首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Tin deposits are often closely associated with granitic intrusions. In this study, we analyzed tin partition coefficients between different fluids and melts(D_(Sn)~(aq:fl:=melt))as well as various crystals and melts D_(Sn)~(aq:fl:=melt)(D_(Sn)~(crystal=melt))from the Furong tin deposit associated with the Qitianling A-type granite. Our experimental results indicate that tin partition behavior is affected by the chemical compositions of fluids, melts, and minerals. Tin is prone to partitioning into the residual magma in fractional crystallization or other differential magmatic processes if the magma originated from crustal sources with high alkali content, high volatile content, and low oxygen fugacity. Highly evolved residual peralkaline granitic magma enriched in tin can lead to tin mineralization in a later stage. Furthermore, the volatiles F and Cl in the magma play important roles in tin partitioning behavior. Low F contents in the melt phase and high Cl content in the aqueous fluid phase are favorable factors for tin partitioning in the aqueous fluid phase. High Cl content in the aqueous fluid catalyzes water–rock interaction and leads to the extraction of tin from tinbearing minerals. All these findings support a hydrothermal origin for the tin deposits. In light of the geotectonic setting, petrochemical characteristics, and mineralizing physicochemical conditions of the Furong tin deposit, it is inferred that the ore-forming fluid of the Furong tin ore deposit could have derived from the Qitianling peralkaline intrusion.  相似文献   

2.
The Pingchuan iron deposit, located in the Yanyuan region of Sichuan Province, SW China, has an ore reserve of 40 Mt with ~60 wt% Fe. Its genesis is still poorly understood. The Pingchuan iron deposit has a paragenetic sequence of an early Fe-oxide–Pyrite stage(Ⅰ) and a late Fe-oxide–pyrrhotite stage(Ⅱ). Stage Ⅰ magnetite grains are generally fragmented, euhedral–subhedral, largesized crystals accompanying with slightly postdated pyrite.Stage Ⅱ magnetite grains are mostly unfragmented, anhedral, relatively small-sized grains that co-exist with pyrrhotite. Combined with micro-textural features and previously-obtained geochronological data, we consider that these two stages of iron mineralization in the Pingchuan deposit correspond to the Permian ELIP magmatism and Cenozoic fault activity event. Both the Stage Ⅰ and Ⅱ magnetites are characterized with overall lower contents of trace elements(including Cr, Ti, V, and Ni) than the ELIP magmatic magnetite, which suggests a hydrothermal origin for them. ‘‘Skarn-like' enrichment in Sn, Mn, and Zn in the Stage Ⅰ magnetite grains indicate significant material contributions from carbonate wall-rocks due to water–rock interaction in ore-forming processes. Stage Ⅱ magnetite grains contain higher Mn concentrations than Stage Ⅰ magnetite grains, which possibly implies more contribution from carbonate rocks. In multiple-element diagrams, the Stage Ⅰ magnetite shows systematic similarities to Kiruna-type magnetite rather than those from other types of deposits. Combined with geological features and previous studies on oxygen isotopes, we conclude that hydrothermal fluids have played a key role in the generation of the Pingchuan low-Ti iron deposit.  相似文献   

3.
The more oxidized mantle peridotites above subducting slabs than stable continental areas have been attributed to the infiltration of some oxidizing fluids released from the subducting slabs. However, knowledge for the redox states of the slabs itself is very limited. Until now, few oxybarometers can be directly used to constrain the redox states of the subducting slabs.The rutile-ilmenite oxybarometer was proposed and successfully applied to constrain the oxygen fugacity of mantle assemblages.However, its application to rocks equilibrated at crustal P-T conditions has been hampered by some uncertainties in an early solid solution model of ilmenite. With a newly-released solid solution model for the ilmenite, we have conducted high-P experiments(at 3 and 5 GPa, and 900–1300°C) to test the accuracy of this oxybarometer. The experiments were performed with their oxygen fugacities controlled by the CCO buffer(i.e., C+O_2=CO_2). We demonstrated that the oxygen fugacities calculated for our high-P experimental products by using the rutile-ilmenite oxybarometer were in excellent agreement with the fO_2 dictated by the CCO buffer, suggesting a wide applicability of this oxybarometer to crust rocks. As examples, the rutile-ilmenite oxybarometer has been used to constrain the oxygen fugacities of some metamorphic rocks such as eclogite, granulite and amphibolite usually observed from the subduction zones.  相似文献   

