首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
Sediment capping is a remedial option for managing contaminated sediments that involves the artificial placement of a layer of material over a contaminated area. Sorbent materials such as activated C and coke can be used to amend sand caps to improve cap performance. In this study, analytical and numerical modelling approaches were compared for predicting contaminant fate and transport in sediment caps using several diffusion-controlled and advection-dominated contaminant transport scenarios. An analytical tool was used to predict cap performance at steady-state. These results were compared with the results from the numerical CoReTranS model in which the effective diffusivity and degradation rates were modelled as discontinuous functions at a prescribed bioturbation depth. The numerical approach was also applied to modelling a sorptive cap. It was shown that, while the analytical approach can be used to predict steady-state contaminant transport, the numerical approach is needed to evaluate multiple sediment layers with different transport and sorption characteristics and to examine the transient performance between the time that the single layer transient is applicable (i.e., before penetration of the cap containment layer) and until steady-state in the upper layer. For the 30 cm thick sand cap that was considered in this study, the predicted time to reach steady-state conditions for a diffusion-controlled scenario is 1 ka. For an advection-dominated transport, the time to reach steady-state conditions is reduced to 100 a. The activated C-amended sand cap was more effective in isolating the contaminant within the sorbent layer for a sustained period of time (∼100 a). Results from both modelling approaches showed that capping can effectively reduce contaminant flux to the overlying water with critical variables being cap thickness, groundwater velocity, and sediment sorptivity.  相似文献   

2.
The sediment from an acid mine drainage affected reservoir of Guizhou province of China has the iron and arsenic concentration of about 400 and 2.6 g/kg, respectively. Sediment cores were collected, and were used to study the arsenic behavior in the seriously acidified reservoir from the viewpoint of chemical thermodynamics. The limestone neutralization and ferric iron hydrolysis regulated the porewater pH from about 2.9–5.8. The reductive dissolution of As–Fe-rich (hydr)oxides under the mild acidic conditions was the main mechanism for the release of absorbed arsenic into porewater. The maximum concentrations of iron, sulfate and arsenic reached to about 2,800, 9,000 and 1 mg/l, respectively. Arsenic speciation transformation and hydrous ferric oxide (HFO) crystallization enhanced the arsenic mobility in sediment. In addition, the iron sulfide minerals diagenesis could play a role in removing the dissolved arsenic from porewater. The actual distribution of arsenic concentration in porewater was well simulated using the model of surface complexation of arsenic to HFO. Although arsenic concentration in porewater could be above 100 times higher than that of reservoir water, it was not easy to release into the reservoir water through diffusion, because the shallow sediment had relatively strong arsenic adsorption capacity, and new HFO could be generated continuously at the sediment water interface.  相似文献   

3.
Sediment macropores (with effective diameters larger than 100 μm) comprise 11% of the bulk sediment volume in a tidal freshwater wetland vegetated withPeltandra virginica. In order to determine effects of macroporous sediment structure on solute transport, we conducted a solute tracer experiment in the sediment. The effective transport volume (θeff, the volume of sediment through which solute was transported normalized to sediment bulk volume) was 0.15 cm3 cm?3, which is considerably smaller than the total pore space that is potentially available for transport (porosity of sediment is 0.63 cm3 cm?3). A mean transport time of 13 d was required to flush preferential flow paths inPeltandra hummocks; hydrologic turnover of the volumetrically dominant matrix pores (0.53 cm3 cm?3) was apparently much slower. Based on porewater sampler design and hydrological principles, we suggest that N2-purged tension solution samplers and diffusion equilibrators preferentially sample porewater from macropore and matrix domains, respectively. Dissolved ammonium and orthophosphate concentrations were three-fold higher in matrix pores compared to macropores, which is consistent with our finding that more rapid hydrological flushing occurred in macropores compared to matrix pores. Further evaluation of porewater sampler designs in macroporous sediment is needed to improve studies of hydrologic transport and biogeochemical cycling in wetlands.  相似文献   

