首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
We present the theoretical analysis of the Al I line formation in the spectra of late-type stars ignoring the assumption of local thermodynamic equilibrium (LTE). The calculations were based on the 39-level aluminum atom model for one-dimensional hydrostatic stellar atmosphere models with the parameters: T eff from 4000 to 9000 K, log g = 0.0–4.5, and metallicity [A] = 0.0;–1.0;–2.0;–3.0;–4.0. The aluminum atom model and the method of calculations were tested by the study of line profiles in the solar spectrum. We refined the oscillator strengths and Van-der-Vaals broadening constants C 6 of the investigated transitions. We conclude that the Al I atom is in the overionization state: the 3p level is underpopulated in the line formation region. This leads to the line weakening, as compared with the LTE results. The overionization effect becomes more pronounced with increasing temperature and decreasing metallicity. We show that the use of various atomic data (ionization cross-sections) for the low levels of Al I does not change the behavior of non-LTE deviations, whereas the value of these deviations varies essentially. For nine selected Al I lines we calculated the grids of theoretical non-LTE corrections (ΔX NLTE = logɛ NLTE − log ɛ LTE) to the Al abundances determinedwith the LTE assumption. The non-LTE corrections are positive and significant for the stars with temperatures T eff > 6000 K. These corrections weakly depend on log g, and increase with declining stellar metallicity.  相似文献   

2.
We have performed non-LTE calculations for O I with a multilevel model atom using currently available atomic data for a set of parameters corresponding to stars of spectral types from A to K. Departures from LTE lead to a strengthening of O I lines, and the difference between the non-LTE and LTE abundances (non-LTE correction) is negative. The non-LTE correction does not exceed 0.05 dex in absolute value for visible O I lines for main-sequence stars in the entire temperature range. For the infrared O I 7771 Å line, the non-LTE correction can reach ?1.9 dex. The departures from LTE are enhanced with increasing temperature and decreasing surface gravity. We have derived the oxygen abundance for three A-type mainsequence stars with reliably determined parameters (Vega, Sirius, HD 32115). For each of the stars, allowance for the departures from LTE leads to a decrease in the difference between the abundances from infrared and visible lines, for example, for Vega from 1.17 dex in LTE to 0.14 dex when abandoning LTE. In the case of Procyon and the Sun, inelastic collisions with HI affect the statistical equilibrium of OI, and agreement between the abundances from different lines is achieved when using Drawin’s classical formalism. Based on the O I 6300, 6158, 7771-5, and 8446 Å lines of the solar spectrum, we have derived the mean oxygen abundance log ? = 8.74 ± 0.05 using a classical plane-parallel model solar atmosphere and log ? +3D = 8.78 ± 0.03 by applying the 3D corrections taken from the literature.  相似文献   

3.
We have performed calculations by abandoning the assumption of local thermodynamic equilibrium (within the so-called non-LTE approach) for Al I and Si I with model atmospheres corresponding to stars of spectral types F–G–Kwith differentmetal abundances. To take into account inelastic collisions with hydrogen atoms, for the first time we have applied the cross sections calculated by Belyaev et al. using model approaches within the formalism of the Born–Oppenheimer quantum theory. We show that for Al I non-LTE leads to higher ionization (overionization) than in LTE in the spectral line formation region and to a weakening of spectral lines, which is consistent with earlier non-LTE studies. However, our results, especially for the subordinate lines, differ quantitatively from the results of predecessors. Owing to their large cross sections, the ion-pair production and mutual neutralization processes Al I(nl) + HI(1s) ? Al II(3s 2) + H? provide a close coupling of highly excited Al I levels with the Al II ground state, which causes the deviations from the equilibrium level population to decrease compared to the calculations where the collisions only with electrons are taken into account. For three moderately metal-deficient dwarf stars, the aluminum abundance has been determined from seven Al I lines in different models of their formation. Under the assumption of LTE and in non-LTE calculations including the collisions only with electrons, the Al I 3961 ?A resonance line gives a systematically lower abundance than the mean abundance from the subordinate lines, by 0.25–0.45 dex. The difference for each star is removed by taking into account the collisions with hydrogen atoms, and the rms error of the abundance derived from all seven Al I lines decreases by a factor of 1.5–3 compared to the LTE analysis. We have calculated the non- LTE corrections to the abundance for six subordinate Al I lines as a function of the effective temperature (4500 K ≤ T eff ≤ 6500 K), surface gravity (3.0 ≤ log g ≤ 4.5), and metal abundance ([M/H] = 0, ?1, ?2, and ?3). For Si I including the collisions with HI leads to the establishment of equilibrium populations in the spectral line formation region even in hot metal-deficient models and to vanishingly small departures from LTE in spectral lines.  相似文献   

