首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
青海柴达木盆地大地热流测量与统计热流计算   总被引:14,自引:4,他引:14       下载免费PDF全文
1991年6-8月对青海柴达木盆地21个石油勘探孔进行了钻孔温度测量,其中8个用于热流计算;从油田已有的测温资料中选取了14个孔用作热流研究.为解决线性温度段与采样段的不匹配,对176块岩样的实测热导率与岩样的埋藏深度及地层年代之间的相关性进行了系统分析,求出热流计算段的加权平均热导率,共获得22个热流值,其变化范围32-75mW/m,平均约53mW/m.为阐明全盆地热流分布趋势,采用网格化方法计算统计热流.实测和统计热流一致表明,柴达木盆地热流值呈西高东低的分布特征.  相似文献   

2.
中国大陆科学钻探靶区深部温度预测   总被引:12,自引:1,他引:12       下载免费PDF全文
依据中国大陆科学钻探(CCSD)两口先导孔中地热测量和岩石样品热物性参数,对5000m深钻的可能钻遇温度进行了预测.先导孔中地温梯度介于1-26℃/km;岩石热导率变化为2.64-8.81W/(m@K),平均(3.4±1.26)W/(m@K);实测热流值为76-80mW/m2;30块岩石样品放射性生热率变化为(0.0-2.17)μW/m3,450m深度以上层平均(0.76±0.5)μW/m3,以下层段平均(0.48±0.2)μW/m3,生热率随深度递减,但变化趋势难以明确判定.分别对热流和热导率取上、下限,采用不同的生热率随深度的分布函数,区分考虑或不考虑热导率的温度相关性,分别计算出5000m深度内可能的温度分布剖面.计算结果表明,超深井于5000m垂直深度上的温度将达到110-140℃,2000m深度的探井钻遇温度将介于54-64℃.此外,考虑热导率的温度效应后预测的温度一般高于未考虑热导率温度效应5-8℃.  相似文献   

3.
Variations in crustal magnetization along a seismic section across the Archean Yilgarn block of Western Australia inferred from Magsat data are interpreted as a subtle thermal effect arising from variations in depth to the Curie isotherm. The isotherm lies deep within the mantle of the eastern part of the province, but transects the crust-mantle transition and rises well into the crust on the western side. The model is consistent with heat flow variations along the section line. The mean crustal magnetization implied by the model is approximately 2 A/m. The temperature variation implied by the model is consistent with the hypothesis that the crust-mantle transition seen seismically corresponds to the mafic granulite-eclogite phase transition within a zone of igneous crustal underplating.  相似文献   

4.
During August 1994 to March 1995, a period that included ODP Leg 158 drilling, bottom-water and sub-bottom temperatures were continuously logged by a long-term temperature monitoring system ‘Daibutsu’ at the base of the central black-smoker complex (CBC) and within the low heat flow zone at the TAG hydrothermal mound on the Mid-Atlantic Ridge. The temperature of hydrothermal fluid at CBC was also measured with a small high-temperature probe ‘Hobo’. Bottom-water temperature variations measured with Daibutsu at both sites have predominant semi-diurnal periods, causing the sub-bottom temperatures to fluctuate at these periods with reduced amplitudes and phase delays at sub-bottom depths. Seawater entrainment into the mound has been previously suggested at the low heat flow zone. We quantitatively evaluate the seawater entrainment rate at both sites from a one-dimensional numerical model, combined with a heat conduction model for the semi-diurnal variations. The entrainment rate of seawater at the base of CBC is estimated as 1.3±0.5×10−5 m/s, at least from August 17 to 30, 1994. On the other hand, the seawater entrainment rate at the low heat flow zone was undetected by long-term temperature monitoring at shallow sub-bottom depth. Nevertheless an increase in heat flow observed at the low heat flow zone during ODP drilling can be interpreted as a decrease in the entrainment rate of seawater. Before ODP Leg 158, Daibutsu measured three sub-bottom temperature anomalies at the base of CBC not derived from bottom-water temperature variations and Hobo also detected a CBC fluid temperature anomaly, indicating some natural changes in fluid flow within the mound. Daibutsu and Hobo also measured temperature anomalies during and after drilling at the ODP TAG-1 area. The Hobo temperature anomalies are inferred to have occurred when the cold fluid entrained through the drill holes at TAG-1 site reached or cooled the main fluid path to CBC. The entrained seawater through the drill holes appears to have contributed to dissolution and precipitation of anhydrite within the mound and perhaps affected the local permeability structure inside the mound. The temperature anomalies measured with Daibutsu at the base of CBC may have been induced by the change in the fluid flow pattern as a result of such permeability changes within the mound.  相似文献   

