首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was carried out in Tungnath alpine meadows of Kedarnath Wild Life Sanctuary, Western Himalaya from subalpine to upper alpine zone. A total of four summits were selected along an altitudinal gradient and sampled for detailed vegetation analysis using multi summit approach as per Global observation research initiative in alpine environments(GLORIA). Species richness, diversity, and evenness among four summits as well as the interaction between environmental variables with plant communities were assessed. Monthly mean soil temperature was calculated using data retrieved from geo-precision temperature logger in order to identify the trend of soil temperature among different season and altitudinal gradient and its implications to plant communities. Soil samples were analyzed fromeach summit by collecting randomized composite soil samples. The indirect non-metric multidimensional scaling(NMDS) and direct canonical correspondence analysis(CCA) tools of ordination techniques to determine the linkage between plant species from various sample summits and biotic/abiotic environmental gradients were used in the present study. The results of the study demonstrated increase in species richness as soil temperature increases, the ecotone representing summits were found most warm summits followed by highest species richness. Annual soil temperature increased by 1.43°C at timberline ecotone. Whereas, at upper alpine zone the soil temperature increased by 0.810 C from year 2015 to 2016. S?rensen's similarity index was found to be increased between subalpine and upper alpine zone with increase in the presence of subalpine plant species at upper alpine zone. Both the ordination tools separate the subalpine summit and their respective vegetation from summits representingtimberline ecotone and upper alpine zone. Soil p H, altitude, soil cation exchange capacity were found as the key abiotic drivers for distribution of plant species.  相似文献   

2.
中国北方农牧交错带是中东部地区重要的生态安全屏障, 由于其系统结构脆弱、生态环境问题多发、土地沙化严重, 开展生态修复工作显得十分重要。植物-土壤水分关系作为土地沙化区生态水文过程的重要组成部分, 研究二者的转化过程对于了解植物吸水模式、确定生态修复的首选植物种非常关键。以河北省张家口市康保县北部为例, 基于雨季的大气降水、地下水、土壤水和植物水的氢氧同位素特征, 分析了主要植物的吸水层位、生态位宽度和水分竞争关系。结果表明, 柠条以吸收80~100 cm深度土壤水为主, 吸水比例最大可达87.7%, 油菜花以吸收0~20 cm深度土壤水为主, 吸水比例最大可达82.3%, 狼针的吸水层位与土壤含水率有关, 在含水率较高的深度吸水比例更大, 栉叶蒿的吸水深度较为均衡, 各植物种的生态位宽度均较大, 但部分植物间存在较强的水分竞争关系。本研究为中国北方农牧交错带土地沙化区的植物水源来源识别和生态修复提供了科学依据。   相似文献   

3.
The ecotone, the spatial transition zone between two vegetation communities, is claimed to have more species than the adjoining communities. However, empirical studies do not always confirm higher richness at the ecotone. The ecotone position and structure are dynamic over time and space and it is driven by the changes in climate, land use or their interaction. In this context, we assessed the forest- grassland ecotone of temperate mountains in central Nepal by i) comparing species composition and richness across the ecotone, ii) analyzing if the forestgrassland ecotone is shifting towards the grassland center by colonizing them with trees, and iii) discussing the consequence of changed disturbance regime in the dynamics of this ecotone and the surrounding grasslands. We analyzed vegetation data sampled from belt transects laid across the forest- grassland ecotone in semi-natural grassland patches. Vegetation data consisting of species richness and composition, and size structure and regeneration of the two most dominant tree species, namely Rhododendron arboreum and Abies spectabilis, from the transects, were used to analyze the trend of the forest-grassland ecotone. Forest and grasslands were different in terms of floristic composition and diversity. Vascular plant speciesrichness linearly increased while moving from forest interior to grassland center. Spatial pattern of tree size structure and regeneration infers that forest boundary is advancing towards the grasslands at the expense of the grassland area, and tree establishment in the grasslands is part of a suceessional process. Temporally, tree establishment in grasslands started following the gradual decline in disturbance. We argue that local processes in terms of changed land use may best explain the phenomenon of ecotone shift and consequent forest expansion in these grasslands. We underpin the need for further research on the mechanism, rate and spatial extent of ecotone shift by using advaneed tools to understand the process indepth.  相似文献   

