首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 698 毫秒
1.
Visual inspection of large and complex structures such as a ship is difficult and costly due to problems of accessibility. In this paper, a neural network technique is developed for identifying the damage occurrence in the side shell of a ship’s structure. The side shell is modeled as a stiffened plate. The input to the network is the autocorrelation function of the vibration response of the structure. The response was obtained using a finite element model of the structure. The output is a single function , which was formed by adding together the damping and a part of the restoring forces. The function is used to identify not only the damage occurrence in the model but also its extent and location. The results show that the method presented in this work is successful in identifying the occurrence of damage. The detection of the extent and location of damage is promising, however, more work has to be done in this area.  相似文献   

2.
In the spring of 1988, time series of microstructure and ADCP current profiles were collected at four locations in the North Main Basin of Puget Sound, Washington. Depth and time averages of diapycnal diffusivity at the four stations (1.8−67.0×10−4 m2 s−1) were one to three decades above typical open-ocean thermocline levels. The buoyancy frequency-squared N2 was near open-ocean levels, but unlike the open-ocean where N2S2, finescale shear-squared S2 was three to six times N2 over significant portions of the water column at two of the stations. The time and space mean of all measurements ( ) is close to inferred vertical eddy diffusivity from a primitive equation model for Puget Sound (Kz=3×10−3 m2 s−1) (J. Geophys. Res. 96 (1991) 16779). Large time and space variability of Kρ was found, with differences of inter-station, depth–time means over one decade. A simple scaling argument using the observed Kρ suggests significant exchange of mass between the layers of the subtidal flow over the basin's residence time. Additionally, measurements show that local mixing may be comparable to volume-weighted sill mixing in modifying the Main Basin's stratification. Both are contrary to the “advective reach” simplification of fjord dynamics. The mixing levels were dominated by the passage of a mid-depth, southward-flowing density intrusion and what we interpret as a strongly advected, non-linear internal tide. These mechanisms elevated profile-averaged Kρ by more than 10 times background levels, with sustained patches of Kρ≥1×10−2 m2 s−1. Critical 8-m gradient Richardson numbers (Ri8<0.25) matching regions of overturns (>20 m) and strong turbulence suggest that shear instabilities dominated the turbulence production, though there was support for double-diffusive convection in the warm core of the density intrusion.  相似文献   

3.
Eutrophication has become an overwhelming phenomenon in the coastal environment off the Changjiang (Yangtze River) Estuary, illustrated by an increase in nutrient concentration, frequent red-tide events and hypoxia in near-bottom waters, while the open East China Sea Shelf and Kuroshio waters remain oligotrophic. Observations made in the Changjiang Estuary and the East China Sea in 1999–2003 cover a broad range of hydrographic and chemical properties. The concentration gradients of nutrients across the shelf indicate that high levels from land-sources are constrained to the coastal and inner-shelf region by the complex circulation regime. In surface waters, nutrient species gradually decrease from eutrophic coastal to oligotrophic open shelf waters, depending on the hydrographic stages of the Changjiang, although biological uptake and regeneration in the upper water column can produce patchy character of nutrient distribution. Taiwan Current Warm Water and Kuroshio Surface Water are devoid of nutrients. Remineralization of nutrient species takes place in the near-bottom waters in the inner-shelf following extensive bacterial demand for organic matter. Hence the burial efficiency is low with regard to the biogenic species, either allochthonous or autochthonous, or both. The Kuroshio Sub-surface Waters are rich in nutrients, and their incursion into the East China Sea can be tracked by salinity and temperature, reaching within water depth of 50–100 m at mid-shelf. Relative to shelf waters, the Kuroshio intrusion is characterized by high and DIP/DOP ratios. In the water column, the ratio of DIP/DOP to is higher than the Redfield P/N value, suggesting rapid regeneration of phosphorus relative to nitrogen in the East China Sea. The results of a box-model suggest that the East China Sea Shelf do likely not export substantial amounts of dissolved biogenic elements to the open Northwest Pacific Ocean.  相似文献   