5.
本文利用藏北地区三口天然气水合物钻孔测温数据,在分析样品热导率测试结果基础上,计算了藏北地区的热流值.对于样品热导率值,首先根据样品孔隙度对实验室测试结果进行了饱水校正,计算热流时采用的是对应井段的岩石热导率饱水校正值的厚度加权平均值.地温梯度以三口钻孔48 h的测温数据为基础,回归三口井的地温梯度,计算时去除了浅部受地表温度和冻土带对温度影响的数值.A钻孔地温梯度分为200~438 m和438~882 m两段回归,分段热流的加权平均值作为钻孔热流值,计算结果为42.7 mW·m-2; B钻孔和C钻孔回归地温梯度时未分段,热流计算结果分别为58.3 mW·m-2、70 mW·m-2.综合分析认为,岩石圈断裂、地幔上涌、碰撞造山过程中的剪切生热等因素可能造成了班公湖—怒江缝合带以南热流值较高,而北部羌塘地块热流值相对较低.  相似文献   

6.
Thermal regime of the lithosphere is the scenario of the lithospheric thermal evolution, and the thermo-mechanical state of lithosphere definitively controls its deformation style and mechanism. Better understanding of the lithospheric deep thermal-rheo- logical structure of sedimentary basin will shed light on the formation and evolution dynamic process of the basin. Surface tectonics is the response of the deep structure, and is controlled by the lithospheric ther-mal-rheological properties.…  相似文献   

7.
We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly distributed in mainland China. We first employ Fourier transformation to remove the influence of atmospheric temperature variations from the observation series, which are classified into the type of the steady-state temperature monotonously increasing with depth (type I) and other three types. Then we compare our results obtained from the data of type I, of which the values are thought to equal to those of the mean borehole heat flow, with those obtained from traditional heat flow observations mainly distributed in North China Craton. In computations of the SAHF at the observation stations, we deduce the thermal diffusivity and volumetric specific heat of the soil by employing harmonic solutions of the heat conduction equation for the same moisture group as the first step, and then we determine the SAHF using Fourier's law. Our results indicate that the SAHF derived from shallow earth geothermal data can reflect the heat flow field to a large extent.  相似文献   

8.
辽河盆地东部凹陷现今地温场及热历史的研究   总被引:11,自引:2,他引:11       下载免费PDF全文
依据10口系统测温井数据和61块岩石热导率测试结果,计算了辽河盆地东部凹陷10个 高质量的大地热流数据,并在此基础上,利用镜质体反射率(Ro)资料对该区的热历史 进行了恢复. 结果表明:东部凹陷下第三系平均地温梯度为36.5℃/km,岩石平均热导率为1 .667W/(m·K),热流密度变化于49.5~70.0mW/m2之间,平均为58.0mW/m2;东部凹陷热 流呈现古热流高现今热流低的变化特征,从沙三期到东营期,古热流值是逐渐增大的,到东 营期末达到最大值,晚第三纪至现今表现为持续冷却;构造沉降史分析显示,盆地经历了早 期的裂谷阶段(43~25Ma)和后期的热沉降阶段. 盆地现今较低的大地热流和较高的古热流 及典型的裂谷型构造沉降样式为东部凹陷的构造-热演化提供了重要认识.  相似文献   

9.
Using a laboratory gamma-ray spectrometer, 160 rock samples from different heat flow sites in India have been analysed for their U, Th and K contents. Heat generation has been estimated for the significant rock types. Of the six regions covered by this study, correction due to heat generation contrast and geologic structure was found necessary and has been applied in two regions. Heat flow/heat generation plots for two regions in the southernmost part of the shield follow the line characteristic of a normal continental heat flow province. The plots for the other four regions indicate a heat flow province with an intercept of 0.92 HFU and a slope of 14.8 km. From data available at present, these parameters are higher compared to those from the other shields. The higher parameters imply a higher temperature and heat flow at the Moho, indicating a region of “hotter” upper mantle in the Indian shield.  相似文献   