4.
Introduction High mountain ecosystems are comparatively thrilling and sensitive at least at the upper elevation levels, and are determined by abiotic climate related ecological factors. Therefore, the ecosystems at the low temperature limits of plant life are generally considered to be particularly sensitive to climate changes (Koerner 1999). As temperature is a key factor for high mountain plants (Koerner and Larcher 1988, Gottfried et al. 1998), an upward migration of species must be conse…  相似文献   

5.
The wetlands on the Zoige Plateau have experienced serious degradation, with most of the original marsh being converted to marsh meadow or meadow. Based on the 3 wetland degradation stages, we determined the effects of wetland degradation on the structure and relative abundance of nitrogen-cycling (nitrogen-fixing, ammonia-oxidizing, and denitrifying) microbial communities in 3 soil types (intact wetland: marsh soil; early degrading wetland: marsh meadow soil; and degraded wetland: meadow soil) using 454-pyrosequencing. The structure and relative abundance of nitrogen-cycling microbial communities differed in the 3 soil types. Proteobacteria was the predominant phylum in most soil samples but the most abundant soil nitrogen-fixing and denitrifying microbial bacteria differed at the class, order, family, and genus levels among the 3 soil types. At the genus level, the majority of nitrogen-fixing bacterium sequences related to Bradyrhizobium were from marsh and marsh meadow soils; whereas those related to Geobacter originated from meadow soil. The majority of ammonia-oxidizing bacterium sequences related to Nitrosospira were from marsh (except for the 40-60 cm layer), marsh meadow and meadow soils; whereas those related to Candidatus Solibacter originated from 40-60 cm layer of marsh soil. The majority of denitrifying bacterium sequences related to Candidatus Solibacter and Anaeromyxobacter were from marsh and meadow soils; whereas those related to Herbaspirillum originated from meadow soil. The distribution of operational taxonomic units (OTUs) and species were correlated with soil type based upon Venn and Principal Coordinates Analysis (PCoA). Changes in soil type, caused by different water regimes were the most important factors influencing compositional changes in the nitrogen-fixing, ammonia-oxidizing, and denitrifying microbial communities.  相似文献   

6.
Different types of vegetation occupy different geomorphology and water gradient environments in the San-jiang Plain,indicating that the soil moisture dynamics and water balance patterns of the different vegetation communi-ties might differ from each other.In this paper,a lowland system,perpendicular to the Nongjiang River in the Honghe National Nature Reserve(HNNR),was selected as the study area.The area was occupied by the non-wetland plant forest and the typical wetland plant meadow.The Microsoft Windows-based finite element analysis software package for simulating water,heat,and solute transport in variably saturated porous media(HYDRUS),which can quantita-tively simulate water,heat,and/or solute movement in variably-saturated porous media,was used to simulate soil moisture dynamics in the root zone(20-40 cm) of those two plant communities during the growing season in 2005.The simulation results for soil moisture were in a good agreement with measured data,with the coefficient of determi-nation(R2) of 0.44-0.69 and root mean square error(RMSE) ranging between 0.0291 cm3/cm3 and 0.0457 cm3/cm3,and index of agreement(d) being from 0.612 to 0.968.During the study period,the volumetric soil moisture content of meadow increased with the depth and its coefficient of variation decreased with the depth(from 20 cm to 40 cm),while under the forest the soil moisture content at different depths varied irregularly.The calculated result of water budget showed that the water budget deficit of the meadow was higher than that of the forest,suggesting that the meadow is more likely to suffer from water stress than the forest.The quantitative simulation by HYDRUS in this study did not take surface runoff and plant growth processes into account.Improved root water uptake and surface runoff models will be needed for higher accuracy in further researches.  相似文献   