4.
Copper is a moderately incompatible chalcophile element.Its behavior is strongly controlled by sulfides.The speciation of sulfur is controlled by oxygen fugacity.Therefore,porphyry Cu deposits are usually oxidized(with oxygen fugacities AFMQ +2)(Mungall 2002;Sun et al.2015).The problem is that while most of the magmas at convergent margins are highly oxidized,porphyry Cu deposits are very rare,suggesting that high oxygen fugacity alone is not sufficient.Partial melting of mantle peridotite even at very high oxygen fugacities forms arc magmas with initial Cu contents too low to form porphyry Cu deposits directly(Lee et al.2012;Wilkinson 2013).Here we show that partial melting of subducted young oceanic slabs at high oxygen fugacity(AFMQ +2) may form magmas with initial Cu contents up to 500 ppm,favorable for porphyry mineralization.Pre-enrichment of Cu through sulfide saturation and accumulation is not necessarily beneficial to porphyry Cu mineralization.In contrast,remelting of porphyritic hydrothermal sulfide associated with iron oxides may have major contributions to porphyry deposits.Thick overriding continental crust reduces the "leakage" of hydrothermal fluids,thereby promoting porphyry mineralization.Nevertheless,it is also more difficult for ore forming fluids to penetrate the thick continental crust to reach the depths of 2—4 km where porphyry deposits form.  相似文献   

5.
The genetic relationship between different types of granite is critical for understanding the formation and evolution of granitic magma. Fluid-rock interaction experiments between two-mica leucogranite and boron-rich fluids were carried out at 600–700°C and 200 MPa to investigate the effects of boron content in fluid and temperature on the reaction products. Our experimental results show that tourmaline granite can be produced by reactions between boron-rich fluid and two-mica granite.At 700°C, the addition of boron-rich fluid resulted in partial melting of two-mica granite and crystallization of tourmaline from the boron-rich partial melt. Increasing boron concentration in fluid promotes the melting of two-mica granite and the growth of tourmaline. No melt was produced in experiments at 600°C, in which Fe, Mg and Al released from biotite decomposition combined with boron from the fluid to form tourmaline under subsolidus conditions. The Na required for tourmaline crystallization derived from Na/K exchange between feldspar and the K released by biotite decomposition. The produced tourmaline generally has core-rim structures, indicating that the composition of melt or fluid evolved during tourmaline crystallization.Based on the experimental results, we propose that tourmaline granite veins or dikes can be formed by the reactions between boron-rich fluids, presumably produced by devolatilization of boron-bearing granitic magma, and incompletely crystallized granite at the top of the magma chamber. This "self-metasomatism" involving boron-rich fluid in the late stage of magma crystallization could be an important mechanism for the formation of tourmaline granite.  相似文献   

6.
Beishan Terrane, located in the northeast of the Tarim Block, in northwest China, has developed a 500-km long and 100-km wide belt of Permian mafic–ultramafic intrusions One of these mafic–ultramafic intrusions, the Xuanwoling Intrusion, is composed of dunite, troctolite, olivine gabbros and gabbros, with cumulate texture and rhythmic layering The crystallization sequence is olivine ? spinel ? plagio clase ? pyroxene, indicating that the crystallization pressure is lower than 0.5–0.8 GPa and that the intrusion has undergone variable degrees of crustal contamination, increasing from dunite to gabbros. The olivines found in the Xuanwoling Intrusion have high Fo values(up to 90), suggesting a primary magma with a high composition of mg. It is likely that this high-mg magma was produced at extremely high temperatures(1,330–1,350 °C), and as a result, Nd–Sr isotopic compositions similar to oceanic island basalts are found in the Xuanwoling Intrusion, which we propose arose from the mantle plume.  相似文献   