10.
Surface heat flows are calculated from elastic lithosphere thicknesses for the heavy cratered highlands of Mars, in terms of the fraction of the surface heat flow derived from crustal heat sources. Previous heat flow estimations for Mars used linear thermal gradients, which is equivalent to ignoring the existence of heat sources within the crust. We compute surface heat flows following a methodology that relates effective thickness and curvature of an elastic plate with the strength envelope of the lithosphere, and assuming crustal heat sources homogeneously distributed in a radioactive element-rich layer 20 or 60 km thick. The obtained results show that the surface heat flow increases with the proportion of heat sources within the crust, and with the decrease of both radioactive element-rich layer thickness and surface temperature. Also, the results permit us to calculate representative temperatures for the crust base, rock strength for the upper mantle, and lower and upper limits to the crustal magnetization depth and intensity, respectively. For Terra Cimmeria, an effective elastic thickness of 12 km implies between 30% and 80% of heat sources located within the crust. In this case the uppermost mantle would be weak at the time of loading, and temperatures in the lower crust cold enough to favor unrelaxed crustal thickness variations and to permit deep Curie depths in the highlands, as suggested by the observational evidence.  相似文献   

11.
海洋热流数据是开展海洋地球动力学研究和油气资源评价的基础数据.为深入认识琼东南盆地的地热特征,本文首先利用耦合沉积作用与岩石圈张裂过程的数值模型分析了张裂型盆地主要地热参数的垂向变化特征;并通过钻孔资料的详细分析,获得了琼东南盆地44口钻孔的热流数据;结合海底地热探针获取的热流数据,对琼东南盆地地热特征及其主要影响因素进行了简要分析.结果表明:沉积作用的热披覆效应对表层热流有较明显的抑制作用,由于沉积物生热效应与披覆效应的共同作用,同一钻孔处海底表层热流与钻孔深度3000~4000m处热流或与海底间的平均热流差异很小,可以一起用于分析琼东南盆地的热流分布特征;莺歌海组、乐东组热导率随深度变化小于黄流组及其下地层热导率的变化,钻孔沉积层平均热导率约为1.7 W·(m·K)-1,钻孔地层生热率一般低于2.5μW·m-3,平均生热率为1.34μW·m-3,平均地温梯度主要介于30~45℃/km,热流介于50~99mW·m-2,陆架区热流主要集中于60~70mW·m-2,深水区钻孔具有较高的地温梯度和热流值;从北部陆架与上陆坡区往中央坳陷带,热流值从50~70mW·m-2,增高为65~85mW·m-2,并且往东有升高趋势,在盆地东部宝岛凹陷、长昌凹陷与西沙海槽北部斜坡带构成一条热流值高于85mW·m-2的高热流带.进一步分析认为,琼东南盆地现今热流分布特征是深部热异常、强烈减薄岩石圈的裂后冷却作用、晚期岩浆热事件、地壳与沉积层的生热贡献以及沉积作用的热披覆效应等多种主要因素综合作用的结果.  相似文献   

12.
The two principal contributions to the surface heat flow of the earth are the cooling of the earth and the heat production of radioactive isotopes. As the rate of heat production decreases with time the temperature of the interior of the earth also decreases. The rate of decrease is determined by the ability of solid-state mantle convection to transport the heat to the surface. The dominant effect is the exponential temperature dependence of the mantle viscosity. The non-dimensional mantle temperature can be parameterised in terms of the Rayleigh number for mantle convection. It is found that the mantle is currently cooling at a rate of 36°K/109 years and that three billion years ago the mean temperature was 150°K higher than it is today; 83% of the present surface heat flow is attributed to the decay of radioactive isotopes and 17% to the cooling of the earth. The corresponding mean concentration of uranium in the mantle is 32 ppb.  相似文献   