4.
To understand the physics and dynamics of the ocean circulation, techniques of numerical bifurcation theory such as continuation methods have proved to be useful. Up to now these techniques have been applied to models with relatively few degrees of freedom such as multi-layer quasi-geostrophic and shallow-water models and relatively low-resolution (e.g., 4° horizontal resolution) primitive equation models. In this paper, we present a new approach in which continuation methods are combined with parallel numerical linear system solvers. With this implementation, we show that it is possible to compute steady states versus parameters (and perform fully implicit time integration) of primitive equation ocean models with up to a few million degrees of freedom.  相似文献   

5.
Bimodality of the Kuroshio current path south of Japan is investigated, focusing on the effects of stratification and mesoscale eddies. For this purpose, wind-driven numerical experiments are executed in barotropic and two-layered ocean models. Stratification has two effects on the path selection of the Kuroshio south of Japan. First, it makes an alongshore path stable at intermediate wind stress strength τ0 by arresting an eddy southeast of Kyushu. This enables an alongshore path to appear in the entire experimental range of τ0. Second, the upper limit of τ0 which allows a meandering path decreases from ( in the Sverdrup transport at the Tokara Strait) to () as Δρ/ρ0 increases from 2.0×10-3 to 4.0×10-3. While an anticyclonic eddy imposed upstream (southeast of Kyushu) can cause the transition from an alongshore to a meandering path, it occurs most easily when (). The transition from a meandering to an alongshore path requires an eddy imposed downstream (east of the meandering segment) which suppresses redevelopment of the meandering segment and breaks the balance between the advective and beta effects. Applicability of the results to previously observed path variations is discussed.  相似文献   

6.
E-Flux III (March 10–28, 2005) was the third and last field experiment of the E-Flux project. The main goal of the project was to investigate the physical, biological and chemical characteristics of mesoscale eddies that form in the lee of Maui and the Island of Hawai’i, focusing on the physical–biogeochemical interactions. The primary focus of E-Flux III was the cyclonic cold-core eddy Opal, which first appeared in the NOAA GOES sea-surface temperature (SST) imagery during the second half of February 2005. During the experiment, Cyclone Opal moved over 160 km, generally southward. Thus, the sampling design had to be constantly adjusted in order to obtain quasi-synoptic observations of the eddy. Analyses of ship transect-depth profiles of CTD, optical and acoustic Doppler current profiler (ADCP) data revealed a well-developed feature characterized by a fairly symmetric circular shape with a radius of about 80 km. Depth profiles of temperature, salinity and density were characterized by an intense doming of isothermal, isohaline and isopycnal surfaces. Isopleths of nutrient concentrations were roughly parallel to isopycnals, indicating the upwelling of deep nutrient-rich water. The deep chlorophyll maximum layer (DCML) shoaled from a depth of about 130 m in the outer regions of the eddy to about 60 m in the center. Chlorophyll concentrations reached their maximum values in Opal's core region (about 40 km in diameter), where nutrients were upwelled into the euphotic layer. ADCP velocity data clearly showed the cyclonic circulation associated with Opal. Vertical sections of tangential velocities were characterized by values that increased linearly with radial distance from near zero close to the center to a maximum of about at roughly 25 km from the center, and then slowly decayed. The vertical extent of the cyclonic circulation was primarily limited to the upper mixed layer, as tangential velocities decayed quite rapidly within a depth range of 90–130 m. Potential vorticity analysis suggests that only a relatively small (about 50 km in diameter) and shallow (to a depth of approximately 70 m) portion of the eddy is isolated from the surrounding waters. Radial movements of water can occur between the center of the eddy and the outer regions along density surfaces within an isopycnal range of σt23.6 () and σt24.4 (). Thus the biogeochemistry of the system might have been greatly influenced by these lateral exchanges of water at depth, especially during Opal's southward migration. While the eddy was translating, deep water in front of the eddy might have been upwelled into the core region, leading to an additional injection of nutrients into the euphotic zone. At the same time, part of the chlorophyll-rich waters in the core region might have remained behind the translating eddy and, thus contributed to the formation of an eddy wake characterized by relatively high chlorophyll concentrations.  相似文献   