7.
South China is famous for the extensive magmatism and polymetallic mineralization that took place there in the Mesozoic. Shilu is a large porphyry–skarn Cu–Mo deposit in the Yangchun Basin, South China. The lithology of the Shilu intrusion is granodiorite and quartz diorite, both of which are high-K calc-alkaline series, with high Sr([400 ppm) content along with low Y and Yb contents. Most of the samples have characteristics of adakite except for a few samples that have slightly higher Y and Yb contents, which may be plausibly explained by crustal contamination. Laser Ablation Inductively Coupled Plasma Mass Spectrometry zircon U–Pb dating revealed ages between 106.6 ± 1.3 and 103.9 ± 0.5 Ma, with multiple magmatic pulses. Molybdenite Re–Os isochron age of 102.2 ± 2.9 Ma(MSWD = 9.4) was determined, which is identical to the youngest zircon U–Pb age(103.9 ± 0.5 Ma) within error.The Shilu intrusion has high oxygen fugacity as indicated by high zircon Ce~(4+)/Ce~(3+) and Eu_N/Eu_N* ratios. Considering the geochemical characteristics(high Sr, and low Y and Yb contents), high oxygen fugacity, and copper mineralization of the Shilu intrusion, it was most likely formed by partial melting of a subducted young oceanic slab. Whole-rock Sr–Nd isotope-, zircon Hf isotope-, and whole-rock trace element analyses show that Shilu adakitic magmas may have interacted with type II enriched mantle and/or crustal materials during ascent. South China was affected by the Pacific tectonic regime to the east and the Neo-Tethys tectonic regime to the south in the Cretaceous. Based on the Pacific Plate drifting and rotation history, it is hard to explain how the Pacific Plate would have subducted and melted, forming adakitic rocks in the Shilu region. Considering the tectonic history of Southeast Asia and the South China Sea, the Neo-Tethys trench should have been much closer to the South China Block in the Cretaceous, and thus have had a greater impact on the South China Block. Based on the subduction direction, time of subduction,and distance between the Neo-Tethys subduction zone and the Shilu deposit, subduction of the Neo-Tethys ridge is the best mechanism for explaining the Shilu adakitic rocks and Cu–Mo mineralization.  相似文献   

8.
The Langdu skarn copper deposit in the Zhongdian area, Yunnan Province, China, has an average Cu grade of 6.49 %. The deposit is related to a porphyry intrusion(*216 Ma), which was emplaced in the Upper Triassic sedimentary rocks of the Tumugou and Qugasi Formations.At the Langdu skarn copper deposit, carbon and oxygen isotope ratios of fresh limestones(d18O = 3.0–5.6 % relative to V-SMOW; d13 C = 24.5–25.7 % relative to PDB)and partly altered limestones(d18O = 27–7.2 to-1.9 %;d13C = 11.8–15.2 %) indicated that the deposit was a typical marine carbonate source. Oxygen and carbon isotope values for calcites formed at different hydrothermal stages are-9.1 to 0.2 and 10.1–16.3 %, respectively. Moreover,the carbon–oxygen isotopic composition of an ore-forming fluid(d18O = 5.0–9.5 %, d13 C =-7.3 to-5.3 %) suggested the presence of magmatic water, which most likely came from the differentiation or melting of a homologous magma chamber. The deposition of Calcite I may arise from metasomatism in an open system with a progressively decreasing temperature.Later, the minerals chalcopyrite, pyrrhotite, quartz and Calcite II were precipitated due to immiscibility. Water–rock interaction could potentially be responsible for Calcite III precipitation in the post-ore stage.  相似文献   