4.
Numerous studies of marine environments show that dissolved organic carbon (DOC) concentrations in sediments are typically tenfold higher than in the overlying water. Large concentration gradients near the sediment–water interface suggest that there may be a significant flux of organic carbon from sediments to the water column. Furthermore, accumulation of DOC in the porewater may influence the burial and preservation of organic matter by promoting geopolymerization and/or adsorption reactions. We measured DOC concentration profiles (for porewater collected by centrifugation and “sipping”) and benthic fluxes (with in situ and shipboard chambers) at two sites on the North Carolina continental slope to better understand the controls on porewater DOC concentrations and quantify sediment–water exchange rates. We also measured a suite of sediment properties (e.g., sediment accumulation and bioturbation rates, organic carbon content, and mineral surface area) that allow us to examine the relationship between porewater DOC concentrations and organic carbon preservation. Sediment depth-distributions of DOC from a downslope transect (300–1000 m water depth) follow a trend consistent with other porewater constituents (ΣCO2 and SO42−) and a tracer of modern, fine-grained sediment (fallout Pu), suggesting that DOC levels are regulated by organic matter remineralization. However, remineralization rates appear to be relatively uniform across the sediment transect. A simple diagenetic model illustrates that variations in DOC profiles at this site may be due to differences in the depth of the active remineralization zone, which in turn is largely controlled by the intensity of bioturbation. Comparison of porewater DOC concentrations, organic carbon burial efficiency, and organic matter sorption suggest that DOC levels are not a major factor in promoting organic matter preservation or loading on grain surfaces. The DOC benthic fluxes are difficult to detect, but suggest that only 2% of the dissolved organic carbon escapes remineralization in the sediments by transport across the sediment-water interface.  相似文献   

5.
Solid phase and pore water chemical data collected in a sediment of the Haringvliet Lake are interpreted using a multi-component reactive transport model. This freshwater lake, which was formed as the result of a river impoundment along the southwestern coast of the Netherlands, is currently targeted for restoration of estuarine conditions. The model is used to assess the present-day biogeochemical dynamics in the sediment, and to forecast possible changes in organic carbon mineralization pathways and associated redox reactions upon salinization of the bottom waters. Model results indicate that oxic degradation (55%), denitrification (21%), and sulfate reduction (17%) are currently the main organic carbon degradation pathways in the upper 30 cm of sediment. Unlike in many other freshwater sediments, methanogenesis is a relatively minor carbon mineralization pathway (5%), because of significant supply of soluble electron acceptors from the well-mixed bottom waters. Although ascorbate-reducible Fe(III) mineral phases are present throughout the upper 30 cm of sediment, the contribution of dissimilatory iron reduction to overall sediment metabolism is negligible. Sensitivity analyses show that bioirrigation and bioturbation are important processes controlling the distribution of organic carbon degradation over the different pathways. Model simulations indicate that sulfate reduction would rapidly suppress methanogenesis upon seawater intrusion in the Haringvliet, and could lead to significant changes in the sediment’s solid-state iron speciation. The changes in Fe speciation would take place on time-scales of 20-100 years.  相似文献   

6.
Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales.  相似文献   

7.
Increased freshwater and nutrient runoff associated with coastal development is implicated in dramatically altering estuarine communities along eastern US shorelines. We examined effects of three categories of shoreline development on high-marsh environments within Murrells Inlet, South Carolina, USA by measuring sediment nutrients, porewater salinity, plant species diversity, and above- and belowground plant biomass. Effects on new plant growth also were examined in plot clearing and transplantation experiments. Greater nutrient availability in sediments along developed shorelines was reflected in greater aboveground biomass and nitrogen storage in Juncus roemerianus plant tissue. Plant species composition was not significantly different among levels of shoreline development. Zinc concentrations were greater in sediments from developed shorelines and may represent an easily measured indicator of shoreline development. Recently accelerating shoreline development in the southeastern USA may alter plant production, nitrogen storage, and sediment metal content in salt marshes.  相似文献   