7.
Few phosphorus-depleted coastal ecosystems have been examined for their ability to hydrolyze phosphomonoesters. We examined seasonal (August 2006–April 2007) alkaline phosphatase activity in Florida Bay, a phosphorus-limited shallow estuary, using fluorescent substrate at low concentrations (≤2.0 μM). In situ dissolved inorganic and organic phosphorus levels and phosphomonoester concentrations were also determined. Water column alkaline phosphatase activity was partitioned into two particulate size fractions (>1.2 and 0.2–1.2 μm) and freely dissolved enzymes (<0.2 μm). Water column alkaline phosphatase activity was also compared to leaf and epiphyte activity of the dominant tropical seagrass Thalassia testudinum. Our results indicate: (1) potential alkaline phosphatase activity in Florida Bay is high compared to other marine ecosystems, resulting in rapid phosphomonoester turnover times (2 h). (2) Water column alkaline phosphatase activity dominates, and is split equally between particulate and dissolved fractions. (3) Alkaline phosphatase activity was highest during cyanobacterial blooms, but not when normalized to chl a. These results suggest that dissolved, heterotrophic and autotrophic alkaline phosphatase activity is stimulated by phytoplankton blooms. (4) The dissolved alkaline phosphatase activity is relatively constant, while the particulate activity is seasonally and spatially dynamic, typically associated with phytoplankton blooms. (5) Phosphomonoester concentrations throughout the bay are low, even though potential hydrolysis rates are high. We propose that bioavailable dissolved organic P is hydrolyzed by dissolved and microbial alkaline phosphatase enzymes in Florida Bay. High alkaline phosphatase activity in the bay is also promoted by long hydraulic residence times. This background activity is primarily driven by carbon and phosphorus limitation of microorganisms, and regeneration of enzymes associated with cell lysis. Pulses of inorganic phosphorus and labile organic phosphorus and nitrogen may stimulate autotrophs, particularly cyanobacteria, which in turn promote biological activity that increase alkaline phosphatase activity of both autotrophs and heterotrophs in the bay.  相似文献   

8.
Turbulent mixing of water masses of different temperatures and salinities is an important process for both coastal and large-scale ocean circulation. It is, however, difficult to capture computationally. One of the reasons is that mixing in the ocean occurs at a wide range of complexity, with the Reynolds number reaching , or even higher.In this study, we continue to investigate whether large eddy simulation (LES) can be a reliable computational tool for stratified mixing in turbulent oceanic flows. LES is attractive because it can be times faster than a direct numerical simulation (DNS) of stratified mixing in turbulent flows. Before using the LES methodology to compute mixing in realistic oceanic flows, however, a careful assessment of the LES sensitivity with respect to Re needs to be performed first. The main objectives of this study are: (i) to investigate the performance of different LES models at high Re, such as those encountered in oceanic flows; and (ii) to study how mixing varies as a function of Re. To this end, as a benchmark we use the lock-exchange problem, which is described by unambigous and simple initial and boundary conditions. The background potential energy, which accurately quantifies irreversible mixing in an enclosed system, is used as the main criterion in a posteriori testing of LES.This study has two main achievements. The first is that we investigate the accuracy of six combinations of two different classes of LES models, namely eddy-viscosity and approximate deconvolution types, for 3×103Re3×104, for which DNS data is computed. We find that all LES models almost always provide significantly more accurate results than cases without LES models. Nevertheless, no single LES model that is persistently superior to others over this Re range could be identified. Then, an ensemble of the four best performing LES models is selected in order to estimate mixing taking place in this system at Re=105 and 106, for which DNS is presently not feasible. Thus the second achievement of this study is to quantify mixing taking place in this system over an Re range that changes by three orders of magnitude. We find that the background potential energy increases by about 67% when Re is increased from Re=103 to Re=106, within the computation period, with the most significant increase taking place from Re=3×103 to Re=105.  相似文献   