4.
We have performed statistical equilibrium calculations for Ca I–Ca II, Ti I–Ti II, and Fe I–Fe II by taking into account the nonequilibrium line formation conditions (the non-LTE approach) in model atmospheres of giant stars with effective temperatures 4000 K ≤ T eff ≤ 5000 K and metal abundances ?4 ≤ [Fe/H] ≤ 0. The dependence of departures from LTE on atmospheric parameters has been analyzed. We present the non-LTE abundance corrections for 28 Ca I lines, 42 Ti I lines, 54 Ti II lines, and 262 Fe I lines and a three-dimensional interpolation code to obtain the non-LTE correction online for an individual line and specified atmospheric parameters.  相似文献   

5.
Based on spectra taken with a 6-m telescope, we analyzed the abundances of chemical elements in the He-weak stars HD 21699 and HD 217833, estimated their surface magnetic fields (Bs = 4000 and 4500 G, respectively) from the magnetic intensification of spectral lines, and determined their microturbulences (V t = 0.80 and 0.75 km s−1, respectively). The low values of V t show that the stellar atmospheres are stabilized by a magnetic field, which explains the presence of diffusion processes that lead to chemical anomalies. Helium is strongly underabundant, and its deficiency is −1.50 and −1.81 dex in HD 21699 and HD 217833, respectively. We used model atmospheres to determine the effective temperatures, T eff = 16 000 and 15 450 K, and surface gravities, log g = 4.15 and 3.88, for the stars from the Hδ line, implying that they lie on the main sequence near the stars of luminosity class V.  相似文献   

6.
In this paper we construct and analyze the uniform non-LTE distributions of the aluminium ([Al/Fe]-[Fe/H]) and sodium ([Na/Fe]-[Fe/H]) abundances in the sample of 160 stars of the disk and halo of our Galaxy with metallicities within ?4.07 ≤ [Fe/H] ≤ 0.28. The values of metallicity [Fe/H] and microturbulence velocity ξ turb indices are determined from the equivalent widths of the Fe II and Fe I lines. We estimated the sodium and aluminium abundances using a 21-level model of the Na I atom and a 39-level model of the Al I atom. The resulting LTE distributions of [Na/Fe]-[Fe/H] and [Al/Fe]-[Fe/H] do not correspond to the theoretical predictions of their evolution, suggesting that a non-LTE approach has to be applied to determine the abundances of these elements. The account of non-LTE corrections reduces by 0.05–0.15 dex the abundances of sodium, determined from the subordinate lines in the stars of the disk with [Fe/H] ≥ ?2.0, and by 0.05–0.70 dex (with a strong dependence on metallicity) the abundances of [Na/Fe], determined by the resonance lines in the stars of the halo with [Fe/H] ≤ ?2.0. The non-LTE corrections of the aluminium abundances are strictly positive and increase from 0.0–0.1 dex for the stars of the thin disk (?0.7 ≤ [Fe/H] ≤ 0.28) to 0.03–0.3 dex for the stars of the thick disk (?1.5 ≤ [Fe/H] ≤ ?0.7) and 0.06–1.2 dex for the stars of the halo ([Fe/H] ≤ ?2.0). The resulting non-LTE abundances of [Na/Fe] reveal a scatter of individual values up to Δ[Na/Fe] = 0.4 dex for the stars of close metallicities. The observed non-LTE distribution of [Na/Fe]-[Fe/H] within 0.15 dex coincides with the theoretical distributions of Samland and Kobayashi et al. The non-LTE aluminium abundances are characterized by a weak scatter of values (up to Δ[Al/Fe] = 0.2 dex) for the stars of all metallicities. The constructed non-LTE distribution of [Al/Fe]-[Fe/H] is in a satisfactory agreement to 0.2 dex with the theoretical data of Kobayashi et al., but strongly differs (up to 0.4 dex) from the predictions of Samland.  相似文献   