8.
为了弄清楚普定水库汞的地球化学循环特征,用金汞齐-冷原子荧光光谱法(CVAFS)和气相色谱技术(GC), 研究了乌江流域上游普定水库水体剖面和沉积物间隙水剖面汞的赋存形态(总汞 THg)、溶解态汞(DHg)、活性汞(RHg)、颗粒态汞(PHg)、总甲基汞(TMeHg)、溶解态甲基汞(DMeHg)和颗粒态甲基汞(PMeHg)的分布特征.结果显示,普定水库水体总汞浓度为1.29~3.18 ng/L, 活性汞浓度为0.09~0.43 ng/L, 总甲基汞浓度为0.06~0.18 ng/L.沉积物间隙水中溶解态汞浓度为2.65 ~11.47 ng/L, 溶解态甲基汞浓度为0.06 ~1.16 ng/L.实验数据表明,普定水库水体中溶解态汞和颗粒态含量相当,其中颗粒态汞占总汞的比例为46%,并与总汞存在极显著相关性(R=0.929,n=20,P<0.01),溶解态汞与总汞相关性不明显(R=-0.067,n=20);冬季普定水库甲基汞以溶解态甲基汞为主,溶解态甲基汞占总甲基汞的比例为63%,溶解态甲基汞与总甲基汞无明显相关关系(R=0.292,n=20),颗粒态甲基汞与总甲基汞存在极显著的相关性(R=0.815,n=20,P<0.01).试验数据表明沉积物孔隙水溶解态汞与溶解态甲基汞浓度明显高于上覆水体, 是普定水库水体中汞的一个重要来源.  相似文献   

9.
In order to find out whether Aha Lake was polluted by the acid mining waste water or not, the concentration and distribution of different mercuryspecies in the water columns and sediment profile collected from Aha Lake were investigated. It was found that discernible seasonal variation of different mercury species in water body were obtained in the Aha Reservoir. With regards to the whole sampling periods, the concentrations of HgP in the Aha Reservoir water body were evidently correlated to the concentrations of total mercury, showing that total mercury was mostly associated with particle mercury. The concentrations of methylmercury in water body were also evidently correlated to the concentrations of dissolved mercury. The dissolved mercury evidently affects the distribution and transportation of methylmercury. However, there is no correlation between methylmercury and total mercury. The dissolved mercury, reactive mercury, dissolved methylmercury levels in the water body of high flow period were much higher than those in low flow period. The distribution, speciation and levels of mercury within the Aha Reservoir water body were governed by several factors, such as the output of river, the release of sediment . Discernible seasonal variation of total mercury and methylmercury in porewater was described during the sampling periods, with the concentrations in high flow period generally higher than those in low flow period. The methylmercury in pore water column was evidently correlated to that of the sediment. The results indicated that highly elevated MeHgD concentrations in the porewater were produced at the depths from 2 to 5 cm in the sediment profile, and decreased sharply with depth. A positive correlation has been found between MeHgD formation and sulfate reducing bacterial activity. These highly elevated concentrations of MeHgD at the intersurface between waters and sediments suggest a favorable methylation condition. Moreover,  相似文献   

10.
The distribution and partitioning of dissolved andparticulate arsenic and phosphorus in the water columnand sediments of the Saguenay Fjord in Quebec, Canada,are compared. In addition, selective and/or sequentialextractions were carried out on the suspendedparticulate matter (SPM) and solid sediments tocontrast their geochemical behaviors in this naturalaquatic system.Results of our analyses show that both arsenic andsoluble reactive phosphate are actively scavenged fromthe water column by settling particles. Upon theiraccumulation at the sediment-water interface some Asand P may be released to porewaters following thedegradation of organic matter to which they areassociated. The porewater concentrations are, however,limited by their strong affinity for authigenic,amorphous iron oxyhydroxides which accumulate in theoxic sediments near the sediment-water interface.The geochemical behavior of arsenic and phosphorusdiverge most strikingly upon the development of anoxicconditions in the sediments. Following their burial inthe anoxic zone, amorphous iron oxyhydroxides arereduced and dissolved, releasing phosphate and arsenicto the porewaters. We observed, however, thatporewater arsenic concentrations increase at shallowerdepths than phosphate in the sediments. The reductionof arsenate, As(V), to arsenite, As(III), and itsdesorption prior to the reductive dissolution of thecarrier phase(s) may explain this observation.Driven by the strong concentration gradientestablished in the suboxic zone, phosphate diffuses uptowards the oxic layer where it is readsorbed byauthigenic iron oxyhydroxides. In the organic-rich andrapidly accumulating sediments at the head of theFjord, porewater sulfate depletion and the resultingabsence of a sulfide sink for Fe(II), may lead to theformation of vivianite in the fermentation zone, apotential sink for phosphate. Arsenite released to theporewaters in the suboxic and anoxic zones of thesediments diffuses either down, where it is adsorbedto or incorporated with authigenic iron sulfides, orup towards the oxic boundary. Arsenite appears tomigrate well into the oxic zone where it may beoxidized by authigenic manganese oxides before beingadsorbed by iron oxyhydroxides present at the samedepth. Whereas, in the absence of authigenic carbonatefluorapatite precipitation, the ability of oxicsediments to retain mineralized phosphate is afunction of their amorphous iron oxyhydroxide content,arsenic retention may depend on the availability ofmanganese oxides, the thickness of the oxic layer and,its co-precipitation with iron sulfides at depth.  相似文献   