9.
近岸海域水体和沉积物是营养盐迁移转化的重要场所。2016年8月对渤海湾水体和沉积物进行采样监测,分析了渤海湾水体和沉积物中不同形态氮、磷的含量,并研究了营养盐在水体和沉积物中的分布特征及其相互关系。结果表明:渤海湾水体中的营养盐在西部近岸地区含量较高,而在离海岸线较远的开阔海域含量较低,表现出一个明显的质量浓度梯度。说明人类活动对近岸海域水体中营养盐含量的贡献较为明显。水体中营养盐主要是以无机态为主,无机氮和无机磷分别占到总氮和总磷的76.65%和76.46%。沉积物中氮、磷营养盐表现出和水体中营养盐含量类似的空间分布特征,但形态主要以有机氮为主,无机磷的含量也仅占到30.42%。这说明夏季渤海湾水体中氮、磷营养盐主要由水中有机体通过同化作用将无机态营养盐合成为有机态营养盐进入沉积物,渤海湾西北海域的富营养化过程是水体中营养盐向沉积物迁移的一个主要驱动力。  相似文献   

10.
Phosphorus dynamics in Tokyo Bay waters were investigated along with other oceanographic variables. Seasonal variations of dissolved inorganic phosphorus (DIP) and particulate phosphorus (PP) are inversely correlated with each other, and reflect variation in biological activity. A high concentration of PP in summer surface waters is caused by high primary production. The PP settled in the deeper layer is decomposed, and orthophosphate is regenerated within the water column and in sediments. Even during summer stratification period, the regenerated orthophosphate is occasionally advected upward by wind-induced water mixing and contributes to phytoplankton growth in the upper layer. Some dissolved organic phosphorus is producedin situ from PP, but it may be rapidly decomposed in the water column. The ratios of Cchlorophylla and CN in particulate matter suggest that phytoplankton in the summer surface waters of Tokyo Bay are limited neither by nitrogen nor by phosphorus. The PN ratio in particulate matter varies substantially but it is positively correlated with the ambient concentration of DIP. Phytoplankton take up and store phosphorus within their cells when ambient DIP exceeds their demand. An abundance of total phosphorus in the summer water column can be attributed to increased discharge of river waters, although enhanced release of orthophosphate from anoxic sediments cannot be discounted.  相似文献   

11.
用JEN SEN等(1998)六步分离法对2003年11月和2004年5月渤海湾采集的沉积物样品进行P形态分析,结果表明:沉积物营养盐水平与地理环境有关。总的趋势是沉积物越细,粘土含量越高,营养盐水平就越高。渤海湾表层沉积物磷呈现从潮间带向渤海湾大面站增大的局势,污染近岸高,远岸低。渤海湾表层沉积物中的P主要以FAP和R ef磷为主,FAP占整个P形态的43%以上,R ef占24%以上,其次是L ea-P,此种形态的P平均约占5%左右,最后依次是F e-P、CFAP和L sor-P,这三种形态含量都小于10%以下。这表明渤海湾沉积物中的P的主要来源是陆源输入和污水排入。渤海湾表层沉积物中有一半以上的磷不能被生物利用。  相似文献   

12.
Y.K. Chung  H.H. Chun   《Ocean Engineering》2008,35(7):646-652
We seek the solution of the planing of a flat plate at high Froude numbers by a perturbation procedure. The angle of attack of the plate is assumed to vary with the speed of the plate in the present study. A harmonic function K is introduced for the solution of the first-order disturbance potential which becomes the Green function in the limiting case when the Froude number tends to infinity. We get the solution of the first-order potential from Green's theorem applied to K and the first-order potential. Then we obtain the asymptotic solutions of the angle of attack α, lift L and drag D as follows:
where α1. Here W, LW, and U are the weight of the plate per unit width, wetted length, and speed of the plate, respectively.  相似文献   

