共查询到20条相似文献,搜索用时 0 毫秒
1.
Desert riparian vegetation and groundwater in the lower reaches of the Tarim River basin 总被引:1,自引:0,他引:1
Yaning Chen Weihong Li Changchun Xu Zhaoxia Ye Yapeng Chen 《Environmental Earth Sciences》2015,73(2):547-558
The Green Corridor in the lower reaches of Tarim River in northwestern China has an extreme hot and dry climate. Vegetation here, consisting of arbor, shrub and grass, relies on groundwater exceedingly. However, the increasing anthropogenic activities of large-scale agricultural reclamation and unreasonable water utilization in the upper and middle reaches caused the 321-km riverway in the lower reaches to dry up completely in 1972 and resulted in the sharp decline of groundwater, followed by the ruin of desert riparian vegetation on a large scale. The Green Corridor is on the verge of shrinking. Water has a key role in maintaining ecological balance and socioeconomic development. This paper, focused on the relationship between vegetation and groundwater, discusses (1) the change of groundwater table caused by the ecological water delivery carried out in the lower reaches of Tarim River; (2) the appropriate groundwater depth meeting the vegetation’s survival; (3) the minimum ecological flux and ecological water requirement for the growth of natural vegetation. It was shown that (1) based on the analysis of the monitoring data from the groundwater level of ten times water delivery, such an extensive artificial watering takes positive effect on raising the groundwater level along the two sides of the river; (2) a groundwater table depth of 2–4 m is probably the appropriate ecological water table level for the lower reaches of the Tarim River, and 6 m is the threshold for the local vegetation; (3) at the lower Tarim River, 1.157 × 108 m3 of water flow is needed for itself. The longer the duration of water releases, the greater would be the groundwater rise and the larger the range of vegetation influenced. It was found that the duration and volume of water delivery was closely related to restoration of vegetation in the lower reaches of the Tarim River. The goal of this paper is to offer scientific evidences for water delivery in the rigorous areas to maintain an ecological balance. 相似文献
2.
塔里木河下游357km河道断流近30年,向塔里木河下游实施应急输水抢救生态环境,是世界范围内流域退化生态系统恢复与重建的稀有案例。以此为背景,在生态环境本底状况调查的基础上,通过大量的监测资料,应用河道水力学、地下水动力学以及植被生态学,以河道水量沿程消耗-地下水位动态变化-植物恢复为主线,摸清了水流在河道纵向、河道横向两侧和垂向剖面中的运移、转化和消耗规律,研究分析了应急输水的水生态环境三维响应特征和植被恢复效应。为创建和完善干旱区受损生态系统输水、修复与重建的评价体系打下基础,也为塔里木河流域综合治理提供技术支撑。 相似文献
3.
4.
Response of riparian vegetation to water-table changes in the lower reaches of Tarim River, Xinjiang Uygur, China 总被引:1,自引:0,他引:1
Yaning Chen Zhonghe Pang Yapeng Chen Weihong Li Changchun Xu Xinming Hao Xiang Huang Tianming Huang Zhaoxia Ye 《Hydrogeology Journal》2008,16(7):1371-1379
The lower reaches of Tarim River in the Xinjiang Uygur region of western China had been dried out for more than 30 years before water began to be diverted from Konqi (Peacock) River via a 927-km-long channel in year 2000, aimed at improving the riparian ecological systems. Since then, eight intermittent water deliveries have been carried out. To evaluate the response of riparian vegetation to these operations, the groundwater regime and vegetation changes have been monitored along the 350-km-long stem of the river using a network of 40 dug wells at nine transects across the river and 30 vegetation plots at key sites. Results show that the water table rose remarkably, i.e. from a depth of 9.87 m before the water delivery to 3.16 m after the third water delivery. The lateral distance of affected water table extended to 1,050 m from the riverbank after the fourth water delivery. The riparian vegetation has changed in composition, type, distribution, and growing behavior. This shows that the water deliveries have had significant effects on restoration of riparian ecosystems. 相似文献
5.
为准确反映塔里木河下游生态输水工程后地下水的动态变化,实现为本地区开展大规模的生态恢复和重建工作提供科学依据,在塔里木河下游沿321km河道上布设了9个监测断面和39口监测井,采用电导法定期监测地下水位近3年。结果显示:输水后地下水位在河道纵向、横向上有各自的变化规律,说明生态输水的效益是逐步显现的。因此,对本地区生态输水的综合评价应该放在几年以后再开展。同时,通过对生态输水后地下水位变化的分析,提出了调整输水规模和方式的建议。 相似文献
6.