7.
Zirconium (Zr), together with strontium and yttrium, is an important element in the understanding of the Galactic nucleosynthesis. In fact, the triad Sr‐Y‐Zr constitutes the first peak of s‐process elements. Despite its general relevance not many studies of the solar abundance of Zr were conducted. We derive the zirconium abundance in the solar photosphere with the same CO5BOLD hydrodynamical model of the solar atmosphere that we previously used to investigate the abundances of C‐N‐O. We review the zirconium lines available in the observed solar spectra and select a sample of lines to determine the zirconium abundance, considering lines of neutral and singly ionised zirconium. We apply different line profile fitting strategies for a reliable analysis of Zr lines that are blended by lines of other elements. The abundance obtained from lines of neutral zirconium is very uncertain because these lines are commonly blended and weak in the solar spectrum. However, we believe that some lines of ionised zirconium are reliable abundance indicators. Restricting the set to Zr II lines, from the CO5BOLD 3D model atmosphere we derive A (Zr) = 2.62 ± 0.06, where the quoted error is the RMS line‐to‐line scatter (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The center-to-limb variation of equivalent widths of 198 Fei lines in the spectral region 5500 to 7000 Å was studied with five photospheric models. The gf-values of Corliss and Warner (1964) were used in the analysis. The photospheric iron abundance was found to vary with excitation potential. This can be explained by a systematic error in the gf-values of high excitation lines and an error of 250 to 500K in the temperature of the arcs used for measuring the gf-values. Departures from LTE in the solar Fei lines are also a possibility. The adopted photospheric abundance of iron, log(N Fe/N H) is - 5.2.  相似文献   

9.
The abundances of 22 heavy elements from Sr to Pb have been determined for the halo star HD 29907 (T eff = 5500 K, log g = 4.64) with [Fe/H] = −1.55 using high-quality VLT/UVES spectra (ESO, Chile). The star has a moderate enhancement of r-process elements (Eu-Tm) with [r/Fe] = 0.63. In the range from Ba to Yb, the derived abundance pattern agrees well with those for strongly r-process enhanced stars (r-II stars with [Eu/Fe] > 1 and [Ba/Eu] < 0), such as CS 22892-052 and CS 31082-001, as well as with the scaled solar r-process curve and the r-process model HEW. Thus, Ba-Yb in HD 29907 originate in the r-process. Just as other moderately r-process enhanced stars studied in the literature, HD 29907 exhibits higher Sr, Y, and Zr abundances than those for r-II stars. These results confirm the assumption by other authors about the existence of an additional Sr-Zr synthesis mechanism in the early Galaxy before the onset of nucleosynthesis in asymptotic giant branch (AGB) stars. The same mechanism can be responsible for the enhancement of Mo-Ag in the star being investigated compared to r-II stars. There are no grounds to suggest the presence of s-nuclei of lead in the material of the star being investigated, because its measured abundance ratio log ɛ(Pb/Eu) = 1.20 lies within the range for the comparison stars: from log ɛ(Pb/Eu) = 0.17 (CS 31082-001) to < 1.55 (HE 1219-0312). Thus, even if there was a contribution of AGB stars to the heavy-element enrichment of the interstellar medium at the epoch with [Fe/H] = −1.55, it was small, at the level of the abundance error.  相似文献   

10.
IUE observations of the hydrogen-deficient irregular variable star MV Sgr obtained in 1980 June-October and also in 1979 November are discussed. These observations show a prominent λ 2200 absorption feature. A value ofE(B — V) = 0.55 is deduced from the strength of λ 2200 band assuming that this absorption is caused by interstellar medium. The dereddened continuum obtained at different times can be fitted to a theoretical energy distribution of a helium star model with Teff = 18000 K and log g = 2.5, similar to that of BD + 10 2179. This theoretical energy distribution, after applying interstellar extinction, givesV = 12.7 mag, agreeing with the observed visual magnitude of ≃ 13 in 1979 November and 1980 June-October. Even though there was no change in the continuum flux, the ultraviolet line-spectrum shows variations. The IUE spectra of 1980 October show enhanced (circumstellar) absorption lines of Fe II, Si II, O I, C I and others along with the absorption lines of a B star. In view of the similarity of the spectroscopic phenomena of MV Sgr with that of α Sco system, a model is proposed in which a cool companion star, surrounded by dust, occasionally blows gas towards the hotter hydrogen-poor B star. This model explains the irregular light variations and the spectroscopic phenomena. Based on observations obtained with IUE satellite at the Villafranca Satellite Tracking Station of the European Space Agency.  相似文献   