13.
根据2009年8月在乳山湾及其毗邻海域的综合调查,分析了该海域表层沉积物中有机碳、氮、磷含量及其组成形态的变化,初步探讨了影响底质理化参数变化的原因及对乳山湾外近岸底层低氧形成的影响.结果表明,乳山湾外近海为粉砂质岸滩,以细颗粒为主;底质中有机碳含量介于0.49% ~0.93%,平均值为0.69%;总氮含量介于382~1020 mg/kg,平均值为671 mg/kg;可溶性总氮含量介于23.0 ~ 60.0 mg/kg,平均值为44.0mg/kg,其中可溶性有机氮和氨氮分别占可溶性总氮的58.8%和38.8%;总磷含量介于138~769 mg/kg,平均值为356 mg/kg,有机磷是占有绝对优势的磷形态(62.5%).研究区域沉积物中总氮和湾内相当,有机碳、总磷含量普遍低于乳山湾内,但均明显高于南黄海区域,且呈还原性状态.调查区域内沉积物中相对较高的有机碳、氮、磷可能是在潮流作用下乳山湾与外海的物质交换所致,其耗氧过程是导致底层溶解氧亏损的重要原因,值得进一步关注.  相似文献   

14.
The three-dimensional circulation on the continental shelf off northern California in the wind events and shelf transport (WEST) experiment region during summer 2001 is studied using the primitive equation regional ocean modeling system (ROMS). The simulations are performed with realistic topography and initial stratification in a limited-area domain with a high-resolution grid. Forcing consists of measured wind-stress and heat flux values obtained from a WEST surface buoy. The general response shows a southward coastal upwelling jet of up to and a weakening or reversal of currents inshore of the jet when upwelling winds relax. Model results are compared to WEST moored velocity and temperature measurements at five locations, to CODAR surface current observations between Pt. Reyes and Bodega Bay, and to hydrographic measurements along shipboard survey lines. The model performs reasonably well, with the highest depth-averaged velocity correlation (0.81) at the inshore mooring (40 m water depth) and lowest correlation (0.68) at the mid-depth mooring (90 m depth). The model shows generally stronger velocities than those observed, especially at the inshore moorings, and a lack in complete reversal of southward velocities observed when upwelling winds relax. The comparison of surface velocities with CODAR measurements shows good agreement of the mean and the dominant mode of variability. The hydrography compares closely at the southern and northern edges of the survey region (correlation coefficients between 0.90 and 0.97), with weaker correlations at the three interior survey lines (correlation coefficients between 0.44 and 0.76). Mean model fields over the summer upwelling period show slight coastal jet separation off Pt. Arena and significant separation off Pt. Reyes. The cape regions also experience relatively strong bottom velocities and nonlinearity in the surface flow. Across-shelf velocity sections examined along the shelf reveal a double jet structure that appears just north of Bodega Bay and shows the offshore jet strengthening to the south. We examine the dynamics during an upwelling and subsequent relaxation event in May 2001 in which the WEST measurements show evidence of a strong flow response. The alongshelf variability in the upwelling and relaxation response introduced by Pt. Reyes is evident. Analysis of term balances from the depth-averaged momentum equations helps to clarify the event dynamics in different regions over the shelf. A clear pattern in the nonlinear advection term is due to the spatial acceleration of the southward jet around the capes of Pt. Arena and Pt. Reyes during upwelling. Results from a three-dimensional Lagrangian analysis of water parcel displacement show significant southward displacement in the coastal jet region, including a strong signal from the double jet. Alongshelf variability in parcel displacements and upwelling source waters due to the presence of Pt. Arena and Pt. Reyes is also apparent from the Lagrangian fields. A cyclonic eddy-like recirculation feature offshore of Pt. Arena prior to the upwelling event causes large patches of onshore-displaced parcels. Additionally, across-shelf variability in the response of water parcels along the D line includes decreased vertical displacement and increased alongshelf displacement in the offshore direction.  相似文献   