基于SHAW(Simultaneous Heat and Water)模型,以基本观测要素、植被参数和土壤剖面水热观测数据为模型的输入,对河岸胡杨林的耗水过程、土壤剖面水分变化和能通量进行了较小时间尺度上的模拟研究。结果表明,采用SHAW模型模拟的胡杨耗水量与观测值间存在较大偏差。因此,为了进一步提升水热耦合SHAW模型在干旱区的实用性,引入了地下水位因子GSI(Groundwater-Soil water Interaction),建立了改进的SHAW(GSI-SHAW)模型,解决干旱区荒漠河岸林耗水过程模拟的方法问题。采用SHAW模型和GSI-SHAW模型对胡杨耗水量的模拟进行了对比研究。结果显示,SHAW模型和GSI-SHAW模型模拟的胡杨耗水量与观测值的相关性系数分别为0.8533、0.9075,其平均相对误差分别为21.4%、16.9%,可见,改进的SHAW模型的模拟值更加接近试验观测值。地下水位的考虑一定程度上提升了传统SHAW模型的模拟精度,为干旱区自然植被耗水量的计算提供了新的方法和科学依据。 相似文献
7.
Response of groundwater chemistry to water deliveries in the lower reaches of Tarim River,Northwest China 总被引:2,自引:0,他引:2
Yongjin Chen Kefa Zhou Yaning Chen Weihong Li Jiazhen Liu Tao Wang 《Environmental Geology》2008,53(6):1365-1373
In this paper, we analysed the monitored data from nine groundwater-monitoring transects in the lower reaches of Tarim River
during the five times of stream water deliveries to the river transect where the stream flow ceased. The results showed that
the groundwater depth in the lower reaches of Tarim River rose from −9.30 m before the conveyances to −8.17 and −6.50 m after
the first and second conveyances, −5.81 and −6.00 m after the third and fourth the conveyance, and −4.73 m after the fifth.
The horizontal extent of groundwater recharge was gradually enlarged along both sides of the channel of conveyance, i.e.,
from 250 m in width after the first conveyance to 1,050 m away from the channel after the fourth delivery. With the rising
groundwater level, the concentrations of major anions Cl−, SO42− and cations Ca2+, Mg2+, Na+, as well as total dissolved solids (TDS) in groundwater underwent a significant change. The spatial variations in groundwater
chemistry indicated that the groundwater chemistry at the transect near Daxihaizi Reservoir changed earlier than that farther
from it. In the same transect, the chemical variations were earlier in the monitoring well close to watercourse than that
farther away from the stream. In general, the concentration of the major ions and TDS at each monitoring well increased remarkably
when the water delivery started, and decreased with the continued water delivery, and then increased once again at the end
of the study period. Hence, the whole study period may be divided into three stages: the initial stage, the intermediate stage
and the later stage. According to the three stages of groundwater chemistry reaction to water delivery and the relationships
between groundwater chemical properties and groundwater depths, we educe that under the situation of water delivery, the optimum
groundwater depth in the lower reaches of the Tarim River should be −5 m. 相似文献
8.
Jianhua Xu Yaning Chen Weihong Li Lijun Zhang Yulian Hong Xueli Bi Yang Yang 《Environmental Earth Sciences》2012,65(6):1807-1820
This study applied a comprehensive quantitative approach including statistical, principal component and gray relation analyses
to assess the groundwater chemistry based on monitored data from 840 samples collected from the lower reaches of Tarim River
from 2000 to 2009. The main findings were: (1) there were six types of groundwater chemistry in the lower reaches of Tarim
River where Cl·SO4–Na·Mg was the dominant type accounting for 73.57% in all samples. There were linear relationships among chemical parameters,
where TDS had significant multiple correlations with Na+, K+, Mg2+, Ca2+ and Cl−, respectively. (2) Three principal components (PC1, PC2 and PC3) were extracted. They included comprehensive measurements
for salinization, alkalinity and pH, respectively. Most parameters showed decreasing trends during the period of 2000–2009,
as well as the scores on PC1, because the concentrations of various chemical substances were diluted due to the uplift of
the groundwater table in the lower reaches and the implementation of the ecological water delivery project in 2000. (3) HCO3
− was the most sensitive chemical parameter affected by the groundwater table followed by TA, Mg2+, TH, SO42−, K+, TDS and TS. PC2 was the most sensitive principal component to the change of the groundwater table followed by PC1 and PC3. 相似文献
9.