7.
We investigated the abundance of different picophytoplankton groups and the phytoplankton pigment ratio in relation to environmental factors such as nutrients and suspended solids along a salinity gradient in the Changjiang River Estuary. The average numbers of Synechococcus spp.(Syn) and picoeukaryotes(Euk) were(2.7 ±5.1) ×103 and(1.1±1.4) ×103 cells m L-1, respectively. Prochlorococcus spp.(Pro) was only found in the high-salinity brackish water with the concentration of 3.0×103 cells m L-1. Syn and Euk numbers both tended to increase offshore and Syn showed a larger variation in cell abundance than Euk. The contribution of picophytoplankton to total phytoplankton biomass increased with increasing salinity and decreasing nutrient concentrations from the estuary to the open ocean. The response of different picophytoplankton groups to environmental variables was different. Water temperature was more important in its control over Euk than over Syn, while nutrients were more important in their influence over Syn than over Euk. Phytoplankton pigment ratios were different in the three different ecological zones along the salinity gradient(i.e., freshwater zone with 0-5 range, fresh and saline water mixing zone with 5-20 range, and high-salinity brackish water zone with 20-32 range), where three different phytoplankton communities were discovered, suggesting that phytoplankton pigment ratios can be considered as a complementary indicator of phytoplankton community structure in the Changjiang River Estuary.  相似文献   

8.
Estuarine plankton communities can serve as indicators of ecosystem modification in response to anthropogenic influences. The main objectives of this study were to describe the spatial distribution and diurnal variability in zooplankton abundance and biomass over almost entire salinity gradient of the Changjiang (Yangtze) River estuary and to provide a background reference for future studies. To accomplish this, data were collected from 29 stations in the estuary from May 19 to 26, 2003, including two anchor stations. The spatial and diurnal variations in zooplankton characteristics, i.e. abundance, biomass, and gross taxonomic composition, were examined. Generally, both the abundance and biomass gradually increased seaward and presented distinct spatial variations. In addition, the spatial data revealed a significant correlation between abundance and biomass; however, there was no significant correlation between abundance and biomass for the diurnal data. Although the zooplankton composition indicated distinct spatial differences in terms of dominant groups, copepods accounted for >50% of the total zooplankton abundance in most regions and times. Three zooplankton assemblages were recognized through hierarchical cluster analysis. These assemblages existed along the salinity gradient from fresh water to seawater, and their positions coincided with those of the three principal water masses in the estuary. The assemblages were classified as: (1) true estuarine, (2) estuarine and marine, and (3) euryhaline marine, which were characterized by the copepods Sinocalanus dorrii, Labidocera euchaeta, and Calanus sinicus, respectively. Both spatial and diurnal data indicated that there was no significant correlation between zooplankton abundance/biomass and depth-integrated phytoplankton abundance.  相似文献   

9.
Variations in physical-chemical factors, species composition, abundance and biomass of nano- and micro-phytoplankton assemblages, as well as their responses to environmental factors, were investigated over a complete cycle (6 months) in a semi-enclosed shrimp-farming pond near Qingdao, northern China. The aim was to establish the temporal patterns of phytoplankton communities and to evaluate protists as suitable bioindicators to water quality in mariculture systems. A total of 34 taxa with nine dominant species were identified, belonging to six taxonomic groups (dinoflagellates, diatoms, cryptophyceans, chlorophyceans, euglenophyceans and chrysophyceans). A single peak of protist abundance occurred in October, mainly due to chlorophyceans, diatoms and chrysophyceans. Two biomass peaks in July and October were primarily due to dinoflagellates and diatoms. Temporal patterns of the phytoplankton communities significantly correlated with the changes in nutrients, temperature and pH, especially phosphate, either alone or in combination with NO3-N and NH3-N. Species diversity, evenness and richness indices were clearly correlated with water temperature and/or salinity, whereas the biomass/abundance ratio showed a significant correlation with NO3-N. The results suggest that phytoplankton are potentially useful bioindicators to water quality in semi-enclosed mariculture systems.  相似文献   

10.
To identify impact factors on the distribution and characters of natural plants community in reclamation area, with survey data from 67 plant quadrats in July 2009, soil properties data from 216 sampling points in April 2009, and TM (30 m) data in 2006, the composition and characteristics of natural plants community in different time of the Fengxian area in the Changjiang (Yangtze) River estuary were analyzed with two-way indicator species analysis (TWINSPAN), multivariate analysis of variance (MANOVA), detrended canonical correspondence analysis (DCCA) and canonical correspondence analysis (CCA). The results show that: 1) The plant communities in the reclaimed area are mainly mesophytes and helophytic-mesophytic transitional communities, showing a gradient distribution trend with the change in reclamation years. Species richness (MA), species diversity (H) and above-ground biomass also increase with the increase of reclamation years. Nevertheless, they appear to decline slightly in the middle and late reclamation period (> 30 years). 2) With the rise in land use levels, the changes in species richness and species diversity tend to increase at first and then decrease; species dominance (D), however, tends to decline; and above-ground biomass increases slightly. 3) The distribution of the plant community is mainly influenced by the following factors: land use levels (R = 0.55, p < 0.05), soil moisture (R = 0.53, p < 0.05), soil salinity (R = 0.43, p < 0.05) and reclamation time (R = 0.40, p < 0.05).  相似文献   