15.
Cobalt contained in the sediments from Maizuru Bay and Wakasa Bay was determined by the atomic absorption method. Cobalt content in the surface layer of the bottom sediments averaged 15.2 and 6.7g/g dry matter in Maizuru Bay and in Wakasa Bay, respectively. The vertical distribution of cobalt was almost uniform in the column of bottom sediments. Geographically, the cobalt content in sediments tended to be inverse proportion to the distance from the coast in Wakasa Bay. Considering the distribution of cobalt, it is reasonably concluded that cobalt is not a limiting factor to the production of vitamin B12 by microorganisms in these regions.  相似文献   

16.
The oxidation and reduction of nanomolar levels of copper in air-saturated seawater and NaCl solutions has been measured as a function of pH (7.17–8.49), temperature (5–35 °C) and ionic strength (0.1–0.7 M). The oxidation rates were fitted to an equation valid at different pH and ionic strength conditions in sodium chloride and seawater solutions:
The reduction of Cu(II) was studied in both media for different initial concentrations of copper(II). When the initial Cu(II) concentration was 200 nM, the copper(I) productions were 20% and 9% for NaCl and seawater, respectively. The effect of speciation of copper(I) reduced from Cu(II) on the rates was studied. The Cu(I) speciation is dominated by the CuCl2 species. On the other hand, the neutral chloride CuCl species dominates the Cu(I) oxidation in the range of 0.1 M to 0.7 M chloride concentrations.  相似文献   

17.
Based on lab-culture experiments analyzing limitation and combination of iron and phosphorus on the growth of Cryptomonas sp. (Cryptophyceae), and the study of accumulation and release of Fe-bound P in sediment cores collected from the marine region of the Pearl River Estuary, China, reasons for the high frequency of phytoplankton bloom therein are discussed. Results show that the combined effect of Fe and P can obviously accelerate algal development, and the optimum culture conditions maintaining maximum growth rate are 0.05 μM Fe and 50 μM P. Cellular contents of Fe and P is consistent and the P:Fe molar ratio is 159:1. The optimum range of the P:Fe molar ratio in culture experiments for cell incubation is 500–1400. The vertical trends of total Fe and total P variations in sediments are parallel. Fe-bound P is the main species of inorganic sedimentary P. Through continuous leaching with agitation, 34–80% of exchangeable P and 4–23% of exchangeable Fe are concurrently released from the surficial sediments. This is a possible way by which nutrients are made available to phytoplankton. These factors might be responsible for a high frequency of harmful algal blooms in the Pearl River Estuary.  相似文献   

18.
High-resolution fluorescence spectroscopy was used to characterize dissolved organic matter (DOM) in concentrated and unconcentrated water samples from a wide variety of freshwater, coastal and marine environments. Several types of fluorescent signals were observed, including humic-like, tyrosine-like, and tryptophan-like. Humic-like fluorescence consisted of two peaks, one stimulated by UV excitation (peak A) and one by visible excitation (peak C). For all samples, the positions of both excitation and emission maxima for peak C were dependent upon wavelength of observation, with a shift towards longer wavelength emission maximum at longer excitation wavelength and longer wavelength excitation maximum at longer emission wavelength. A trend was observed in the position of wavelength-independent maximum fluorescence () for peak C, with maximum at shorter excitation and emission wavelengths for marine samples than for freshwater samples. Mean positions of these maxima were: rivers = nm; coastal water = nm; marine shallow transitional = nm; marine shallow eutrophic = nm; and marine deep = nm. Differences suggest that the humic material in marine surface waters is chemically different from humic material in the other environments sampled. These results explain previous conflicting reports regarding fluorescence properties of DOM from natural waters and also provide a means of distinguishing between water mass sources in the ocean.  相似文献   

