首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wide angle seismic modeling methodology was developed for the purpose of studying marine gas hydrate deposits. The software for seismic modeling was selected on the basis of comparative analysis and testing of different computer programs. Five averaged prognostic two-dimensional models were developed. These models include the gas hydrate zone, the free gas zone, and the basement. The prognostic models suggested represent the structure of gas hydrate deposits for various regions of the World Ocean. Wave field calculations were made for various positions of ocean bottom seismometers with respect to the gas hydrate zone using the seismic tomography technique. Numerical experiments showed significant anomalies of the kinematical and dynamical characteristics of the refracted and wide-angle reflected waves. These anomalies are related to the gas hydrate and the free gas zones and to a possible channel of hydrocarbon supply.  相似文献   

2.
A fundamentally new mechanism of tsunami generation as a result of water discharge into rapidly opening seismic fractures of the bottom is proposed. A mathematical model of the phenomenon developed within the framework of the linear potential theory is presented. The main parameters of the problem that affect the characteristics of the formed wave are revealed.  相似文献   

3.
The often poor quality of ocean bottom seismic data, particularly that observed on horizontal seismometers, is shown to be the result of instruments responding to motions in ways not intended. Instruments designed to obtain the particle motion of the ocean bottom are found to also respond to motions of the water. The shear discontinuity across the ocean floor boundary results in torques that cause package rotation, rather than rectilinear motion, in response to horizontal ground or water motion. The problems are exacerbated by bottom currents and soft sediments. The theory and data presented in this paper suggest that the only reliable way of obtaining high fidelity particle motion data from the ocean floor is to bury the sensors below the bottom in a package with density close to that of the sediment. Long period signals couple well to ocean bottom seismometers, but torques generated by bottom currents can cause noise at both long and short periods. The predicted effects are illustrated using parameters appropriate for the operational OBS developed for the U. S. Office of Naval Research. Examples of data from ocean bottom and buried sensors are also presented.  相似文献   

4.
The Hawaii-2 Observatory seismic system is currently transmitting high-quality seismic data from the ocean floor in the central NE Pacific Ocean through Hawaii to the IRIS Data Management Center. The system includes broad-band seismic, geophone, acoustic, and ocean current sensors. The seismic sensors are buried about 0.4 m below the ocean floor to improve coupling to the ocean bottom and to reduce noise levels. The system can be remotely calibrated, leveled and locked, and gains can be changed on command from shore. Data are temporarily stored in the seismic package for retransmission as needed to correct for transmission problems and to prevent loss of data. Data generated are valuable for studies of the Earth's structure and the dynamics of earthquakes  相似文献   

5.
D. G. Levchenko 《Oceanology》2006,46(5):739-750
Recording seismic signals on the bottom is accompanied by specific distortions caused by resonance phenomena. In the literature, such distortions are explained by the natural vibration of the heavy housing of a seismometer on a soft elastic sediment layer. Meanwhile, there are experimental results that contradict this model. In the present paper, we consider the rheological properties of the bottom sediments, which in fact were not taken into account previously. The model of a viscoplastic medium was used (the Bingham model), and the parameters of the model were experimentally determined. The estimates show that, in the frequency range from 0.003 to 30 Hz used in broadband bottom seismology, the effect of the mass of the seismometer on the results of recording on a soft bottom is negligible. Large errors can be introduced only when a seismometer is placed on rubberlike media such as peat soil, algae aggregations, etc. Resonance phenomena in recording signals on the bottom can occur when seismic waves propagate through a layer of water-saturated sediments. These phenomena are more pronounced for shear waves, whereas the distortions of the longitudinal waves propagating through the water-saturated layer are relatively weak.  相似文献   

6.
An analysis of the attenuation of seismic waves as measured by the quality factorQc (for coda waves) has been performed for the volcanic Jan Mayen island in the Norwegian Sea, using earthquakes near the Jan Mayen Fracture Zone and local seismic stations on the Jan Mayen island.Qc values of the order of 100 at a frequency of 1 Hz are found, increasing to about 300 at 10 Hz. These values are typical of what usually is observed in tectonically influenced areas near oceanic/continental plate boundaries. It is considered likely that these results are influenced by the fact that the Jan Mayen island, in spite of its proximity to a fracture zone, is located in the northern end of the Jan Mayen Ridge, which now is accepted as being a micro-continent. The presence of the active Beerenberg volcano on the Jan Mayen island does give rise to a somewhat stronger attenuation for waves traversing that area, but this effect is weak and quite limited in spatial extent. There is also a slight increase in attenuation as a function of depth, but less than what is observed in terms of lateral variations. This is reasonable in view of the very strong lateral variations in lithospheric structure exhibited in this area.  相似文献   