11.
Porewater samples were obtained on five occasions during spring, summer and fall by in situ dialysis from three sites of a large freshwater wetland situated along the St. Lawrence River. These samples were analysed for total dissolved mercury ([Hg]T) and methylmercury ([MeHg]) concentrations and for complementary variables including dissolved sulfate, sulfide and elemental sulfur concentrations. Sediment cores were obtained on three occasions from one of these sites for the determination of total mercury ({Hg}T) and methylmercury ({MeHg}) concentration as well as mercury methyltransferase (HgMT) activity profiles. {MeHg} and HgMT activity varied with time and sediment depth. The porewater [Hg]T and [MeHg] depth profiles varied with time and among sites. Modeling the porewater [MeHg] profiles with a one-dimensional reaction-transport equation allowed identification of the sediment depths where MeHg is produced or consumed, as well as an estimate of the net in situ MeHg production rates in the sediments. The model-predicted depths of MeHg production, as well as the sulfate concentration and the HgMT activity depth distributions are all consistent with the involvement of sulfate reducing bacteria in the production of MeHg.  相似文献   

12.
The salinity intrusion in the Fraser estuary, Canada, migrates landward during the rising tide and is flushed downstream on the falling tide. Suspended sediment concentrations are higher during unstratified flows than during stratified conditions. Mixing between the upper layer and the salinity intrusion is restricted by a strong density interface on the rising tide but enhanced mixing occurs across a weak salinity gradient on the falling tide. A weakly-developed estuarine turbidity maximum (ETM) and positive internal waves occur at the tip of the salinity intrusion as it migrates seaward. Spectral analyses of optical backscatter probe time series indicate that sediment movement from the upper layer is restricted by the density interface on the rising tide. During the falling tide, sediment mixing is enhanced by internal waves at the surface of the ETM. Internal waves generated at the density interface have a higher frequency during the rising tide than the falling tide.  相似文献   

13.
Karen A. Merritt  Aria Amirbahman   《Earth》2009,96(1-2):54-66
Considerable recent research has focused on methylmercury (MeHg) cycling within estuarine and coastal marine environments. Because MeHg represents a potent neurotoxin that may magnify in marine foodwebs, it is important to understand the mechanisms and environmental variables that drive or constrain methylation dynamics in these environments. This critical review article explores the mechanisms hypothesized to influence aqueous phase and sediment solid phase MeHg concentrations and depth-specific inorganic Hg (II) (Hgi) methylation rates (MMR) within estuarine and coastal marine environments, and discusses issues of terminology or methodology that complicate mechanism-oriented interpretation of field and laboratory data. Mechanisms discussed in this review article include: 1) the metabolic activity of sulfate reducing bacteria (SRB), the microbial group thought to dominate mercury methylation in these environments; 2) the role that Hgi concentration and/or speciation play in defining depth-specific Hgi methylation rates; and 3) the depth-dependent balance between MeHg production and consumption within the sedimentary environment. As discussed in this critical review article, the hypothesis of SRB community control on the Hgi methylation rate in estuarine and coastal marine environments is broadly supported by the literature. Although Hgi speciation, as a function of porewater inorganic sulfide and/or dissolved organic matter concentration and/or pH, may also play a role in observed variations in MMR, the nature and function of the controlling ligand(s) has not yet been adequately defined. Furthermore, although it is generally recognized that the processes responsible for MeHg production and consumption overlap spatially and/or kinetically in the sedimentary environment, and likely dictate the extent to which MeHg accumulates in the aqueous and/or sediment solid phase, this conceptual interpretation requires refinement, and would benefit greatly from the application of kinetic modeling.  相似文献   