19.
The organic carbon of 280–320 m deep Laurentian Trough sediments at landward and seaward sites (13–24 mgN/g) consisted of carbohydrates (15–22%), hydrolysable amino acids (7–13%), lipids (1–5%), labile proteins (0.3–1%) and a non-characterized fraction (62–74%). Amino acids, proteins and uncharacterized compounds accounted for 21–43, 0.9–4 and 51–78%, respectively, of total nitrogen (1.2–2.2 mgN/g). A clear reactivity trend (pheopigments ? lipids > proteins > amino acids ≈ nitrogen > carbon > carbohydrates) was deduced from the concentration decreases between settling particles and surficial sediments. This was confirmed by one-year inventories in the top cm, burial rates at 35 cm depth, and one-G model calculations. Lipids were a dominant substrate near the sediment-water interface whereas carbohydrates and amino acids constituted the principal energy sources deeper in the sediment. In the porewaters, DOC levels were low (2–6 mg/l) in the top 4 cm, indicating rapid removal (i.e. consumption, irrigation, diffusion), and increased with depth (8–12 mg/l), reflecting the buildup of refractory products. There were also clear compositional changes of DOC with depth. Geographical differences in water column fluxes were recorded in the sediments. The organic contents and ratios were higher at the landward site due to higher rates of sedimentation, bioturbation and terrestrial and total organic inputs. At the seaward station, the lower rates of these processes and stronger marine influence resulted in lower ratios and a more complete decay of organic matter within the top 35 cm sediments.  相似文献   

20.
In the seasonally stratified Gulf of Aqaba Red Sea, both release by phytoplankton and oxidation by nitrifying microbes contributed to the formation of a primary nitrite maximum (PNM) over different seasons and depths in the water column. In the winter and during the days immediately following spring stratification, formation was strongly correlated (R2 = 0.99) with decreasing irradiance and chlorophyll, suggesting that incomplete reduction by light limited phytoplankton was a major source of . However, as stratification progressed, continued to be generated below the euphotic depth by microbial oxidation, likely due to differential photoinhibition of and oxidizing populations. Natural abundance stable nitrogen isotope analyses revealed a decoupling of the δ15N and δ18O in the combined and pool, suggesting that assimilation and nitrification were co-occurring in surface waters. As stratification progressed, the δ15N of particulate N below the euphotic depth increased from −5‰ to up to +20‰.N uptake rates were also influenced by light; based on 15N tracer experiments, assimilation of , , and urea was more rapid in the light (434 ± 24, 94 ± 17, and 1194 ± 48 nmol N L−1 day−1 respectively) than in the dark (58 ± 14, 29 ± 14, and 476 ± 31 nmol N L−1 day−1 respectively). Dark assimilation was 314 ± 31 nmol N L−1 day−1, while light assimilation was much faster, resulting in complete consumption of the 15N spike in less than 7 h from spike addition. The overall rate of coupled urea mineralization and oxidation (14.1 ± 7.6 nmol N L−1 day−1) was similar to that of oxidation alone (16.4 ± 8.1 nmol N L−1 day−1), suggesting that mineralization of labile dissolved organic N compounds like urea was not a rate limiting step for nitrification. Our results suggest that assimilation and nitrification compete for and that N transformation rates throughout the water column are influenced by light over diel and seasonal cycles, allowing phytoplankton and nitrifying microbes to contribute jointly to PNM formation. We identify important factors that influence the N cycle throughout the year, including light intensity, substrate availability, and microbial community structure. These processes could be relevant to other regions worldwide where seasonal variability in mixing depth and stratification influence the contributions of phytoplankton and non-photosynthetic microbes to the N cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号