7.
Deep seismic sounding measurements were performed in the continent-ocean transition zone of the northern Svalbard continental margin in 1985 and 1999. Data from seismic profile AWI-99200 and from additional crossing profiles were used to model the seismic crustal structure of the study area. Seismic energy (airgun and TNT shots) was recorded by land (onshore) seismic stations, ocean bottom seismometers (OBS), and hydrophone systems (OBH). 3-D tomographic inversion methods were applied to test the previous 2-D modelling results. The results are similar to the earlier 2-D modelling, supplemented by new off-line information. The continental crust thins to the west and north. A minimum depth of about 6 km to the Moho discontinuity was found east of the Molloy Deep. The continent-ocean transition zone to the east is characterized by a complex seismic velocity structure according to the 2-D model and consists of several different crustal blocks. The zone is covered by deep sedimentary basins. Sediment thicknesses reach a maximum of 5 km. The Moho interface deepens to 28 km depth beneath the continental crust of Svalbard.  相似文献   

8.
Experimental results of the seismic profiling with bottom penetration up to 1000 m based on broadband signals and conducted in the Caspian Sea sites are presented. Use has been made of synchronized sequences of probing pulses with linear frequency modulation at a frequency deviation of 50 to100 Hz. The pulses were emitted by a towed sound source of an original design (acoustic power up to 300 W, frequency ranged from 100 to 1000 Hz) and received by a standard digital seismic streamer. The processing of the signals involved the matched filtering of the individual pulses and the trajectory accumulation of a long sequence of pulses lengthwise the horizontal-homogeneous reflecting layers of the bottom structure. The adaptive stacking procedure taking into account the linear inclinations of the individual layers allowed us to enlarge the stacking interval by up to 100 pulses and to increase the effective depth and the spatial resolution of the seismic profiling, which gave us a total increase of more than 30 dB in the S/N ratio. In our view, the seismic profiling using low-power (about 100 W) and broadband (up to several hundred Hz) coherent sound sources represents a promising technology for decreasing the hazardous impact on aquatic ecosystems. The approach developed is an alternative to the conventional technology of marine seismic prospecting based on powerful pulse sources of the shock type (air guns, sparkers) in the low frequency range (less than ~200 Hz).  相似文献   

9.
南黄海盆地崂山隆起区中、古生界地层发育,为南黄海盆地有利勘探区域。但由于区域性的高速屏蔽层的存在,导致地震波能量难以下传,中-古生界地震成像效果较差,信噪比低。针对该问题,选取高精度地震采集技术,采用国产“海亮”高精度电缆采集系统在崂山隆起区域实施了地震采集,以达到增加空间采样率的目的,同时优化采集参数,提高目的层成像效果。实践表明,该方案明显提高了南黄海崂山隆起地区地震资料的品质,中-古生界成像获得改善,为该区中-古生界勘探提供了优质的基础资料。  相似文献   

10.
对南冲绳海槽进行反射地震调查 ,结果表明 :(1 )海槽盖层主要由反射层组 (时代相当于第四纪 )和反射层组 (时代相当于上新世 )组成 ,推测槽底局部存在中新统。槽底沉积物主要源自中国大陆。轴部目前仍处在裂陷作用阶段 ;(2 )断裂极为发育 ,可分 NE— SW向(西南端转为近 E— W向 )和 NW— SE向两组 ,分别属张性及张扭性断裂 ,后者切割前者 ;(3)岩浆活动十分强烈 ,东南缘岩浆活动尤甚 ,推测其岩性以中、基性岩为主  相似文献   

11.
This review summarizes the concepts of seismogenic tsunami waves. Principles of short-term tsunami forecasting and tsunami recording systems are discussed. The traditional approach to describing tsunami generation by earthquakes is outlined and its drawbacks are analyzed. The main and secondary effects are distinguished which are responsible for the formation of waves by underwater earthquakes. The existing numerical codes of tsunami dynamics are described.  相似文献   

