evolution should be treated as a kinetically controlled grade indicator and developed as a qualitative scale similar to the illite crystallinity index.  相似文献   

15.
<正>The forewing of a termite from Early Miocene lake sediments in Otago,southern New Zealand is figured and described.It exhibits the generic characters of the damp-wood termite Stolotermes Hagen,but differs from forewings of the known species in size and venation pattern and is described as Stolotermes kupe sp.nov.S.kupe represents the first confident record of fossil Stolotermitidae and extends the fossil record of the family back to the Early Miocene.It also is the first direct evidence of fossil Isoptera from New Zealand,though silicified termite faecal pellets,referable to Kalotermes brauni,have been previously described.S.kupe indicates that Stolotermitidae has been present in the Australasian region since at least the Early Miocene.  相似文献   

16.
Pressure–temperature pseudosections for ‘greyschist’ (metamorphosed greywacke and argillite) from the Alpine Schist (Haast Schist group) near Hokitika (Southern Alps, New Zealand) are used to gain new insights into its metamorphic history. The rocks were metamorphosed at relatively low‐grade conditions associated with the first appearance and initial growth of garnet in the stability field of albite. The measured and predicted garnet compositional zoning data are used to construct an overall P–T path by combining P–T path results from nearby rocks that have a range of MnO contents. The P–T path obtained is steep from ~380 °C/2.5 kbar up to ~490 °C/8.5 kbar, then recurves sharply with garnet growth continuing during early decompression to ~500 °C/6.5 kbar. Most garnet growth in the study area took place in the stability field of albite, with oligoclase appearing only during decompression, when the peristerite gap was entered. On appearance of oligoclase, there is a marked decrease in the CaO content of garnet. The preservation of mineral assemblages from near‐peak temperature conditions can be understood in terms of the P–T path subsequently becoming tangential to water content contours, during cooling with further decompression.  相似文献   

17.
A series of elevated imbricated boulders were investigated on the Otago coastline, southeast New Zealand, through field surveying and optical luminescence dating. By using established hydrodynamic relationships of sediment transport the energy required to move the clasts was calculated and compared to the historic record of marine inundations of that coast. The boulders are platy in shape and are over 2 m long in some cases, and are sourced from a locally outcropping conglomerate unit which appears to be the only lithology on this section of coast that erodes to produce clasts of this size. It is estimated that the boulders were deposited by a tsunami between 2 and 3 m high during the latter part of Marine Isotope Stage 5. They therefore represent the first pre-Holocene tsunami deposit and one composed of large boulders described on the New Zealand coastline.  相似文献   

18.
Abstract Deformed quartz veins in garnet-zone schist adjacent to the active Alpine Fault, New Zealand, have fluid inclusions trapped along quartz grain boundaries. Textures suggest that the inclusions formed in their present shapes during annealing of the deformed veins. Many of the inclusions are empty, but some contain carbon dioxide with densities that range from 0.16 to 0.80 g cm−3. No water, nitrogen or methane was detected. The inclusions are considerably more CO2-rich than either the primary metamorphic fluid (<5% CO2) or fluids trapped in fracture-related situations in the same, or related, rocks (<50% CO2). Enrichment of CO2 is inferred to have resulted from selective migration (wicking) of saline water from the inclusions along water-wet grain boundaries after cooling-induced immiscibility of a water-CO2 mixture. Inclusion volumes changed after loss of water. Non-wetting CO2 remained trapped in the inclusions until further percolation progressively removed CO2 in solution. This mechanism of fluid migration dominated in ductile quartz-rich rocks near, but below, the brittle-ductile transition. At deeper levels, hydraulic fracturing is also an important mechanism for fluid migration, whereas at shallower levels advection through open fractures dominates the fluid flow regime.  相似文献   

19.
The Sisters Shear Zone (SSZ) on Stewart Island, New Zealand, is a greenschist-facies extensional shear zone active prior to and possibly during the development of the Pacific–Antarctica spreading ridge at ∼76 Ma. We report quantitative kinematic and rotation data as well as apatite fission-track (AFT) ages from the SSZ. Early kinematic indicators associated with the NNE-trending stretching lineation formed under upper greenschist-facies metamorphism and show alternating top-to-the-NNW and top-to-the-SSE senses of shear. During progressive exhumation lowermost greenschist-facies and brittle-ductile kinematic indicators depict a more uniform top-to-the-SSE sense of shear in the topmost SSZ just below the detachment plane. Deformed metagranites in the SSZ allow the reconstruction of deformation and flow parameters. The mean kinematic vorticity number (Wm) ranges from 0.10 to 0.89; smaller numbers prevail in the deeper parts of the shear zone with a higher degree of simple shear deformation in the upper parts of the shear zone (deeper and upper parts relate to present geometry). High finite strain intensity correlates with low Wm and high Wm numbers near the detachment correlate with relatively weak strain intensity. Finite strain shows oblate geometries. Overall, our data indicate vertical and possibly temporal variations in deformation of the SSZ. Most AFT ages cluster around 85–75 Ma. We interpret the AFT ages to reflect the final stages of continental break-up just before and possibly during the initiation of sea-floor spreading between New Zealand and Antarctica.  相似文献   

20.
Shape, size and orientation measurements of quartz grains sampled along two transects that cross zones of increasing metamorphic grade in the Otago Schist, New Zealand, reveal the role of quartz in the progressive development of metamorphic foliation. Sedimentary compaction and diagenesis contributed little to the formation of a shape‐preferred orientation (SPO) within the analysed samples. Metamorphic foliation was initiated at sub‐greenschist facies conditions as part of a composite S1‐bedding structure parallel to the axial planes of tight to isoclinal F1 folds. An important component of this foliation is a pronounced quartz SPO that formed dominantly by the effect of dissolution–precipitation creep on detrital grains in association with F1 strain. With increasing grade, the following trends are evident from the SPO data: (i) a progressive increase in the aspect ratio of grains in sections parallel to lineation, and the development of blade‐shaped grains; (ii) the early development of a strong shape preferred orientation so that blade lengths define the linear aspect of the foliation (lineation) and the intermediate axes of the blades define a partial girdle about the lineation; (iii) a slight thinning and reduction in volume of grains in the one transect; and (iv) an actual increase in thickness and volume in the survivor grains of the second transect. The highest‐grade samples, within the chlorite zone of the greenschist facies, record segregation into quartz‐ and mica‐rich layers. This segregation resulted largely from F2 crenulation and marks a key change in the distribution, deformation and SPO of the quartz grains. The contribution of quartz SPO to defining the foliation lessens as the previously discrete and aligned detrital quartz grains are replaced by aggregates and layers of dynamically recrystallized quartz grains of reduced aspect ratio and reduced alignment. Pressure solution now affects the margins of quartz‐rich layers rather than individual grains. In higher‐grade samples, therefore, the rock structure is characterized increasingly by segregation layering parallel to a foliation defined predominantly by mica SPO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号