Desert riparian forest colonization in the lower reaches of Tarim River based on remote sensing analysis 总被引:1,自引:0,他引:1
Guilin Liu Alishir Kurban Huanming Duan Umut Halik Abdimijit Ablekim Luocheng Zhang 《Environmental Earth Sciences》2014,71(10):4579-4589
The ecological water conveyance project that pipes water from Daxihaizi reservoir to lower reaches of Tarim River has been implemented ten times since 2000. After ecological water conveyance, restoration has taken place for vegetation along the dried-up lower reaches of the Tarim River. The changes of vegetation fluctuated yearly due to ecological water conveyance. In order to reveal the detailed process of vegetation changes, remote sensing images from 1999 to 2010 were all classified individually into vegetated and non-vegetated areas using the soil-adjusted vegetation index threshold method. Then inter-annual changes of vegetation over a period of 12 years were obtained using a post-classification change detection technique. Finally, spatial–temporal changes distribution of vegetation cover and its response to ecological water conveyance were analyzed. The results indicate: (1) vegetation area increased by 8.52 % overall after ecological water conveyance. Vegetation between 2003 and 2004 increased dramatically with 45.87 % while vegetation between 2002 and 2003 decreased dramatically with 17.83 %. (2) Vegetation area gain is greater than vegetation loss during 1999–2000, 2001–2002, 2003–2004 and 2009–2010 periods. Although vegetation restoration is obvious from 1999 to 2010, vegetation loss also existed except for the periods above. It indicates that vegetation restoration fluctuated due to ecological water conveyance. (3) Spatial distribution of vegetation restoration presented “strip” distribution along the river and group shaper in the lower terrain area, while spatial distribution of vegetation loss mainly located in the upper reaches of river and area far away from the river. (4) Vegetation restoration area had a positive relative with total ecological water conveyance volume. The scheme and season of ecological water conveyance had also influenced the vegetation restoration. The vegetation change process monitoring, based on continuous remote sensing data, can provide the spatial–temporal distribution of vegetation cover in a large-scale area and scientific evidences for implementing ecological water conveyance in the lower Tarim River. 相似文献
10.
Evolutionary trend of water cycle in Beichuan River Basin of China under the influence of vegetation restoration 下载免费PDF全文
To understand the influence of vegetation restoration on the water cycle in semiarid areas, the effects of vegetation restoration on evolution of the key elements of water cycle were clarified by analyzing the evolutionary trend of atmospheric precipitation, ecological consumption water, and surface runoff on a river basin scale on the basis of analytical results of the changes in vegetation coverage and the long-term meteorological and hydrological monitoring data of Beichuan River Basin. The results show that the vegetation cover in the Beichuan River basin has rapidly increased in the hilly and mountainous areas since the 1980s, especially from 2000 to 2019, with the maximum and average vegetation cover rates increased by 14.98% and 52.2%, respectively. During 1956-2016, the annual precipitation in the basin remained relatively stable; the annual surface runoff slightly declined, with an average attenuation rate of 20 million m~3/10 a. The main reason for the runoff decline is the increase in ecological water induced by the vegetation restoration, which has changed the spatial-temporal distribution of the water from atmospheric precipitation in the basin. Spatially, more precipitation was converted into ecological water. As a result, the remnant runoff supplied to the lower reaches reduced accordingly. Temporally, more precipitation participated in the soil water-groundwater cycle, thus prolonging the outward drainage period of the precipitation. Moreover, the large-scale vegetation restoration induced a significant decrease in the surface wind speed, evaporation from water surface and drought index. As a result, a virtuously mutual feedback relationship was formed between the vegetation and meteorological elements. Therefore, vegetation restoration is of great significance for the improvement in the water conservation capacity and semiarid climate conditions in the Beichuan River basin. 相似文献
11.
12.
Based on data obtained from field investigations, this paper aims to analyze the influence of the river overflow on the desert
riparian vegetation and discuss the function of the river overflow on the vegetation restoration at the lower Tarim River.
The results show that (1) there are only 17 species, 13 genera and 9 families in the study areas before river overflow, while
there are 34 species, 26 genera and 12 families after the overflowing in which 18 species emerged newly; (2) judging by the
biodiversity indices, the species diversity and species richness in the river overflowed area increase more significantly
than those in the un-overflow area; (3) judging by the importance of different species after years of river overflowing, the
annual herbs germinate quickly at first, while the perennial herbs with deep roots or root clones become dominant in the plant
community; (4) after several times of river overflowing, some arbors and shrubs such as Populus euphratica and Tamarix ramosissima germinate easily and can dominate gradually in the plant community. The results indicate that the river overflowing restores
the severely degraded ecosystem in the lower Tarim River and the function is connected with restoration of eco-hydrological
processes in the study areas. The results suggest that experimental overflowing has initiated a process of restoring ecosystem
function within the riparian forest. 相似文献
13.