12.
OBS广角反射地震及其意义   总被引:2,自引:0,他引:2  
在蒸发岩、玄武岩等高阻抗岩层发育地区 ,常规反射地震往往难以获取高阻抗层以下的地层地质信息。而使用海底地震仪 ( OBS)进行广角反射地震测量 ,可较好地解决高阻抗层屏蔽问题 ,它是开展海上地质构造勘查的一种行之有效的方法。对 OBS广角反射地震法的原理 ,海上测量方法 ,资料处理 ,时间剖面解释及地下地质构造计算机模拟方法作了阐述 ,对 OBS广角反射地震勘探法的成功范例——苏伊士湾高蒸发岩发育区结晶基底勘探作一扼要介绍。  相似文献   

13.
There has been a long-standing debate concerning how dangerous seismic surveys are with respect to marine life. Marine seismic work today is dominated by airgun technology, where high energy is generated by a release of compressed air into the water. The objective of the “Time coded impulse seismic technique” project is to examine whether a new low energy acoustic source can be used for seismic purposes. If the method turns out to be successful, the low output energy and continuous operation will make the source suitable in environmental sensitive areas. The Low level Acoustic Combustion Source (LACS) is a petrol driven pulsed underwater acoustic source. It operates at a few meters depth, and each shot can be digitally controlled from the surface by a computer located in the mother vessel. A presentation of the recorded LACS signal characteristics, the modulation, the Pseudo Noise coding/decoding principles and field test results, is given. The importance of using an optimized code with fine resolution and of using the near field recording as a correlator sequence is demonstrated. Clear correlation peaks could then be seen from the bottom and sub bottom reflectors.  相似文献   

14.
The bottom simulating reflector (BSR), the boundary between the gas hydrate and the free gas zone, is considered to be the most common evidence in seismic data analysis for gas hydrate exploration. Multiple seismic attribute analyses of reflectivity and acoustic impedance from the post-stack deconvolution and complex analysis of instantaneous attribute properties including the amplitude envelope, instantaneous frequency, phase, and first derivative of the amplitude of seismic data have been used to effectively confirm the existence of a BSR as the base of gas hydrate stability zone. In this paper, we consider individual seismic attribute analysis and integrate the results of those attributes to locate the position of the BSR. The outputs from conventional seismic data processing of the gas hydrate data set in the Ulleung Basin were used as inputs for multiple analyses. Applying multiple attribute analyses to the individual seismic traces showed that the identical anomalies found in two-way travel time (TWT) between 3.1 and 3.2 s from the results of complex analyses and l 1 norm deconvolution indicated the location of the BSR.  相似文献   

15.
为了研究海底防沉板—桩复合基础在地震荷载作用下的动力反应特性,以我国南海深水工程实例为研究对象,利用Flac3D有限差分仿真软件建立了计算模型,土体采用Mohr-Coulomb本构模型,模型底部输入EL Centro地震波,对不同桩长的复合基础进行分析计算.在该特定工程背景下,研究结果表明:随着桩长的增加,防沉板顶部加速度放大系数呈减小趋势;地震荷载下,复合基础发生震陷,沉降量在地震波加速度峰值过后趋于稳定;当桩长为6m时,复合基础的水平振动程度和震陷量最小;由于桩基础把震动能量传输到深部土层中,复合基础周围土体的加速度响应值小于远场土体.在动力时域内,防沉板与桩连接处弯矩最大,需要在此处增设加固装置.  相似文献   

16.
The Hawaii Institute of Geophysics began development of the Ocean Subbottom Seisometer (OSS) system in 1978, and OSS systems were installed in four locations between 1979 and 1982. The OSS system is a permanent, deep ocean borehole seismic recording system composed of a borehole sensor package (tool), an electromechanical cable, recorder package, and recovery system. Installed near the bottom of a borehole (drilled by the D/V Glomar Challenger), the tool contains three orthogonal, 4.5-Hz geophones, two orthogonal tilt meters; and a temperature sensor. Signals from these sensors are multiplexed, digitized (with a floating point technique), and telemetered through approximately 10 km of electromechanical cable to a recorder package located near the ocean bottom. Electrical power for the tool is supplied from the recorder package. The digital seismic signals are demultiplexed, converted back to analog form, processed through an automatic gain control (AGC) circuit, and recorded along with a time code on magnetic tape cassettes in the recorder package. Data may be recorded continuously for up to two months in the self-contained recorder package. Data may also be recorded in real time (digital formal) during the installation and subsequent recorder package servicing. The recorder package is connected to a submerged recovery buoy by a length of bouyant polypropylene rope. The anchor on the recovery buoy is released by activating either of the acoustical command releases. The polypropylene rope may also be seized with a grappling hook to effect recovery. The recorder package may be repeatedly serviced as long as the tool remains functionalA wide range of data has been recovered from the OSS system. Recovered analog records include signals from natural seismic sources such as earthquakes (teleseismic and local), man-made seismic sources such as refraction seismic shooting (explosives and air cannons), and nuclear tests. Lengthy continuous recording has permitted analysis of wideband noise levels, and the slowly varying parameters, temperature and tilt.Hawaii Institute of Geophysics Contribution 1909.  相似文献   