11.
We present the results of our modeling of the O I line formation under non-LTE conditions in the atmospheres of FG stars. The statistical equilibrium of O I has been calculated using Barklem’s quantum-mechanical rates of inelastic collisions with hydrogen atoms. We have determined the non-LTE oxygen abundance from atomic O I lines for the Sun and 46 FG stars in a wide metallicity range, ?2.6 < [Fe/H] < 0.2. The application of accurate atomic data has led to an increase in the departures from LTE and a decrease in the oxygen abundance compared to the use of Drawin’s theoretical approximation. The change in the non-LTE abundance from the infrared O I 7771-5 Å triplet lines is 0.11 dex for solar atmospheric parameters and diminishes in absolute value with decreasing metallicity. We have revised the [O/Fe]–[Fe/H] relationship derived by us previously. The change in [O/Fe] is small in the [Fe/H] range from ?1.5 to 0.2. For stars with [Fe/H] < ?1 the [O/Fe] ratio has increased so that [O/Fe] = 0.60 at [Fe/H] = ?0.8 and rises to [O/Fe] = 0.75 at [Fe/H] = ?2.6.  相似文献   

12.
A technique for determining the effective temperature T eff and the acceleration of gravity log g of F and G supergiants is discussed using four bright stars as examples, specifically two F supergiants, α Lep(F0 Ib) and π Sgr (F2 II), and two G supergiants, β Aqr (G0 Ib) and α Aqr (G2 Ib). In all four cases the parameter log g was derived from the high precision parallaxes recently obtained by van Leeuwen in a new reduction of data from Hipparcos. Because of this, the accuracy of the determinations of log g is much greater than before. Estimates of the parameter T eff were checked using accurate values of T eff obtained previously by the infrared flux method (IRFM). In the case of the early F supergiants, this method confirms the good accuracy of the T eff values derived from the Balmer lines and the β-index. Measurements of the Balmer lines for the G supergiants are difficult because of strong blending, so the indices [c 1] and β serve as indicators of T eff . It is shown that the indices [c 1] and β yield a systematic difference in the values of T eff ; the IRFM confirms that deriving T eff from the index [c 1] is more accurate. Based on the values of T eff and log g that have been found here, with the aid of the evolutionary tracks, we estimate the mass M and age t of each star. The Fe II lines, which are insensitive to departures from LTE, have been used to determine the microturbulence parameter V t and the iron abundance. The latter is close to the solar iron abundance. Some problems concerning the chemical composition of these stars are discussed using the supergiant α Lep as an example. Translated from Astrofizika, Vol. 52, No. 2, pp. 237–257 (May 2009).  相似文献   

13.
Bord  Donald J.  Cowley  Charles R. 《Solar physics》2002,211(1-2):3-16
The abundance of holmium (Z=67) in the Sun remains uncertain. The photospheric abundance, based on lines of Hoii, has been reported as + 0.26±0.16 (on the usual scale where log(H) = 12.00), while the meteoritic value is + 0.51±0.02. Cowan-code calculations have been undertaken to improve the partition function for this ion by including important contributions from unobserved levels arising from the (4f 116p+4f 10(5d+6s)2) group. Based on 6994 computed energy levels, the partition function for Hoii is 67.41 for a temperature of 6000 K. This is 1.5 times larger than the value derived from the 49 published levels. The new partition function alone leads to an increase in the solar abundance of Ho to log (Ho) =+ 0.43. This is within 0.08 dex of the meteoritic abundance. Support for this result has been obtained through LTE spectrum synthesis calculations of a previously unidentified weak line at 3416.38. Attributing the feature to Hoii, the observations may be fitted with log (Ho) =+ 0.53. This calculation assumes log (gf)=0.25 and is uncertain by at least 0.1 dex.  相似文献   