13.
Measurements on thermal conductivity and diffusivity as functions of temperature (up to 1150 K) and pressure (up to 1000 MPa) are presented for Archaean and Proterozoic mafic high-grade rocks metamorphosed in middle and lower crustal pressures, and situated in eastern Finland, central Fennoscandian Shield. Decrease of 12–20% in conductivity and 40–55% in diffusivity was recorded between room temperature and 1150 K, which can be considered as typical of phonon conductivity. Radiative heat transfer effects were not detected in these samples. Pressure dependencies of the samples are weak if compared to crystalline rocks in general, but relatively typical for mafic rocks.The temperature and pressure dependencies of thermal transport properties (data from literature and the present study) were applied in an uncertainty analysis of lithospheric conductive thermal modellings with random (Monte Carlo) simulations using a 4-layer model representative of shield lithosphere. Model parameters were varied according to predetermined probability functions and standard deviations were calculated for lithospheric temperature and heat flow density after 1500 independent simulations. The results suggest that the variations (uncertainties) in calculated temperature and heat flow density values due to variations in the temperature and pressure dependencies of conductivity are minor in comparison to the effects produced by typical variations in the room temperature value of conductivity, heat production rate or lower boundary condition values.  相似文献   

14.
在1.0 GPa压力、343~962 K温度和0.1~106Hz频率的条件下,使用Solartron 1260阻抗-增益/相位分析仪对含角闪石的片麻岩从平行和垂直面理两个不同方向分别进行了电阻抗的测定,并且进一步分析了片麻岩的微观导电机制.高温高压实验结果表明:片麻岩的复阻抗对温度、频率表现出明显的依赖性.片麻岩的电导...  相似文献   

15.
This article describes a data collection approach for determining the significance of individual heat fluxes within streams with an emphasis on testing (i.e. identification of possible missing heat fluxes), development, calibration and corroboration of a dynamic temperature model. The basis for developing this approach was a preliminary temperature modelling effort on the Virgin River in southwestern Utah during a low‐flow period that suggested important components of the energy balance might be missing in the original standard surface‐flux temperature model. Possible missing heat fluxes were identified as bed conduction, hyporheic exchange, dead zone warming and exchange and poor representation of the amount of solar radiation entering the water column. To identify and estimate the relative importance of the missing components, a comprehensive data collection effort was developed and implemented. In particular, a method for measuring shortwave radiation behaviour in the water column and an in situ method for separating out bed conduction and hyporheic influences were established. The resulting data and subsequent modelling effort indicate that hyporheic and dead zone heat fluxes are important, whereas solar radiation reflection at the water surface was found to be insignificant. Although bed conduction can be significant in certain rivers, it was found to have little effect on the overall heat budget for this section of the Virgin River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In most practical situations, the upper part of a geological section consists of loose sediments, in which heat transfer cannot be described as a purely conductive process. To investigate such situations a one-dimensional numerical model of terrestrial temperature field formation under the combined influence of vertical groundwater filtration and ground surface temperature changes has been developed. The model allows one to consider the perturbation of heat flow interval values resulting from short- and long-period temperature waves propagating into permeable rocks under conditions of advective heat transfer, caused by vertical groundwater filtration. The results show that temperature profiles and interval heat flow values are sensitive to both the paleoclimatic history and the rate of groundwater filtration. The latter plays the prevailing role in the variations of geothermal field parameters, especially within the uppermost part of the loose sediments in unconfined aquifers. The problem was solved for a permeable layer, underlaid by an impermeable layer. This schematisation of water exchange is the typically accepted for hydrogeological analysis. Even at very low rates of filtration the intensity of this effect is enhanced substantially for long-period variations. In the extreme case (for periods of temperature variations of the order of 100,000 years) at typical rates of filtration within the permeable layer, an almost gradient-free zone can be formed down to depths of a few hundred metres. For the case of upward filtration, on the contrary, the influence of climatic variations on the terrestrial temperature field becomes substantially attenuated.  相似文献   

