首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crustal and upper mantle compressional-wave velocity structure across the southwestern Arabian Shield has been investigated by a 1000-km-long seismic refraction profile. The profile begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, trends southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan, and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, and six shot points were used, including one in the Red Sea.Two-dimensional ray-tracing techniques, used to analyze amplitude-normalized record sections indicate that the Arabian Shield is composed, to first order, of two layers, each about 20 km thick, with average velocities of about 6.3 km/s and 7.0 km/s, respectively. West of the Shield-Red Sea margin, the crust thins to a total thickness of less than 20 km, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust.A major crustal inhomogeneity at the northeast end of the profile probably represents the suture zone between two crustal blocks of different composition. Elsewhere along the profile, several high-velocity anomalies in the upper crust correlate with mapped gneiss domes, the most prominent of which is the Khamis Mushayt gneiss. Based on their velocities, these domes may constitute areas where lower crustal rocks have been raised some 20 km. Two intracrustal reflectors in the center of the Shield at 13 km depth probably represent the tops of mafic intrusives.The Mohorovičić discontinuity beneath the Shield varies from a depth of 43 km and mantle velocity of 8.2 km/s in the northeast to a depth of 38 km and mantle velocity of 8.0 km/s depth in the southwest near the Shield-Red Sea transition. Two velocity discontinuities occur in the upper mantle, at 59 and 70 km depth.The crustal and upper mantle velocity structure of the Arabian Shield is interpreted as revealing a complex crust derived from the suturing of island arcs in the Precarnbrian. The Shield is currently flanked by the active spreading boundary in the Red Sea.  相似文献   

2.
Interpretation of a long-range seismic refraction line in Saudi Arabia has shown that beneath the Arabian Shield velocity generally increases with depth, from about 6 km s−1 at the surface to about 7 km s−1 at the top of the crust-mantle transition zone. The base of this transition zone (Moho) occurs at 37–44 km in depth. Intracrustal discontinuities can also be recognized, the most important being in the 10–20 km-depth range and separating the upper from the lower crust. Laterally, the variations in the intracrustal discontinuities and the total crustal thickness can be correlated with previously defined tectonic regions. Beneath the Red Sea shelf and coastal plain the crust, including 4 km of sediments, is only 15–17.5 km thick. With the aid of both seismic and gravity data an abrupt, steeply dipping transition from the crust of the Red Sea shelf and coastal plain to that of the Arabian Shield has been derived. With a jump of more than 20 km in Moho depth, this appears to be the major discontinuity between the Red Sea depression and the Arabian continental shield.  相似文献   

3.
An interpretation of deep seismic sounding measurements across the ocean-continent transition of the Red Sea-Saudi Arabian Shield is presented. Using synthetic seismograms based on ray tracing we achieve a good fit to observed traveltimes and some of the characteristic amplitudes of the record sections. Crustal thickness varies along the profile from 15 km in the Red Sea Shelf to 40–45 km beneath the Asir Mountains and the Saudi Arabian Shield. Based on the computation of synthetic seismograms our model requires a velocity inversion in the Red Sea-Arabian Shield transition. High-velocity oceanic mantle material is observed above continental crust and mantle, thereby forming a double-layered Moho. Our results indicate a thick sedimentary basin in the shelf area, and zone of high velocities within the Asir Mountains (probably uplifted lower crust). Prominent secondary low-frequency arrivals are interpreted as multiples.  相似文献   