14.
Using LTE calculations of the structure of T Tauri stellar atmospheres heated by radiation from an accretion shock (Dodin and Lamzin 2012), we have calculated the spectrum of the hot spot emerging on the stellar surface by taking into account non-LTE effects for He I, He II, Ca I, and Ca II. Assuming the pre-shock gas density N 0 and velocity V 0 to be the same at all points of the accretion stream cross section, we have calculated the spectrum of the star+circular spot system at various N 0, V 0, and parameters characterizing the star and the spot. Using nine stars as an example, we show that the theoretical optical spectra reproduce well the observed veiling of photospheric absorption lines as well as the profiles and intensities of the so-called narrow components of He II and Ca I emission lines with an appropriate choice of parameters. The accreted gas density in all of the investigated stars except DK Tau has been found to be N 0 > 1012 cm?3. We have managed to choose the parameters for eight stars at a calcium abundance in the accreted gas ξ Ca equal to the solar one, but we have been able to achieve agreement between the calculations and observations for TW Hya only by assuming ξ Ca to be approximately a factor of 3 lower than the solar one. The estimated parameters do not depend on interstellar extinction, because they have been determined from the spectra normalized to the continuum level. The calculated intensity of Ca II lines has turned out to be lower than the observed one, but this contradiction can be eliminated by assuming that, in addition to the accreted gas with a high density N 0, a more rarefied gas also falls onto the star. The theoretical equivalent widths and relative intensities of the subordinate He I lines disagree significantly with the observations. This is apparently because non-LTE effects should be taken into account when calculating the structure of the upper layers of the hot spot, the accuracy of the cross sections for collisional processes from upper levels is insufficient, and the spot inhomogeneity should probably be taken into account.  相似文献   

15.
Li abundance is determined for 23 halo subdwarfs. About half of the stars show [Fe/H] < −1.4 and a space velocityV > 160 km s−1 Li appears to be present in all our halo stars, with an abundance within about ± 0.2 dex of the value logn (Li) = 2.0 found by Spite & Spite (1982). Thus our results provide confirmation of the main conclusion of Spite & Spite.  相似文献   

16.
The radio recombination line intensities of heavy elements of helium, carbon and oxygen are calculated with accounting for dielectronic recombination. Dielectronic recombination rates are determined accurate to the second order of a perturbation theory and the rates are described as function of principal quantum number for helium-like atom or ion. Balance equations are solved for the departure coefficients from LTE bn. The collision and spontaneous transition rates are accounted for the balance equations, in which non-equilibrium distribution source is dielectronic recombination. Non-equilibrium amplification coefficients are found as functions of a medium temperature, density and ion charge z = 1–3 for radio recombination lines. Optical depths are calculated for the heavy element low-frequency lines with the numbers 300 > n > 1200. For the chosen electronic temperatures and densities Te = 0.8× 104–10× 104 K, Ne = 0.05–0.1 cm−3 the line optical depth is determined by the values τL∼ 0.1× 10−4–100× 10−4. Calculated for free-free transition rates, the optical depth is given by using the value τff∼ 10−2τL.  相似文献   