14.
A reactive transport model was developed to describe seasonal variations of biogeochemical and physical processes in Lake Aydat. The model includes physical processes such as vertical mixing, sedimentation and advection related to inflows into the lake and biogeochemical conversion processes in the water column and in the sediment surface layer. The reactions described in the model include primary redox reactions such as primary production, aerobic and anaerobic respiration, methanogenesis and secondary reactions established between oxidants and reducers produced by the primary reactions. After adjusting various kinetic constants, the model reasonably reproduced the main features of seasonal variations of dissolved oxygen and nitrate depth profiles and pH. The reactive transport model was also used to quantify the relative importance of different biogeochemical pathways. For instance, ferrous denitrification seems to play an important role when stratification is increasing.  相似文献   

15.
为探析长江口沉积物-水界面砷的迁移转化机制,本文分析了2019年夏季长江口4个站位上覆水和间隙水中总As浓度及形态的剖面变化特征,耦合氧化还原敏感元素(Fe、Mn和S)的剖面变化剖析了沉积物-水界面砷循环的Fe-Mn-S控制机制,同时结合砷相关功能基因探讨了沉积物-水界面砷迁移转化的微生物调控过程,估算了沉积物-水界面总As的扩散通量。结果表明,除A7-4站位外,长江口其他3个站位间隙水总As以As3+为主要存在形态,且总As浓度均在上覆水中为最低值(0.748~1.57 μg·L-1),而在间隙水中随着深度增加而逐渐增加并在6~9 cm深度达到峰值(7.14~26.9 μg·L-1)。间隙水总As及As3+浓度的剖面变化趋势与溶解态Fe2+、Mn2+相似,其均在中间层出现高值,说明沉积物Fe/Mn还原带砷的释放可能是随固相Fe(Ⅲ)或Mn(Ⅳ)的还原而转移到间隙水中的。氧化层和Fe/Mn还原带过渡区间隙水砷浓度与砷异化还原菌功能基因arrAarsC丰度存在对应关系(除A1-3站外),说明砷异化还原菌将溶解As5+或固相As5+还原为溶解As3+可能是该过渡层砷迁移转化的另一重要过程。硫酸盐还原带的间隙水总As和As3+浓度降低,但由于间隙水的低S2-浓度不利于砷硫化物生成,因此深层间隙水砷可能与铁硫矿物结合而被移除。底层环境氧化还原条件是影响沉积物-水界面砷迁移转化的重要因素,随底层水DO浓度的降低,砷迁移转化更倾向于微生物还原控制。长江口沉积物-水界面总As的扩散通量为1.18×10-7~2.07×10-7 μmol·cm-2·s-1,均表现为沉积物间隙水中总As向上覆水释放,即沉积物是研究区域水体总As的来源之一。  相似文献   

16.
A three-dimensional, time-dependent hydrodynamic and suspended sediment transport model was performed and applied to the Danshuei River estuarine system and adjacent coastal sea in northern Taiwan. The model was validated with observed time-series salinity in 2001, and with salinity and suspended sediment distributions in 2002. The predicted results quantitatively agreed with the measured data. A local turbidity maximum was found in the bottom water of the Kuan-Du station. The validated model then was conducted with no salinity gradient, no sediment supply from the sediment bed, wind stress, and different freshwater discharges from upstream boundaries to comprehend the influences on suspended sediment dynamics in the Danshuei River estuarine system. The results reveal that concentrations of the turbidity maximum simulated without salinity gradient are higher than those of the turbidity maximum simulated with salinity gradient at the Kuan-Du station. Without bottom resuspension process, the estuarine turbidity maximum zone at the Kuan-Du station vanishes. This suggests that bottom sediment resuspension is a very important sediment source to the formation of estuarine turbidity maximum. The wind stress with northeast and southwest directions may contribute to decrease the suspended sediment concentration. When the freshwater discharges increase at the upstream boundaries, the limits of salt intrusion pushes downriver toward river mouth. Suspended sediment concentrations increase at the upriver reaches in the Danshuei River to Tahan Stream, while decrease at Kuan-Du station.  相似文献   