由于中国西北地区地表水资源有限,地下水则成为重要的备用水资源,而地表水和地下水转化过程及其耦合模拟是水资源开发利用和科学评价的基础,因此,为了准确反映塔里木河下游间歇性生态输水后地下水的动态变化,以塔里木河下游英苏断面为例,基于Boussinesq方程建立了改进的地下水动力学(GH-D2)模型,模拟了塔里木河下游绿色走廊典型断面地下水对全时段(2000-2015年)间歇性生态输水的响应过程。结果表明,尽管Boussinesq方程的GH解能较好地模拟地下水位的瞬态变化,但模拟地下水位多年变化的结果并不理想,而改进的GH-D2模型考虑了间歇性生态输水对地下水位变化的滞后效应,对长时间尺度地下水位变化的模拟具有较好的效果。与GH和GH-D1模型相比,GH-D2模型模拟的地下水位值更接近于观测值,这将对塔里木河下游实施科学合理的生态输水计划以及生态恢复和重建策略提供关键的技术支撑。 相似文献
14.
塔里木河下游已经干涸断流多年,其"绿色走廊"濒临消失.自2000年5月至2001年11月,先后3次实施向塔里木河下游输水,使下游的水文状况得到了改善,生态得到了一定程度恢复.根据塔里木河下游3次应急输水的有关资料,在输水过程的分析与模拟方面进行了研究,重点是第2次输水过程的分析模拟.从流量沿程损失率及水头前进速度出发,模拟了历次输水的流量沿程分布、输水距离、输水历时及输水水量,为评价输水的水文效应及选择适当的输水方案提供了初步依据. 相似文献
15.
16.
通过对沈阳南部污水处理厂排放污水对下游浑河大闸—黄蜡坨子河段的功能区影响进行综合分析,以实现对河段水功能区保护和水污染进行综合控制。本文利用QUAL2K建立河流水质模型对浑河大闸上游两种不同来水水质进行模拟预测,模拟因子选用化学需氧量(COD)、氨氮,从而为浑河的综合规划和治理及水功能区的保护提供科学依据。 相似文献
17.
甘肃西北部黑河流域水资源对下游生态环境变化的影响阈 总被引:3,自引:0,他引:3
从流域尺度水资源承载能力及其有限性、可变性和上下游关联性的角度,探讨了黑河流域下游区生态环境变化的影响阈,阐明了不同水文年中游区的安全引水量和不同目标下下游区的生态环境修复对水资源的需求阈.基于多年平均地表径流量37.8×108m3/a的安全引水量为13.97×108m3/a和枯水年份(95%保证率)的安全引水量为10.14×108m3/a,下游区初步改善生态环境的生态需水量为8.01×108m3/a.提出了中游区经济社会可持续发展的水资源保障阈,即未来20年生产生活安全需水量介于22×108~23×108m3/a之间.在此基础上,阐明了在中游区经济社会稳定持续发展目标约束下确保黑河流域下游区生态环境不断改善的流域水资源优化配置模式及对策. 相似文献
18.
从流域尺度水资源承载能力及其有限性、可变性和上下游关联性的角度,探讨了黑河流域下游区生态环境变化的影响阈,阐明了不同水文年中游区的安全引水量和不同目标下下游区的生态环境修复对水资源的需求阈。基于多年平均地表径流量37.8×108m3/a的安全引水量为13.97×108m3/a和枯水年份(95%保证率)的安全引水量为10.14×108m3/a,下游区初步改善生态环境的生态需水量为8.01×108m3/a。提出了中游区经济社会可持续发展的水资源保障阈,即未来20年生产生活安全需水量介于22×108~23×108m3/a之间。在此基础上,阐明了在中游区经济社会稳定持续发展目标约束下确保黑河流域下游区生态环境不断改善的流域水资源优化配置模式及对策。 相似文献
19.
Environmental changes after ecological water conveyance in the lower reaches of Heihe River,northwest China 总被引:3,自引:0,他引:3
This paper analyzed the dynamic change of the groundwater level by 6 years’ monitoring in field monitoring and the change
of vegetation by the field survey and satellite remote sensing after watering in the lower reaches of Heihe River. The findings
indicated: (1) the groundwater level elevation and the plant growth are closely related to the volume and the duration of
watering. In general, groundwater level elevates dramatically and plants are growing much more vigorously after watering;
(2) Watering incidence on groundwater keeps extending with the watering times increasing; (3) Plants grew rapidly in 100–400 m
away from the water channel after watering. Watering incidence on vegetation reached 1,000 m; (4) In terms of the function
and structure of ecosystem after watering in the lower reaches of Heihe River, the ecological water conveyance does not still
reach the goal of ecological restoration at a large spatial scale at present. In addition, in order to solve fundamentally
the problem of ecological environment worsens in the lower reaches of Heihe River, some suggestions and countermeasures are
put forward. 相似文献