4.
A two-dimensional model of the crust and uppermost mantle for the western Siberian craton and the adjoining areas of the Pur-Gedan basin to the north and Baikal Rift zone to the south is determined from travel time data from recordings of 30 chemical explosions and three nuclear explosions along the RIFT deep seismic sounding profile. This velocity model shows strong lateral variations in the crust and sub-Moho structure both within the craton and between the craton and the surrounding region. The Pur-Gedan basin has a 15-km thick, low-velocity sediment layer overlying a 25-km thick, high-velocity crystalline crustal layer. A paleo-rift zone with a graben-like structure in the basement and a high-velocity crustal intrusion or mantle upward exists beneath the southern part of the Pur-Gedan basin. The sedimentary layer is thin or non-existent and there is a velocity reversal in the upper crust beneath the Yenisey Zone. The Siberian craton has nearly uniform crustal thickness of 40–43 km but the average velocity in the lower crust in the north is higher (6.8–6.9 km/s) than in the south (6.6 km/s). The crust beneath the Baikal Rift zone is 35 km thick and has an average crustal velocity similar to that observed beneath the southern part of craton. The uppermost mantle velocity varies from 8.0 to 8.1 km/s beneath the young West Siberian platform and Baikal Rift zone to 8.1–8.5 km/s beneath the Siberian craton. Anomalous high Pn velocities (8.4–8.5 km/s) are observed beneath the western Tunguss basin in the northern part of the craton and beneath the southern part of the Siberian craton, but lower Pn velocities (8.1 km/s) are observed beneath the Low Angara basin in the central part of the craton. At about 100 km depth beneath the craton, there is a velocity inversion with a strong reflecting interface at its base. Some reflectors are also distinguished within the upper mantle at depth between 230 and 350 km.  相似文献   

5.
《Tectonophysics》1999,301(1-2):61-74
In 1994, the ACRUP (Antarctic Crustal Profile) project recorded a 670-km-long geophysical transect across the southern Ross Sea to study the velocity and density structure of the crust and uppermost mantle of the West Antarctic rift system. Ray-trace modeling of P- and S-waves recorded on 47 ocean bottom seismograph (OBS) records, with strong seismic arrivals from airgun shots to distances of up to 120 km, show that crustal velocities and geometries vary significantly along the transect. The three major sedimentary basins (early-rift grabens), the Victoria Land Basin, the Central Trough and the Eastern Basin are underlain by highly extended crust and shallow mantle (minimum depth of about 16 km). Beneath the adjacent basement highs, Coulman High and Central High, Moho deepens, and lies at a depth of 21 and 24 km, respectively. Crustal layers have P-wave velocities that range from 5.8 to 7.0 km/s and S-wave velocities from 3.6 to 4.2 km/s. A distinct reflection (PiP) is observed on numerous OBS from an intra-crustal boundary between the upper and lower crust at a depth of about 10 to 12 km. Local zones of high velocities and inferred high densities are observed and modeled in the crust under the axes of the three major sedimentary basins. These zones, which are also marked by positive gravity anomalies, may be places where mafic dikes and sills pervade the crust. We postulate that there has been differential crustal extension across the West Antarctic rift system, with greatest extension beneath the early-rift grabens. The large amount of crustal stretching below the major rift basins may reflect the existence of deep crustal suture zones which initiated in an early stage of the rifting, defined areas of crustal weakness and thereby enhanced stress focussing followed by intense crustal thinning in these areas. The ACRUP data are consistent with the prior concept that most extension and basin down-faulting occurred in the Ross Sea during late Mesozoic time, with relatively small extension, concentrated in the western half of the Ross Sea, during Cenozoic time.  相似文献   

6.
Qunshu Tang  Ling Chen   《Tectonophysics》2008,455(1-4):43-52
We have used Rayleigh wave dispersion analysis and inversion to produce a high resolution S-wave velocity imaging profile of the crust and uppermost mantle structure beneath the northeastern boundary regions of the North China Craton (NCC). Using waveform data from 45 broadband NCISP stations, Rayleigh wave phase velocities were measured at periods from 10 to 48 s and utilized in subsequent inversions to solve for the S-wave velocity structure from 15 km down to 120 km depth. The inverted lower crust and uppermost mantle velocities, about 3.75 km/s and 4.3 km/s on average, are low compared with the global average. The Moho was constrained in the depth range of 30–40 km, indicating a typical crustal thickness along the profile. However, a thin lithosphere of no more than 100 km was imaged under a large part of the profile, decreasing to only ~ 60 km under the Inner Mongolian Axis (IMA) where an abnormally slow anomaly was observed below 60 km depth. The overall structural features of the study region resemble those of typical continental rift zones and are probably associated with the lithospheric reactivation and tectonic extension widespread in the eastern NCC during Mesozoic–Cenozoic time. Distinctly high velocities, up to ~ 4.6 km/s, were found immediately to the south of the IMA beneath the northern Yanshan Belt (YSB), extending down to > 100-km depth. The anomalous velocities are interpreted as the cratonic lithospheric lid of the region, which may have not been affected by the Mesozoic–Cenozoic deformation process as strongly as other regions in the eastern NCC. Based on our S-wave velocity structural image and other geophysical observations, we propose a possible lithosphere–asthenosphere interaction scenario at the northeastern boundary of the NCC. We speculate that significant undulations of the base of the lithosphere, which might have resulted from the uneven Mesozoic–Cenozoic lithospheric thinning, may induce mantle flows concentrating beneath the weak IMA zone. The relatively thick lithospheric lid in the northern YSB may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection systems at the present time.  相似文献   