17.
为了探讨海湾水库蓄水初期单次往复水平密度流的产生与效应,进行砂质斜坡沉积物与水体之间盐分交换的水槽实验。通过沉积物孔隙水与其上覆水的多剖面电导率动态监测,分析盐分的时空分布特征,并计算深水区、浅水区和中心区的边界层单位面积含盐总量。实验结果显示,进水在浅水区沉积物表面产生明显的渗入-溢出现象,浅水区沉积物孔隙水盐分浓度显著低于中心区与深水区同一高度的盐分浓度,深水区初始底边界层含盐量与初始边界层下边界盐分浓度均为最高;这表明进水过程在倾斜沉积物表面产生了前进密度流,水流携带的盐分在坡底累积。水槽进满水后深水区边界层含盐总量与边界层下边界盐分浓度快速降低,并且浅水区表层沉积物孔隙水与深水区同一深度水体之间的盐分快速达到平衡;这表明蓄水初期在两者之间形成了返回密度流,从浅水区表层沉积物冲刷出的盐分在密度流作用下再次进入沉积物。为避免再次进入沉积物的盐分在后期继续影响水库泛咸,建议在蓄水结束后尽快实施坡底咸水排除方案。  相似文献   

18.
The speciation and mobility of some selected trace metals (As, Cu, Mn, Pb and Zn) in sediments with depth was investigated in the Cam River-mouth (Vietnam) by collecting sediment cores and analysing porewater and sediment composition, complemented with single (ammonium-EDTA) and sequential (BCR 3-step) extractions and mineralogical analysis (XRD). All trace metals show overall decreasing trends with depth in porewater as a result of anthropogenic input in upper sediment layers. High porewater concentrations of As, Mn and Pb in oxic and suboxic sediment layers may result in groundwater pollution. Sediment-bound Pb and Mn dominate in the reducible and the acid-soluble fraction, respectively, while Cu and Zn distribute rather evenly between four extracted fractions. The porewater metal speciation, as predicted by a geochemical model Visual MINTEQ version 3.0, indicates that the toxicity of Cu, Mn, Pb and Zn (presented by the proportions of free metal ions) decreases with depth, while the toxicity of As increases when As(III) becomes more abundant. The dissolved concentrations of trace metals are not only controlled by the precipitation/dissolution of discrete hydroxide/oxide, carbonate and phosphate minerals, but also by sorption processes on major sorbents (i.e. As on goethite, and Mn and Zn on calcite and dolomite). Sulphide minerals do not show any control even in the anoxic zone most likely because of the low concentration of sulphur.  相似文献   

19.
Two new methods for analysis of sedimentary sulfur employing sensitive flame photometric detection have been developed and applied to a study of marine, estuarine and freshwater sediments. Volatile organosulfur compounds generated from freeze-dried sediments upon heating in a H2 atmosphere reflect the distribution and extent of degradation of detrital organic matter. Regions of biogeochemical sulfur transformations, as characterized by the presence of SO2 progenitors, sulfite and thiosulfate, are also depicted. Scrubbing of sediment slurries treated with the reducing agent, acidic Cr(II) solution, releases H2S and CH2SH from their metal-complexed forms. CH3SH is a common constituent of marine and estuarine sediments at sub-ppm concentrations.  相似文献   

20.
In sediments with oxidized surface layers, the percentage of mineralized nitrogen that is nitrified/denitrified, compared with that released directly as ammonium, appears to be affected by the presence of sea salts. In estuarine systems, a significant portion of the nitrogen is released as ammonium, whereas in freshwater systems, most of the mineralized nitrogen is often released from the sediments as nitrogen gas. We hypothesized that this discrepancy is caused by differential competition between physical diffusion and nitrification/denitrification in the two systems. The vertical migration (by Fickian diffusion) of ammonium out of the oxic layer may be hindered by cation exchange (or sorption) interactions with sediment particles to a greater extent in fresh water than in estuarine systems. The resulting relatively long residence time, and potentially high levels of particle-bound ammonium in the freshwater sediments, would favor nitrification as the major ammonium removal process. By contrast, ion pair formation of ammonium with seawater anions and blockage of sediment cation exchange sites with seawater cations may allow a sizable fraction of the ammonium to diffuse out of estuarine sediments before it is nitrified. A salt effect, consistent with this hypothesis, has been demonstrated in experimental systems by changing the ionic composition of water flowing above intact cores of freshwater and estuarine sediments. Steady-state ammonium release from Lake Michigan sediments was substantially enhanced in the presence of 30% seawater over that in the presence of lake water alone. Likewise, steady-state ammonium release, from Ochlockonee River and Bay sediments (Florida) and from Toms River and Barnegat Bay sediments (New Jersey), was usually higher in the presence of diluted synthetic seawater than it was in the presence of fresh water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号