9.
The Shazi deposit is a large-scale anatase deposit in Qinglong, Guizhou Province. Zircon grains from this deposit yielded a zircon U–Pb age of *259 Ma, representing the formation age of the deposit's parent rocks.This age is identical to the eruption age of the Emeishan large igneous province, indicating a synchronous magmatic event. The rare-earth-element patterns of laterite samples were similar to those of the weathered basalt sample, and sub-parallel to those of the Emeishan high-Ti basalts,implying a genetic relationship between the laterite and the basalt. The Chemical Index of Alteration values of laterite ranged from 96 to 98, suggesting a high degree of weathering. SiO_2, MgO, and alkaline metal elements decreased with increasing degree of weathering, while Al_2O_3, Fe_2O_3,and TiO_2 increased. We found the highest TiO_2 in laterite and the lowest in pillow basalts, indicating that Ti migrated from basalt to laterite.Our U–Pb dating and whole-rock elemental geochemistry analyses suggest that the Emeishan basalt is the parent rock of the Shazi anatase ore deposit.Based on our analysis, we propose a metallogenic model to explain the ore-forming process, in which the karst terrain formed by the Emeishan mantle plume and the subsequent basaltic magma eruption were the key factors in the formation the Shazi anatase ore deposit.  相似文献   

10.
The Nanling Range in South China is well known for its rich granite-related W–Sn deposits.To elucidate the controls of different granite-related W–Sn metallogenesis in the region,we chose five representative orerelated granites(Yanbei,Mikengshan,Tieshanlong,Qianlishan,and Yaogangxian intrusions)in the Hunan–Jiangxi region,and studied their magmatic zircon ages and trace element geochemistry.Our new zircon data showed the differences in ages,temperatures and oxygen fugacity of the ore-forming magmas.Zircon U–Pb ages of the Yanbei and Mikengshan intrusions are characterized by 142.4±2.4 and 143.0±2.3 Ma,respectively,whereas the Tieshanlong and Qianlishan intrusions are 159.5±2.3and 153.2±3.3 Ma,respectively.The Sn-related intrusions were younger than the W-related intrusions.The Tiin-zircon thermometry showed that there was no systematic difference between the Sn-related Yanbei(680–744℃)and Mikengshan(697–763℃)intrusions and the W-related Tieshanlong(730–800℃),Qianlishan(690–755℃)and Yaogangxian(686–751℃)intrusions.However,the zircon Ce^4+/Ce^3+ratios of the Yanbei(averaged at 18.3)and Mikengshan(averaged at 18.8)intrusions are lower than those of the Tieshanlong(averaged at 36.9),Qianlishan(averaged at 38.4)and Yaogangxian(averaged at 37)intrusions,indicating that the Sn-related granitic magmas might have lower oxygen fugacities than those of the W-related.This can be explained by that,in more reduced magmas,Sn is more soluble than W and thus is more enriched in the residual melt to form Sn mineralization.The difference in source materials between the Sn-related and the W-related granites seems to have contributed to the different redox conditions of the melts.  相似文献   

11.
Mafic intrusions and dykes are well preserved in the Yinmin and Lanniping districts,located within the western margin of the Yangtze Block,SW China.Although these mafic rocks from the two areas formed during different periods,they share similar ranges of PGE concentration.Most of the Yinmin gabbroic dykes contain relatively high PGE concentrations(PGEs = 13.9-87.0 ppb) and low S contents(0.003%-0.020%),higher than the maximum PGE concentrations of mafic magmas melting from the mantle.Two exceptional Yinmin samples are characterized by relatively low PGE(PGEs = 0.31-0.37 ppb) and high S(0.114%-0.257%) contents.In contrast,most samples from the Lanniping gabbroic intrusion have low PGE concentrations(PGEs — 0.12-1.02 ppb) and high S contents(0.130%-0.360%),except that the three samples exhibit relatively high PGE(PGEs = 16.3-34.8 ppb) and low S concentrations(0.014%-0.070%).All the Yinmin and Lanniping samples are characterized by the enrichment of PPGE relative to IPGE in the primitive-mantle normalized diagrams,and the high-PGE samples exhibit obvious Ru anomalies.This study suggests that during the ascent of the parental magma,removal of Os-Ir-Ru alloys and/or chromite/spinel leads to high Pd/Ir ratios and Ru anomalies for the Yinmin high-PGE samples and relatively lower Pd/Ir ratios and Ru anomalies for the Lanniping low-PGE samples.We propose that the magmas parental to the Yinmin gabbroic dykes are initially S-unsaturated,and subsequently,minor evolved magma reached sulfur saturation and led to sulfide segregation.Although the Lanniping parental magmas are originally not saturated in S,the high Cu/Pd ratios(3.8 × 10~4 to 3.2 ×10~6) for most of the Lanniping samples indicate the S-saturated state and sulfide segregation.A calculation shows that the PGE-poor magmas might have experienced 0.01%-0.1% sulfide segregation in the magma chamber.Therefore,our study provides a possible opportunity to discover PGE-enriched sulfide mineralization somewhere near or within the Lanniping mafic intrusion.  相似文献   