11.
The ability to manage and restore plant communities in the face of human-induced landscape change may rely on our ability to predict how species respond to environmental variables.Understanding this response requires examining factors or their interactions that have influence on plant and resource availability.Our objective was to analyze the relationships between changes in plant abundance and the interaction among environmental habitat factors including soil, geological(rock type), and other environmental variables in the Longhushan karst mountains ecosystem.Species density and dominance were examined using ANOVA, ANCOVA,and Generalized Linear Models to establish the single or combined effects of these groups of factors.The results showed that trends in abundance were mainly affected by rock type(related to the percentage content of dolomite and calcite), soil characteristics in association with topography.Both plant indices were higher in dolomite dominated areas and varied positively with moisture, and elevation, but negatively with organic matter, while density also increased with slope degree.The results demonstrate that significant variations in species abundance was produced with the combination of variables from soil, geological, andenvironmental factors, suggesting their interaction influence on plants.We postulate that spatial variations in plant abundance in karst ecosystem depends on the carbonate rock type in addition to water and nutrient availability which are mainly controlled by topography and other factors such as soil texture and temperature.The study suggests that in karst areas carbonate rock type, in addition to local environmental variables, should be taken into account when analyzing the factors that have impact on plant communities.  相似文献   

12.
I Introduction Phytoplankton play an important role in the primary production of ocean (Ning et al., 1995). They are impor-tant biological mediators of carbon turnover in seawater ecosystems (Zhu et al., 1993). Phytoplankton in Jiaozhou Bay have been preliminarily studied on the subjects of community structure, primary productivity and carbon budget (Qian et al., 1983; Guo et al., 1992; Jiao et al., 1994). It has been found that seasonal variation of phytoplankton cell abundance presents w…  相似文献   

13.
Broad leaved pine forests are the typical zonal vegetation and its central distribution zone is in the Changbai Mountains in northeast China. However, because of man's disturbance and destruction, primitive broad leaved pine forests exist now only in a few areas such as the Changbai Mountains of Jilin Province and Wuying, Liangshui Natural Reserves of Heilongjiang Province, and the forests in other places are substituted by natural secondary forests (WANG, 1994). Broad leaved pine …  相似文献   

14.
Based on the pollen data obtained from thirty-five surface soil samples and investigated vegetation data from seven plant quadrats, the quantitative relationship between surface soil pollen and modern vegetation are studied in the longitudinal range-gorge region (LRGR) in Southwestern China. R-values (referring to pollen assemblages) are calculated with pollen percentage and plant abundance. The coefficients of similarity between pollen and vegetation are analyzed. The results show that the pollen assemblages on surface soil of all vegetation zones can basically represent the native vegetation, but the pollen assemblages are not fully according with the vegetation. This is due to the influencing factors including pollen preservation ability, pollen production, amount of exotic pollen and pollen identification. The pollen representation in surface soil is different in families and genera. The pollen of woody plants such as Pinus, Tsuga, Alnus, Fagus and Castanopsis are over-representative, but those of Quercus, Carpinus Myrica, Elaeocarpaceae, Ericaceae, Theaceae and Llex are underrepresentative; the pollen of herbaceous plants such as Artemisia and Rubiaceae are over-representative, while those of others including Gramineae and Araliaceae are under-representative. The R-values of the same taxon pollen in different vegetation zones are different, depending on their distances from the pollen sources. The coefficients of the similarity between plant communities and pollen assemblages are mostly over 70%, which indicate again that the surface soil pollen and spores assemblages can represent the vegetation. It is concluded that there is a good corresponding relationship between surface pollen assemblages and native vegetation in LRGR, and it is of great significance for reconstructing the past vegetation and paleoclimate using quantitative fossil pollen data in this region.  相似文献   