7.
This paper presents the results of seismic measurements along the Baltic Sea-Black Sea profile. The basic wave groups recorded up to distances of 900 km are characterized. The main elements of a lithospheric model of the southwestern part of the Precambrian East European Platform are given. The thickness of the Earth's crust is about 45 km and the mean velocity of the crust is about 6.3 km/s. At a depth of 65 km, the velocity increases from 8.2 to 8.5 km/s. In the depth interval 110 to 135 km, there is a series of layers with low and high velocities. The lower boundary of the lithosphere is probably defined by the boundary at a depth of 110 km.  相似文献   

8.
Teleseismic P arrivals at seismological stations are inverted into a model of velocity perturbations down to a depth of about 470 km. Directionally independent average residuals, computed from steeply inciding waves, are transformed into a model of lithospheric thickness. Both models show a good correspondence with the main tectonic features of the Italian Peninsula. Positive velocity perturbations are observed beneath the Alps and in depths over 200 km also beneath the Po Basin. A high-velocity anomaly of the Tyrrhenian subduction is less pronounced, probably due to a directional dependence of P velocities in the mantle. Negative velocity perturbations indicate several low-velocity regions, e.g. beneath the Northern Apennines, the Sicily region and in the upper 100 km beneath the Po Basin. The amplitudes of velocity perturbations beneath the depth of 200 km are smaller on the average than those in the upper two layers. The whole region is characterized by large undulations of the lithosphere base which reaches depths from less than 60 km to more than 150 km. The most prominent lithospheric root beneath the Alps is a product of the collision between the European and the Adriatic plates while the lithospheric thickening beneath the Calabrian coast is likely to be connected with the eastern wing of the Tyrrhenian subduction. The dramatic changes of lithosphere thickness between the northern and the southern Apenninic arcs and northern Calabria as well as the thinnings at the western closure of the Po Basin, indicate important deep-seated boundaries of lithospheric blocks of autonomous geodynamic development.  相似文献   

9.
中国边缘海域及其邻区的岩石层结构与构造分析   总被引:3,自引:0,他引:3  
利用中国边缘海域近年的地震层析成像结果,根据速度异常和各向异性分析东海、黄海和南海北部的岩石层结构和构造,讨论中朝块体和扬子块体在黄海内部的拼合边界(黄海东部断裂带)、东海陆架盆地上地幔异常与岩石层形成演化、南海北部地壳底部高速层的成因及地幔活动等问题。分析表明,黄海东部与朝鲜半岛之间存在一个深部构造界限(大致对应于黄海东部断裂带),分界两侧Pn波速度各向异性存在明显差异,反映不同构造应力和断裂剪切运动作用下的岩石层地幔变形特征。东海陆架下方的低速异常揭示了张裂盆地形成时期的地幔活动痕迹,表明中、新生代期间发生过地幔上涌并造成岩石层减薄,菲律宾海板块向西俯冲引发的地幔活动对东海陆架岩石层的形成、演化产生明显的影响。南海北部岩石层厚度较大并且温度相对偏低,地幔异常仅限于局部地区,估计南海北部大陆边缘的地壳底部高速层形成于张裂发生之前,或者是地壳形成时期壳幔分异时的产物。南海中央海盆的扩张不仅导致地壳拉张,软流层物质上涌,而且也造成岩石层地幔减薄甚至缺失。  相似文献   