17.
The absolute solar oxygen abundance,ε ⊙ = 8.80± 0.06, has been determined from various oxygen abundance indicators in different solar atlases, and a new method is proposed to test collision rate coefficientsfor the NLTE model of OI.Using effective temperatures derived from Balmer lines, oxygen abundances from O triplets in 83 solar-type stars within the solar neighborhood spanning a metallicity range of [Fe/H] = −2.3 ... +0.4 have been determined.NLTE effects are not negligible, especially in warm stars(Teff ≥ 5800) with [Fe/H] ≥ −0.5. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
This paper is devoted to spectroscopic studies of three bright Cepheids (BG Cru, R Cru, and T Cru) and continues the series of our works aimed at determining the atmospheric parameters and chemical composition of southern-hemisphere Cepheids. We have studied 12 high-resolution spectra taken with the 1.9-m telescope of the South African Astronomical Observatory and the 8-m VLT telescope of the European Southern Observatory in Chile. The atmospheric parameters and chemical composition have been determined for these stars. The averaged atmospheric parameters are: T eff = 6253 ± 30 K, log g = 2.15, V t = 4.30 km s?1 for BG Cru; T eff = 5812 ± 22 K, log g = 1.65, V t = 3.80 km s?1 for R Cru; and T eff = 5588 ± 21 K, log g = 1.70, V t = 4.30 km s?1 for T Cru. All these Cepheids exhibit a nearly solar metallicity ([Fe/H] = +0.04 dex for BG Cru, +0.06 dex for R Cru, and +0.08 dex for T Cru); the carbon, oxygen, sodium, magnesium, and aluminum abundances suggest that the objects have already passed the first dredge-up. The abundances of other elements are nearly solar. An anomalous behavior of the absorption lines of metals (neutral atoms and ions) in the atmosphere of the small-amplitude Cepheid BG Cru is pointed out. The main components in these lines split up into additional blue and red analogs that are smaller in depth and equivalent width and vary with pulsation phase. Such splitting of the absorption lines of metals (with the hydrogen lines being invariable) is known for the classical Cepheid X Sgr. The calculated nonlinear pulsation model of BG Cru with the parameters L = 2000 L , T eff = 6180 K, and M = 4.3M shows that this small-amplitude Cepheid pulsates in the first overtone and is close to the blue boundary of the Cepheid instability strip. According to the model, the extent of the Cepheid’s atmosphere is relatively small. Therefore, no spectroscopic manifestations of shock waves through variability are possible in this Cepheid and the observed blue and red components in metal absorption lines can be explained solely by the presence of an extended circumstellar envelope around BG Cru.  相似文献   

19.
We determine lithium abundances in atmospheres of three carbon stars from synthetic spectrum fitting in the λλ 668–674 nm range using the Li I λ 670.8 nm resonance doublet. To produce synthetic spectra, we use a modified list of atomic lines from the VALD database and three alternative line lists of CN and C2 molecules which are modifications of line lists from the Jorgensen’s website () and from the Kurucz database (1993, CD-ROM nos. 1–23). The spectral lines from these lists were tested by matching synthetic spectra to observed spectra of the sun, Arcturus, and early R star HD 100764. We perform analysis of the blends involving the Li I λ 670.8 nm doublet in spectra of N stars AW Cyg and UX Dra. The lithium abundances in HD 100764, AW Cyg, and UX Dra are estimated to be lgN(Li) ≈ 2, −1.4, and −0.9, respectively. Discrepancies of lithium abundances lgN(Li) obtained with the help of molecular line lists do not seem to exceed 0.2 dex.  相似文献   

20.
We present LTE analysis of high resolution optical spectra for B-type hot PAGB stars LS IV-04 1 and LB3116 (LSE 237). The spectra of these high Galactic latitude stars were obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph. The standard 1D LTE analysis with line-blanketed LTE model atmospheres and spectral synthesis provided fundamental atmospheric parameters of Teff= 15 000±1000 K, log g= 2.5±0.2, ξ = 5.0±1.0 km s?1, [M/H] = ?1.81 dex, and v sin i= 5 km s?1 for LSIV-04 1 and Teff= 16 000±1000 K, log g= 2.5±0.1, v sin i= 25 km s?1, and [Fe/H] = ?0.93 dex for LB 3116. Chemical abundances of ten different elements were obtained. For LS IV-04 1, its derived model temperature contradicts with previous analysis results. The upper limits for its nitrogen and oxygen abundances were reported for the first time. The magnesium, silicon and calcium were overabundant (i.e. [Mg/Fe] = 0.8 dex, [Si/Fe] = 0.5 dex, [Ca/Fe] = 0.9 dex). With its metal-poor photosphere and VLSR ≈ 96 km s?1, LSIV-04 1 is likely a population II star and most probably a PAGB star. LTE abundances of LB 3116 were reported for the first time. The spectrum of this helium rich star shows 0.9 dex enhancement in the nitrogen. The photosphere of the star is slightly deficient in Mg, Si, and S. (i.e. [Mg/Fe] = ?0.2 dex, [Si/Fe] = ?0.4 dex, [S/Fe] = ?0.2 dex). The Al is slightly enhanced. The phosphorus is overabundant, i.e. [P/Fe] ≈ 1.7 ± 0.47 dex, hence LB3116 may be the first example of a PAGB star which is rich in phosphorus. With its high radial velocity (i.e.VLSR = 73 km s?1), and the deficiencies observed in C, Mg, Si, and S indicate that LB 3116 is likely a hot PAGB star at high galactic latitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号