15.
The first account of the effects of wetland reclamation on soil nematode assemblages were provided, three sites in Heihe River Basin of Northwest China, that is grass wetland(GW), Tamarix chinensis wetland(TW) and crop wetland(CW) treatments, were compared. Results showed that the majority of soil nematodes were presented in the 0–20 cm soil layers in CW treatments, followed by in the 20–40 cm and 40–60 cm layers in GW treatments. Plant-feeding nametodes were the most abundant trophic groups in each treatment, where GW(91.0%) TW(88.1%) CW(53.5%). Generic richness(GR) was lower in the TW(16) than that in GW(23) and CW(25). The combination of enrichment index(EI) and structure index(SI) showed that the soil food web in GW was more structured, and those in TW was stressed, while the enrichment soil food web was presented in the CW treatment. Several ecological indices which reflected soil community structure, diversity, Shannon-Weaver diversity(H′), Evenness(J′), Richness(GR) and modified maturity index(MMI) were found to be effective for assessing the response of soil namatode communities to soil of saline wetland reclamation. Furthermore, saline wetland reclamation also exerted great influence on the soil physical and chemical properties(p H, Electric conductivity(EC), Total organic carbon(TOC), Total nitrogen(Total-N) and Nitrate Nitrogen(N-NO3–)). These results indicated that the wetland reclamation had significantly effects on soil nematode community structure and soil properties in this study.  相似文献   

16.
Dam construction alters natural flow regimes which, in turn, cause significant changes in fish communities during and after impoundment. The construction of the Three Gorges Reservoir, from impoundment of the Changjiang (Yangtze) River, China, may have affected native fish species. Thus, the status of two lotic freshwater fish species, Coreius heterodon and C. guichenoti, were monitored in the Three Gorges Reservoir, including fish abundance, individual composition, growth, condition, and mortality. Data on both species were gathered from upstream, midstream and downstream areas of the reservoir and, where available, from studies published before and after dam construction. Lower abundance, slower growth, a less diversified age structure, poorer fish condition (indicated by hepatosomatic index) and higher mortalities were recorded in sites nearest the dam compared with upstream areas. Furthermore, after final impoundment, individual Coreius species inhabiting the area changed, with young individuals becoming more abundant, while upstream of the reservoir the two Coreius species became smaller at a given age. The results show that the status of the two Coreius species was subject to dramatic changes after impoundment.  相似文献   

17.
Topographic and edaphic variables are the main ecological factor determining species spatial variability on mountainous forests. A field study was performed in central Alborz to investigate how the edaphic and topographic parameters can affect the tree and shrub communities. Initially, 27 forest stands were identified and the homogeneous units were separated regarding physiognomy. In each single homogeneous unit, one random sample plot (1000 m2) and totally 43 plots were established. In each plot, the presence and abundance of all trees and shrubs were recorded and four soil samples were taken from depths of 0-5 and 5-20 cm. Concerning classification results, eight different forest communities were identified. The lowest and highest soil pH values were observed in Malus orientalis and pistacia-Amygdalus communities, respectively. The water saturation percent of pure- and mixed Juniperus excelsa and Rhus coriaria was the highest amongst communities. The clay content was the highest in pure J. excelsa. The 0-5 organic matter and Nitrogen content in mixed J. excelsa were significantly higher than pure J. excelsa and other communities. The CCA (Canonical Correspondence Analysis) results indicated that the altitude, precipitation, pH, EC, SP, clay and CaCO3 are the most important factors determine the distribution of trees and shrub in central Alborz  相似文献   