12.
Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indica...  相似文献   

13.
The polymetallic Dushiling W-Cu deposit is a large, altered, skarn-type deposit, located in the northeastern part of the Miao'ershan-Yuechengling pluton, China. Two types of granite have been identified in the deposit: a medium-grained porphyritic biotite granite, and a medium- to fine-grained biotite granite. Both are spatially and temporally related to ore bodies, suggesting they may be the source of mineralization in the deposit. A medium- to fine-grained porphyritic biotite granite is exposed at the surface in the region of mineralization. U-Pb dating of zircons yielded magmatic ages of 423 Ma for the medium-grained porphyritic biotite granite and 421 Ma for the medium- to fine-grained porphyritic biotite granite, while a younger age(217 Ma) obtained for surface samples indicates later diagenesis. Thus, magmatism occurred during the Caledonian and Indosinian, respectively. The petrological and geochemical characteristics of the two Caledonian granites show that both are calc-alkaline and peraluminous.They are moderately enriched in Cs, Rb, U, and REE, and strongly depleted in Sr,Ba,P,and Ti; they show similar REE behavior,including negative Eu anomalies. These geochemical similarities suggest that the two granites were derived from the same source,although they were emplaced during different stages of the evolution of the magma. Furthermore, the granites are associated with mineralization, suggesting they were the source of mineralization in the Dushiling W-Cu deposit. Sm-Nd ages of scheelite from the Dushiling W-Cu deposit indicate that metallogenesis occurred at 417±35 Ma, while the two types of titanite, intergrown with scheelite, yield U-Pb ages of 423–425 Ma(in altered granite sample) and 218 Ma(in skarn sample). These ages place the main mineralization event in the late Caledonian, and later magmatic-hydrothermal activity occurred in the Indosinian. The ages obtained for the Dushiling W-Cu deposit in the western Nanling Range, northern Yuechengling, together with the occurrence and ages of the Niutangjie W deposit in southern Yuechengling, provide insight into the process of ore concentration during the Caledonian and Indosinian.  相似文献   

14.
The Bayan Obo deposit in northern China is an ultra-large Fe–REE–Nb deposit.The occurrences,and geochemical characteristics of thorium in iron ores from the Bayan Obo Main Ore Body were examined using chemical analysis,field emission scanning electron microscopy,energy dispersive spectrometer,and automatic mineral analysis software.Results identified that 91.69%of ThO2 in the combined samples was mainly distributed in rare earth minerals(bastnaesite,huanghoite,monazite;56.43%abundance in the samples),iron minerals(magnetite,hematite,pyrite;20.97%),niobium minerals(aeschynite;14.29%),and gangue minerals(aegirine,riebeckite,mica,dolomite,apatite,fluorite;4.22%).An unidentified portion(4.09%)of ThO2 may occur in other niobium minerals(niobite,ilmenorutile,pyrochlore).Only a few independent minerals of thorium occur in the iron ore samples.Thorium mainly occurs in rare earth minerals in the form of isomorphic substitution.Analyses of the geochemical characteristics of the major elements indicate that thorium mineralization in the Main Ore Body was related to alkali metasomatism,which provided source material and favorable porosity for hydrothermal mineralization.Trace elements such as Sc,Nb,Zr,and Ta have higher correlation coefficients with thorium,which resulted from being related to the relevant minerals formed during thorium mineralization.In addition,correlation analysis of ThO2 and TFe,and REO and TFe in the six types of iron ore samples showed that ThO2 did not always account for the highest distribution rate in rare earth minerals,and the main occurrence minerals of ThO2 were closely related to iron ore types.  相似文献   