10.
Abdullh M.S. Al-Amri   《Tectonophysics》1998,290(3-4):271-283
The crustal structure of the western Arabian platform is derived using the spectral analysis of long-period P-wave amplitude ratios. The ratio of the vertical to the horizontal component is used to obtain the crustal transfer function based on thickness variations, crustal velocities, densities and the angle of emergence at the lower crust and upper mantle interface. Eleven well-defined earthquakes recorded at the long-period RYD station during the period from 1985 to 1994 were selected for analysis based on the following criteria: focal depths with a range between 7 and 89 km, body-wave magnitudes greater than 4.7, epicentral distances with a range from 8.8° to 26.5°, and back azimuthal coverage from 196° to 340°. Spectral analysis calculations were based on the comparison of the observed spectral ratios with those computed from theoretical P-wave motion obtained using the Thomson–Haskell matrix formulation for horizontally layered crustal models. The selection of the most suitable model was based on the identification of the theoretical model which exhibits the highest cross-correlation coefficient with the observed transfer function ratio. By comparing the spectral peak positions of the observed and theoretical values, the thickness and velocity can be resolved within 3 km and 1 km/s, respectively, of the observed values. The spectral analysis of long-period P-waves can detect a thin layer near the surface of about 1.6 km thick and a velocity contrast of about 10% with that of the underlying layer. A strong velocity gradient of about 0.05 km/s per km was found in the upper crust and 0.02 km/s per km in the lower crust. The derived crustal model is not unique due to the theoretical assumptions (horizontal layering, constant densities and velocities in each layer), quality of the data and complexities of the crustal structure. The crustal model suggests that the crust consists of five distinct layers. The upper crustal layer has a P-wave velocity of about 5.6 km/s and is about 1.6 km thick. The second layer has a velocity of about 6.2 km/s and is 10.2 km thick. The third layer shows a velocity of 6.6 km/s and is 6.8 km thick. The fourth layer has a velocity of about 6.8 km/s and is 12.3 km thick. The lower crustal layer has a velocity of about 7.5 km/s and is 9.3 km thick. The Mohorovicic discontinuity beneath the western Arabian platform indicates a velocity of 8.2 km/s of the upper mantle and 42 km depth.  相似文献   

11.
The key features in the distribution of geoelectric and velocity heterogeneities in the Earth’s crust and the upper mantle of Kamchatka are considered according to the data of deep magnetotelluric sounding and seismotomography. Their possible origin is discussed based on the combined analysis of electric conductivity and seismic velocity anomalies. The geoelectric model contains a crustal conducting layer at a depth of 15–35 km extending along the middle part of Kamchatka. In the Central Kamchatka volcanic belt, the layer is close to the ground surface to a depth of 15–20 km, where its conductivity considerably increases. Horizontal conducting zones with a width of up to 50 km extending into the Pacific Ocean are revealed in the lithosphere of eastern Kamchatka. The large centers of current volcanism are confined to the projections of the horizontal zones. The upper mantle contains an asthenospheric conducting layer that rises from a depth of 150 km in western Kamchatka to a depth of 70–80 km beneath the zone of current volcanism. According to the seismotographic data, the low- and high-seismic-velocity anomalies of P-waves that reflect lateral stratification, which includes the crust, the rigid part of the upper mantle, the asthenospheric layer in a depth range of ~70–130 km, and a high-velocity layer confined to a seismofocal zone, are identified on the vertical and horizontal cross sections of eastern Kamchatka. The cross sections show low-velocity anomalies, which, in the majority of cases, correspond to the high-conductivity anomalies caused by the increased porosity of rocks saturated with liquid fluids. However, there are also differences that are related to the electric conductivity of rocks depending on pore channels filled with liquid fluids making throughways for electric current. The seismic velocity depends, to a great extent, on the total porosity of the rocks, which also includes isolated and dead-end channels that can be filled with liquid fluids that do not contribute to the electric-current transfer. The data on electric conductivity and seismic velocity are used to estimate the porosity of the rocks in the anomalous zones of the Earth’s crust and the upper mantle that are characterized by high electric conductivity and low seismic velocity. This estimate serves as the basis for identifying the zones of partial melting in the lithosphere and the asthenosphere feeding the active volcanoes.  相似文献   

12.
We present the P-wave seismic tomography image of the mantle to a depth of 1200 km beneath the Indonesian region. The inversion method is applied to a dataset of 118,203 P-wave travel times of local and teleseismic events taken from ISC bulletins. Although the resolution is sufficient for detailed discussion in only a limited part of the study region, the results clarify the general tectonic framework in this region and indicate a possible remnant seismic slab in the lower mantle.