18.
Litter decomposition is the key process in nutrient recycling and energy flow. The present study examined the impacts of soil fauna on decomposition rates and nutrient fluxes at three succession stages of wetland in the Sanjiang Plain, China using different mesh litterbags. The results show that in each succession stage of wetland, soil fauna can obviously increase litter decomposition rates. The average contribution of whole soil fauna to litter mass loss was 35.35%. The more complex the soil fauna group, the more significant the role of soil fauna. The average loss of three types of litter in the 4mm mesh litterbags was 0.3–4.1 times that in 0.058mm ones. The decomposition function of soil fauna to litter mass changed with the wetland succession. The average contribution of soil fauna to litter loss firstly decreased from 34.96% (Carex lasiocapa) to 32.94% (Carex meyeriana), then increased to 38.16% (Calamagrostics angustifolia). The contributions of soil fauna to litter decomposition rates vary according to the litter substrata, soil fauna communities and seasons. Significant effects were respectively found in August and July on C. angustifolia and C. lasiocapa, while in June and August on C. meyeriana. Total carbon (TC), total nitrogen (TN) and total phosphorus (TP) contents and the C/N and C/P ratios of decaying litter can be influenced by soil fauna. At different wetland succession stages, the effects of soil fauna on nutrient elements also differ greatly, which shows the significant difference of influencing element types and degrees. Soil fauna communities strongly influenced the TC and TP concentrations of C. meyeriana litter, and TP content of C. lasiocapa. Our results indicate that soil fauna have important effects on litter decomposition and this influence will vary with the wetland succession and seasonal variation. Foundation item: Under the auspices of State Key Development Program for Basic Research of China (No. 2009CB421103), Key Program of National Natural Science Foundation of China (No. 40830535/D0101), Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-BR-16, KSCX2-YW-N-46-06)  相似文献   

19.
Niu  Jiaohong  Sun  Chengjun  Yang  Bo  Xie  Lei  Jiang  Fenghua  Cao  Wei  Chen  Yan  Ding  Haibing  Huang  Yuhuan  Gao  Xianchi 《中国海洋湖沼学报》2023,41(1):118-137

The composition and concentration of dissolved free amino acid (DFAA) of seawater samples collected in May 2016 from the surface to the hadal zone of the northern region of the Yap Trench were analyzed by pre-column derivatization of o-phthalaldehyde. Results show that the average concentration of DFAA in the study area was 0.47±0.36 µmol/L. In different sampling stations, the concentrations of DFAA with water depth showed complex variation patterns. At the sediment-seawater interface, the concentrations of DFAA in the western side of the trench were obviously higher than that in its eastern side. In the study area, there were no significant correlations between the concentrations of DFAA and the environmental parameters such as concentrations of chlorophyll a (Chl a), dissolved oxygen (DO), pH, and dissolved inorganic nitrogen (DIN), indicating that the concentrations of DFAA in seawater of the trench are affected by many factors, such as photosynthesis, respiration, temperature, pressure, illumination, and circulation. The dominant DFAA are similar in different water layers of sampling stations, including aspartic acid (Asp), glutamic acid (Glu), glycine (Gly), and serine (Ser). The composition of different amino acids, and the relative abundance of acidic, basic, and neutral amino acids might be related to the sources and consumption of various amino acids. Nine pairs of amino acids in the DFAA showed significantly positive relationship by correlation matrix analysis, suggesting that they might share similar biogeochemical processes. The degradation index (DI) of the DFAA in seawater of the Yap Trench could reflect the degradation, source, and freshness of DFAA in the trench to some extents. This is a preliminary study of amino acids from sea surface to hadal zone in the ocean, more works shall be done in different trenches to reveal their biogeochemical characteristics in extreme marine environments.

  相似文献   

20.
Four soil types(peat, marsh, meadow, and sandy) in the Zoige Plateau of China are associated with the severity of wetland degradation. The effects of wetland degradation on the structure and abundance of fungal communities and cellulase activity were assessed in these 4 soil types at 3 depths using DGGE(Denatured Gradient Gel Electrophoresis), q PCR(Quantitative Real-time PCR),and 3,5-dinitrosalicylic acid assays. Cellulase activity and abundance of the fungal community declined in parallel to the level of wetland degradation(from least to most disturbed). DGGE analysis indicated a major shift in composition of fungal communities among the4 soil types consistent with the level of degradation.Water content(WC), organic carbon(OC), total nitrogen(TN), total phosphorus(TP), available nitrogen(AN), and available phosphorus(AP) were strongly correlated with cellulase activity and the structure and abundance of the fungal community.The results indicate that soil physicochemical properties(WC, OC, TN, TP, AN, and AP), cellulase activity, and diversity and abundance of fungal communities are sensitive indicators of the relative level of wetland degradation. WC was the major factorinvolved in Zoige wetland degradation and lower WC levels contributed to declines in the abundance and diversity of the fungal community and reduction in cellulase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号