15.
The Habo alkaline intrusion, which is located in the south of the Sanjiang area, Yunnan Province, China, is a typical Cenozoic alkaline intrusion. There are a series of small to medium-sized Au and Pb–(Zn) deposits around this intrusion. Those deposits are spatially associated with the Habo alkaline intrusion.(1) The d~(34) S values of sulfides from Au deposits range from-1.91 % to 2.69 %, which are similar to those of Pb–(Zn) deposits(-3.82 % to-0.05 %) and both indicate a much greater contribution from magma.(2) The Habo alkaline intrusion has relatively homogeneous Pb isotopic compositions with~(206)Pb/~(204) Pb ranging from 18.608 to 18.761,~(207)Pb/~(204) Pb from 15.572 to15.722 and~(208)Pb/~(204) Pb from 38.599 to 39.110. These Pb isotope ratios are similar to those of Au deposits, whose~(206)Pb/~(204) Pb range from 18.564 to 18.734,~(207)Pb/~(204) Pb from15.582 to 15.738 and~(208)Pb/~(204) Pb from 38.592 to 39.319.Pb ratios in both the intrusion and Au deposits suggest that Pb mainly derived from the depth, probably represents a mixture of mantle and crust. Pb–(Zn) deposits, however,show a decentralized trait, and most of them are similar to that of the alkaline intrusion with~(206)Pb/~(204) Pb ranging from18.523 to 18.648,~(207)Pb/~(204) Pb from 15.599 to 15.802, and~(208)Pb/~(204) Pb from 38.659 to 39.206.(3) In the plumbotectonic diagram~(207)Pb/~(204) Pb versus~(206)Pb/~(204) Pb, almost all of Au and Pb–(Zn) deposits have the same projection area with the Habo alkaline intrusion, which indicates that thosedeposits almost share the same source with the alkaline intrusion.(4) Isotopic age of the Habo alkaline intrusion is36–33 Ma, which is similar to that of Beiya, whose orerelated alkaline porphyries age is 38–31 Ma and molybdenite Re–Os age is 36.9 Ma. Therefore, along with S–Pb isotope traits, we suggest that the Habo Au and Pb–(Zn)deposits should be typically Ailaoshan-Red River Cenozoicalkaline-related deposits and ore-forming ages of these deposits should be later than that of the Habo alkaline intrusion.  相似文献   

16.
The Tongling area is one of the most important ore cluster areas in the middle to lower Yangtze River metallogenic belt. The ore-forming process in Tongling region was mainly resulted from the me- dium-acidic magma intrusion activity during Yansha- nian epoch[1―4]. Lots of research of the structure sys- tem and intrusion series were carried out in recent decades and the following aspects were mainly fo- cused on: (1) Accurate determination of the petrologic structure, chemical composition a…  相似文献   

17.
The Yaojiazhuang ultramafic-syenitic complex is one of the representative Triassic alkaline plutons on the northern margin of the North China Craton(NCC).Based on detailed study of the zircon U-Pb age,petrological,mineralogical,and geochemical data of the complex,the characteristics of the magmas system,the petrogenesis of different rock types,and the nature of the mantle source were discussed to provide new constraints on the origin and tectonic setting of the Triassic alkaline belt.Cumulus ultramafic rocks,clinopyroxene-syenites and syenites are the main rock types of the complex.The zircons from the syenites yielded a U-Pb age of 209 Ma.Diopside-augite,biotite,and sanidine-orthoclase are the major minerals,with subordinate apatite and magnetite.Rocks from the complex are enriched in large ion lithophile elements(LILE)and light rare earth elements(LREE),depleted in high field strength elements(HFSE)and heavy rare earth elements(HREE),and the initial 87Sr/86Sr ranges from 0.7057 to 0.7061 and ε Nd(t)from-9.4 to-11.4.Mineralogy and geochemical data demonstrate that the parent magma of the complex is SiO2-undersaturated ultrapotassic alkaline-peralkaline,and is characterized by high CaO content and fluid compositions(P2O5,CO2,H2O),and by high oxygen fugacity and high temperature.The complex was originated from a phlogopite-clinopyroxenite-rich lithospheric mantle source in the garnet-stable area(> 80 km)that had previously been metasomatized by melts/fluids from altered oceanic crust.The parent magma has been contaminated by little ancient TTG gneisses during magma emplacement.The development of the Yaojiazhuang complex indicates that the northern margin of the NCC has entered into an extensively extensional regime in the Late Triassic.  相似文献   