Structures beneath the Philippine Islands and the Molucca Sea region are well resolved and high-velocity zones corresponding to the slabs of the Molucca Sea and Philippine Sea plates are well delineated. Seismic zones beneath the Manila, Negros and Cotabato trenches are characterized by high-velocity anomalies, although shallow structures were not resolved. The Molucca Sea collision zone and volcanic zones of the Sangihe and Philippine arcs are dominated by low-velocity anomalies. The Philippine Sea slab subducts beneath the Philippine Islands at least to a depth of 200 km and may reach depths of 450 km. The southern end of the slab extends at least to about 6°N near southern Mindanao. In the south, the two opposing subducting slabs of the Molucca Sea plate are clearly defined by the two opposing high-velocity zones. The eastward dipping slab can be traced about 400 km beneath the Halmahera arc and may extend as far north as about 5°N. Unfortunately, resolution is not sufficient to reveal detailed structures at the boundary region between the Halmahera and Philippine Sea slabs. The westward dipping slab may subduct to the lower mantle although its extent at depth is not well resolved. This slab trends N-S from about 10°N in the Philippine Islands to northern Sulawesi. A NE-SW-trending high-velocity zone is found in the lower mantle beneath the Molucca Sea region. This high-velocity zone may represent a remnant of the former subduction zone which formed the Sulawesi arc during the Miocene.

The blocks along the Sunda and Banda arcs are less well resolved than those in the Philippine Islands and the Molucca Sea region. Nevertheless, overall structures can be inferred. The bowl-shaped distribution of the seismicity of the Banda arc is clearly defined by a horseshoe-shaped high-velocity zone. The tomographic image shows that the Indian oceanic slab subducts to a depth deeper than 300 km i.e., deeper than its seismicity, beneath Andaman Islands and Sumatra and may be discontinuous in northern Sumatra. Along southern Sumatra, Java and the islands to the east, the slab appears to be continuous and can be traced down to at least a depth of the deepest seismicity, where it appears to penetrate into the lower mantle.  相似文献   


13.
1.Introduction  Thethermalstateandrheologyoftheuppermantleareofgreatimportanceinunderstandingthestructureanddynamicsofthelithosphere,andevenforits3dimensionalor4dimensionalmapping(O’ReillyandGriffin,1985;O’Reillyetal.,1996;Xuetal.1995;Xuetal.,199…  相似文献   

14.
The crustal structure of the central Eromanga Basin in the northern part of the Australian Tasman Geosyncline, revealed by coincident seismic reflection and refraction shooting, contrasts with some neighbouring regions of the continent. The depth to the crust-mantle boundary (Moho) of 36–41 km is much less than that under the North Australian Craton to the northwest (50–55 km) and the Lachlan Fold Belt to the southeast (43–51 km) but is similar to that under the Drummond and Bowen Basins to the east.The seismic velocity boundaries within the crust are sharp compared with the transitional nature of the boundaries under the North Australian and Lachlan provinces. In particular, there is a sharp velocity increase at mid-crustal depths (21–24 km) which has not been observed with such clarity elsewhere in Australia (the Conrad discontinuity?).In the lower crust, the many discontinuous sub-horizontal reflections are in marked contrast to lack of reflecting horizons in the upper crust, further emphasising the differences between the upper and lower crust. The crust-mantle boundary (Moho) is characterised by an increase in velocity from 7.1–7.7 km/s to a value of 8.15 + 0.04 km/s. The depth to the Moho under the Canaway Ridge, a prominent basement high, is shallower by about 5 km than the regional Moho depth; there is also no mid-crustal horizon under the Canaway Ridge but there is a very sharp velocity increase at the Moho depth of 34 km. The Ridge could be interpreted as a horst structure extending to at least Moho depths but it could also have a different intra-crustal structure from the surrounding area.The sub-crustal lithosphere has features which have been interpreted, from limited data, as being caused by a velocity gradient at 56–57 km depth with a low velocity zone above it.Because of the contrasting crustal thicknesses and velocity gradients, the lithosphere of the central Eromanga Basin cannot be considered as an extension of the exposed Lachlan Fold Belt or the North Australian Craton. The lack of seismic reflections from the upper crust indicates no coherent accoustic impedance pattern at wavelengths greater than 100 m, consistent with an upper crustal basement of tightly folded meta-sedimentary and meta-volcanic rocks. The crustal structure is consistent with a pericratonic or arc/back-arc basin being cratonised in an episode of convergent tectonics in the Early Palaeozoic. The seismic reflections from the lower crust indicate that it could have developed in a different tectonic environment.  相似文献   