17.
In connection with the intensive development of the northeastern part of the Black Sea, at present a number of serious technical, scientific, and ecological problems have arisen. As the constructions being raised are of large sizes and they are designed for a long period of use, the probability of their damage by natural phenomena significantly increases. First of all, these are phenomena connected with seismotectonic activity. In the present paper, the current concepts about the regional tectonic structure are considered. Moreover, a detailed analysis of the seismic activity in the Bolshoi Sochi region and the adjacent regions is conducted in the historical perspective. The basic results of the marine seismic research carried out by the Institute of Oceanology of the Russian Academy of Sciences on the shelf and the continental slope of the northeastern part of the Black Sea during the period of 1998–2001 are presented. On the basis of the scheme of the general seismic zoning developed by the International Expert Group for the Caucasian Region, a scheme of the seismic hazard in the Bolshoi Sochi region has been constructed. For the specific zones of the region, the values of the seismic hazard characteristics—the maximum shocks and accelerations and the periods of oscillations under maximum seismic effect—have been calculated. Some ideas concerning the integrated modernization of the system for seismological observations in this region, including the deployment of autonomous bottom seismographs and automatic seismographs in almost inaccessible places, are proposed.  相似文献   

18.
The Southwest Subbasin (SWSB) is an abyssal subbasin in the South China Sea (SCS), with many debates on its neotectonic process and crustal structure. Using two-dimensional seismic tomography in the SWSB, we derived a detailed P-wave velocity model of the basin area and the northern margin. The entire profile is approximately 311-km-long and consists of twelve oceanic bottom seismometers (OBSs). The average thickness of the crust beneath the basin is 5.3 km, and the Moho interface is relatively flat (10–12 km). No high velocity bodies are observed, and only two thin high-velocity structures (~7.3 km/s) in the layer 3 are identified beneath the northern continent-ocean transition (COT) and the extinct spreading center. By analyzing the P-wave velocity model, we believe that the crust of the basin is a typical oceanic crust. Combined with the high resolution multi-channel seismic profile (MCS), we conclude that the profile shows asymmetric structural characteristics in the basin area. The continental margin also shows asymmetric crust between the north and south sides, which may be related to the large scale detachment fault that has developed in the southern margin. The magma supply decreased as the expansion of the SWSB from the east to the west.  相似文献   

19.
SEDIS IV型短周期自浮式海底地震仪数据校正方法   总被引:6,自引:0,他引:6  
利用15台SEDISIV型短周期自浮式海底地震仪在南海中、北部地壳深部结构调查中所获得的资料,探讨了海底地震仪数据校正的方法和校正后的效果,结果表明:使用该地震仪所获得的原始资料经过放炮时间、炮点坐标数据局部化、海底地震仪位置误差以及记录时间漂移4方面的校正后,数据更趋合理,误差显著降低。放炮时间的校正消除了时钟漂移和时间延迟的误差;炮点坐标数据局部化处理消除了炮点位置整体趋势性偏移的现象;试错法进行位置误差和记录时间的精细校正时,时间漂移的校正量值约为几个到十几个毫秒,位置校正的量值仅在几米到数百米之间,实测数据所绘曲线的形态和位置都与理论曲线十分吻合,可见校正后误差显著降低。  相似文献   

20.
Gas hydrates along continental margins are commonly inferred from the presence of bottom simulating reflectors (BSRs) on reflection seismic records. Shale and mud diapirs are often observed in the proximity of BSR-inferred gas hydrates. Analysis of data from documented gas-hydrate occurrences suggests that the areas where mud volcanoes exist on the seafloor are promising locations for sediments with high gas-hydrate concentration. Along the western continental margin of India (WCMI), we have identified several anomalous reflections on single-channel, analogue seismic records in the proximity of BSRs, from which the presence of gas-charged sediments and gas seepages was inferred. These features characterize both the shelf-slope region of the WCMI and the adjoining deep-sea areas. The seismic records also reveal mud/shale diapiric activity and pockmarks near the gas hydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号