18.
In order to constrain whether the Lhasa–Qiangtang collision contributed to an early crustal thickening of the central Tibetan Plateau prior to the India–Asia collision,we present zircon LA–ICP–MS U–Pb ages,wholerock geochemistry,and zircon Hf isotopic compositions of the newly discovered rhyolitic crystal tuffs from the Chuduoqu area in the eastern Qiangtang subterrane,central Tibet.Zircon U–Pb dating suggests that the Chuduoqu rhyolitic crystal tuffs were emplaced at ca.68 Ma.The Chuoduoqu rhyolitic crystal tuffs display high SiO2 and K2 O,and low MgO,Cr,and Ni.Combined with their zircon Hf isotopic data,we suggest that they were derived from partial melting of the juvenile lower crust,and the magma underwent fractional crystallization and limited upper continental crustal assimilation during its evolution prior to eruption.They should be formed in a post-collisional environment related to lithospheric mantle delamination.The Chuduoqu rhyolitic crystal tuffs could provide important constraints on the Late Cretaceous crustal thickening of the central Tibetan Plateau caused by the Lhasa–Qiangtang collision.  相似文献   

19.
The Sanjiu uranium ore field,located in the central of Zhuguangshan granitic batholith,is a newly discovered granite-related uranium ore field in South China.The main sulfide in the ore field is pyrite,which is closely related to uranium mineralization.The textures major and trace elements,S–He–Ar isotopes compositions of pyrites in ores of different grade were observed and/or analyzed by optical microscope,scanning electron microscope,electron microprobe,laser ablation inductively coupled plasma mass spectrometry,and noble gas mass spectrometer (Helix-SFT).It is observed that these U-related pyrites are generally euhedral–subhedral with dissolution textures,anhedral variety with colloform texture veinlet and fine particles,and the color of the associated minerals is mostly dark hue,such as purple–black fluorite dark-red hematite,and dark-green chlorite,etc.The analytical results show that the average compositions of major elements in pyrite are FeS_(1.944).Pyrites are characterized by S-deficiency,low content of Co and Th,and Co/Ni[1which indicate that these ores are of low-temperature hydrothermal origin.We found that the higher the grade of ore,the more deficient in S,the more obvious negative d~(34)S,and the higher REE content (close to U-rich granitic pluton) of pyrite.The S–He–Ar isotopic compositions of various varieties of pyrites indicate that the ore-forming fluids mainly come from crust-derived fluids and mixed with mantle-derived fluids.  相似文献   

20.
This paper reports the results of secondary ion mass spectrometry(SIMS) U-Pb dating of rutile within eclogitic xenoliths from the Early Cretaceous adakitic rocks in the Xuzhou-Huaibei area of China and discusses the geological significance of these new dates. The dating of rutile from pargasite-bearing eclogite and garnet clinopyroxenite(retrograde eclogite) yielded ages of 209 ± 25 and 132 ± 7 Ma, respectively. The former is consistent with the timing of the first stage of exhumation of the Dabie-Sulu orogenic belt and provides evidence of crustal thickening within the southeastern margin of the North China Craton during the early Mesozoic, related to subduction and collision between the Yangtze and North China cratons. The latter age is similar to the timing of emplacement of the hosting intrusion and indicates that the rutile U-Pb system was triggered after uplifting by the intrusion of the hosting magmas. It implies that garnet clinopyroxenite was previously at the depth where the temperature was above the rutile U-Pb closure temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号