15.
The lithosphere of northeastern China is composed of the Erguna, Xingan, Songnen, Jiamusi blocks and Mesozoic Wandashan accretionary complex from west to east. Nd isotope model ages indicate that the Xingan and Songnen blocks have the same Nd model ages ranging from 500 to 1 000 Ma. These are obviously younger than those of the Jiamusi block (1 500–2 000 Ma) and the Erguna block (1 500–1 700 Ma), reflecting the different evolutions of individual blocks in the early times. Geochemical tracing analysis shows that the Nd model ages of Paleozoic supercrustal rocks in the four blocks are dominantly Mesoproterozoic, while those of Mesozoic granites are mainly Neoproterozoic. It is shown that the crust ages of the region are characterized by being younger in the lower part and older in the upper part. The Os isotope analysis also indicates that the lithosphere mantle of the region is characteristic of a younger age. The P-wave velocities of the region show more complicated structures in lithosphere and asthenosphere. First of all, notably different from traditional concept of the seismic lithosphere, the low velocity zone of the lithosphere beneath the region has no persistent and continuous top interface which is highly varied in depth and intersected with the high velocity layers, forming sharp velocity discontinuities beneath major tectonic belts, even up to the Moho beneath some tectonic units. But the bottom interface of the low velocity zone is relatively persistent, occurring at a depth of 230–240 km. Another feature is that the lithosphere is characterized by an “overpass type” velocity structure vertically, in which the contoured velocity is distributed in the NE trending within the crust, in a nearly NS trending in the lithosphere mantle from a depth of 45 to 90 km, in a nearly EW trending in the upper part of the asthenosphere from 90 to 170 km and in a ring-like distribution with a diameter of about 300 km in the lower part of the asthenosphere from 170 to 240 km. The P-wave velocity is progressively increasing from 240 to 400 km.  相似文献   

16.
A petrological model for the upper mantle and lower crust under the northern part of the Arabian Plate (Syria) has been derived on the basis of petrology of upper mantle and lower crustal xenoliths occurring in the Neogene to Quaternary alkali basalts of the Shamah volcanic fields. The xenolith suite has been classified by texture mineralogy and chemistry into the following groups: (1) Type I metasomatised and dry Cr diopside xenoliths with protogranular to porphyroclastic textures; (2) Type II Al augite spinal and garnet pyroxenite and websterite which have igneous and/or porphyroclastic textures and abundant phlogopite and/or amphibole; (3) Cr-poor megacrysts; and (4) mafic lower crustal xenoliths. Estimates of Type I xenolith temperatures are 990–1070°C with pressure between 13 and 19 kbar. Type II xenoliths yield temperatures of 930–1150°C and pressures in the range 12—13 kbar. The lower crustal xenolith mineral assemblages and geothermometry based on coexisting minerals suggest equilibration conditions between 6 and 8 kbar and 820–905°C. Mantle plumes, which may be the source of the volatile flux, have implications for melt generation in the Arabian basalt provinces. It is estimated that the lithosphere beneath the Arabian Plate is less than 80 km thick. Xenolith data and geophysical studies indicate that the Moho is located at a depth of 40–37 km and that the crust-mantle transition zone has a thickness of 8–5 km and occurs at a depth of 27–30 km. The boundary between an upper granitic crust and a lower mafic crust occurs at a depth of 19 km. Type I dry xenoliths show a low overall concentration of REE (La/Yb =1–2 and Sm = 0.7–1.1 times chondrite), whereas Type I hydrous xenoliths are LREE enriched (La/Yb=6–9 and Sm=1.1–1.3 times chondrite). Type II xenoliths show high overall LREE enrichment. Petrological and geochemical data for the lower crustal xenoliths indicate that these xenoliths represent basaltic cumulates crystallised at lower crustal pressures.  相似文献   