17.
We have obtained altogether heat flux data of 23 drill holes including 2 observational holes of thermal flow in the Haicheng seismic area. These data show roughly thermal structure of the crust in eastern Liaoning and in the Haicheng seismic area. The results indicate that there is higher value of heat flow in the belt north by east from Liaoyang to Xiongyue, the average thermal flux being 8.29× 10−2J/m2·s (2.0 hfu). The average thermal fulx in the Haicheng seismic area is 9.22×102J/m2·s (2.2 hfu). Comparing with other known geophysical data of the Haicheng seismic area, we give a geophysical section of comprehensive interpretation. We suppose the low-velocity layer in the lower crust of the Haicheng seismic area is a result from intrusion of large-scale uper mantle substance. High temperature and low velocity mean that the layer has the nature of plastic mechanics. The focal region of the Haicheng earthquake is situated right in the upper part of that plastic layer. Obviously, this result is significant for studying the seismogenic process of the Haicheng earthquake and other intra-plate earthquakes. We attempt to emphasize that observation of heat flow is necessary for earthquake study. Gu Haoding did the actual writing.  相似文献   

18.
The airglow hydroxyl temperature record from Longyearbyen, Svalbard, is updated with data from the last seven seasons (2005/2006–2011/2012). The temperatures are derived from ground-based spectral measurements of the hydroxyl airglow layer, which ranges from 76 to 90 km height. The overall daily average mesospheric temperature for the whole temperature record is 206 K. This is by 3 K less than what Dyrland and Sigernes (2007) reported in their last update on the temperature series. This temperature difference is due to cold winter seasons from 2008 to 2010. 2009/2010 was the coldest winter season ever recorded over Longyearbyen, with a seasonal average of 185 K. Temperature variability within the winter seasons is investigated, and the temperature difference between late December (local minimum) and late January (local maximum) is approximately 8 K.  相似文献   

19.
Infiltrating river water carries the temperature signal of the river into the adjacent aquifer. While the diurnal temperature fluctuations are strongly dampened, the seasonal fluctuations are much less attenuated and can be followed into the aquifer over longer distances. In one-dimensional model with uniform properties, this signal is propagated with a retarded velocity, and its amplitude decreases exponentially with distance. Therefore, time shifts in seasonal temperature signals between rivers and groundwater observation points may be used to estimate infiltration rates and near-river groundwater velocities. As demonstrated in this study, however, the interpretation is nonunique under realistic conditions. We analyze a synthetic test case of a two-dimensional cross section perpendicular to a losing stream, accounting for multi-dimensional flow due to a partially penetrating channel, convective-conductive heat transport within the aquifer, and heat exchange with the underlying aquitard and the land surface. We compare different conceptual simplifications of the domain in order to elaborate on the importance of different system elements. We find that temperature propagation within the shallow aquifer can be highly influenced by conduction through the unsaturated zone and into the underlying aquitard. In contrast, regional groundwater recharge has no major effect on the simulated results. In our setup, multi-dimensionality of the flow field is important only close to the river. We conclude that over-simplistic analytical models can introduce substantial errors if vertical heat exchange at the aquifer boundaries is not accounted for. This has to be considered when using seasonal temperature fluctuations as a natural tracer for bank infiltration.  相似文献   

20.
This study synthesizes two different methods for estimating hydraulic conductivity (K) at large scales. We derive analytical approaches that estimate K and apply them to the contiguous United States. We then compare these analytical approaches to three-dimensional, national gridded K data products and three transmissivity (T) data products developed from publicly available sources. We evaluate these data products using multiple approaches: comparing their statistics qualitatively and quantitatively and with hydrologic model simulations. Some of these datasets were used as inputs for an integrated hydrologic model of the Upper Colorado River Basin and the comparison of the results with observations was used to further evaluate the K data products. Simulated average daily streamflow was compared to daily flow data from 10 USGS stream gages in the domain, and annually averaged simulated groundwater depths are compared to observations from nearly 2000 monitoring wells. We find streamflow predictions from analytically informed simulations to be similar in relative bias and Spearman's rho to the geologically informed simulations. R-squared values for groundwater depth predictions are close between the best performing analytically and geologically informed simulations at 0.68 and 0.70 respectively, with RMSE values under 10 m. We also show that the analytical approach derived by this study produces estimates of K that are similar in spatial distribution, standard deviation, mean value, and modeling performance to geologically-informed estimates. The results of this work are used to inform a follow-on study that tests additional data-driven approaches in multiple basins within the contiguous United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号