17.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

18.
This article outlines geomorphological and tectonic elements of the Afar Depression, and discusses its evolution. A combination of far-field stress, due to the convergence of the Eurasian and Arabian plates along the Zagros Orogenic Front, and uplift of the Afar Dome due to a rising mantle plume reinforced each other to break the lithosphere of the Arabian–Nubian Shield. Thermal anomalies beneath the Arabian–Nubian Shield in the range of 150 °C–200 °C, induced by a rising plume that mechanically and thermally eroded the base of the mantle lithosphere and generated pulses of prodigious flood basalt since ∼30 Ma. Subsequent to the stretching and thinning the Afar Dome subsided to form the Afar Depression. The fragmentation of the Arabian–Nubian Shield led to the separation of the Nubian, Arabian and Somalian Plates along the Gulf of Aden, the Red Sea and the Main Ethiopian Rift. The rotation of the intervening Danakil, East-Central, and Ali-Sabieh Blocks defined major structural trends in the Afar Depression. The Danakil Block severed from the Nubian plate at ∼20 Ma, rotated anti-clockwise, translated from lower latitude and successively moved north, left-laterally with respect to Nubia. The westward propagating Gulf of Aden rift breached the Danakil Block from the Ali-Sabieh Block at ∼2 Ma and proceeded along the Gulf of Tajura into the Afar Depression. The propagation and overlap of the Red Sea and the Gulf of Aden along the Manda Hararo–Gobaad and Asal–Manda Inakir rifts caused clockwise rotation of the East-Central Block. Faulting and rifting in the southern Red Sea, western Gulf of Aden and northern Main Ethiopian Rift superimposed on Afar. The Afar Depression initiated as diffused extension due to far-field stress and area increase over a dome elevated by a rising plume. With time, the lithospheric extension intensified, nucleated in weak zones, and developed into incipient spreading centers.  相似文献   

19.
焦淑娟  郑建平 《地球科学》2008,33(3):313-319
对我国西部新疆托云地区中新生代火山岩中的深源岩石包体进行了波速计算, 并与地球物理深部探测技术相结合, 共同限定了西南天山深部壳-幔过渡带的组成和性质.托云地区麻粒岩、橄榄岩的计算波速分别是6.98~7.36 km/s、7.96~8.47 km/s.这些结果与地震反射探测地震波速的对比, 说明在西南天山岩石圈剖面中的40~48km处存在较明显的壳-幔过渡带.过渡带自上而下主要由石英麻粒岩、辉石麻粒岩和橄榄石/石榴石麻粒岩组成, 然后进入尖晶石相二辉橄榄岩组成的上地幔.这样的岩石圈壳-幔结构可以用岩浆底侵-变质作用来解释.   相似文献   

20.
Three-dimensional seismic mapping of the upper mantle beneath Fennoscandia (Baltic Shield) using an ACH-type of inversion technique in combination with P-wave travel-time residual observations from the local seismograph network gave the following results. The central parts of the Baltic Shield are characterized by relatively high seismic velocities down to approximately 300 km. Those parts of the shield most affected by the Caledonide orogeny exhibit relatively low velocities particularly in the uppermost 100 km depth interval. The lower part of the upper mantle (300–600 km) does not exhibit pronounced seismic velocity anomalies and in this respect is in contrast to results from similar studies in regions subjected to neotectonic processes like parts of central and southeastern Europe. The seismic anomaly pattern in the presumed thickened lithosphere is in quantitative agreement with similar ones derived from surface wave dispersion analysis and inversion of electrical measurements. The general orientation of these anomalies coincides with that of the glacial uplift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号