首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Pistocchi 《水文研究》2010,24(9):1172-1186
A daily step model of chemical mass balance in the topsoil is presented and validated at the three experimental sites in Europe, and subsequently applied to perform two distinct numerical experiments. First, an experiment was run using hypothetic soluble chemicals with half‐lives ranging from 10?1 to 104, with a range of representative European climate and soil properties, assuming uniform constant emissions of the chemicals throughout the year. Chemical mass in soil from the daily step model calculations can be surrogated by the monthly step model consistently parameterized in terms of absolute values, patterns and inter‐monthly variability with decreasing accuracy at higher chemical half‐lives. Leaching fluxes can be also surrogated by the monthly step calculation, although with higher errors. Runoff is correct in the order of magnitude, but it shows only a weak correlation with the monthly mean of the daily model output. For leaching and runoff, the accuracy depends mainly on soil properties. Variability is well reproduced for both leaching and runoff. The second experiment represented a pulse emission of chemicals discharged on a single day in a 12‐month period. Results from the annual average mass of chemicals in the soil, annual runoff and leaching fluxes from the daily step model were compared with the results obtained from the experiment assuming constant‐removal rates for the year. The two values are within a factor of 10 for half‐lives longer than 10 days; therefore, it is possible to emulate the daily step model with a simple constant‐removal rate model for screening‐level assessment. The experiments suggest that simpler schemes may be a practical screening‐level approximation of detailed daily step models for both continuous and pulse emissions, two cases providing extreme bounds of variation to real world emissions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Using a Simple Soil Column Method to Evaluate Soil Phosphorus Leaching Risk   总被引:3,自引:0,他引:3  
The impacts of soil P leaching on water eutrophication have widely been concerned. However, there is no dependable method to quantitatively estimate the P leaching risk of soils. In this study, a simple soil column method was developed using two calcareous Fluvisols, silt loam and loam. The soil column was 20 cm in length and 5 cm in diameter, and distilled water was continuously supplied from the top. The volume and dissolved reactive P (DRP) concentrations of leachate were measured. Results showed that DRP concentrations in leachate increased slowly for the low soil Olsen‐P levels but rapidly for the high Olsen‐P levels. According to these two‐phase changes in the DRP versus soil Olsen‐P contents, the thresholds of P leaching risk were estimated to be 41.1 and 62.3 mg P kg?1 (Olsen‐P) for silt loam and loam, respectively. The P leaching intensity of soils increased by 3‐ to 540‐fold if the soil Olsen‐P contents accumulated from 6.6 to 155.5 mg P kg?1. The outcomes derived from this study regarding the determination of P leaching threshold and intensity by the soil column method also need a further verification on more soils with a wide range of physical and chemical properties.  相似文献   

3.
A comparison between half‐hourly and daily measured and computed evapotranspiration (ET) using three models of different complexity, namely, the Priestley–Taylor (P‐T), the reference Penman–Monteith (P‐M) and the Common Land Model (CLM), was conducted using three AmeriFlux sites under different land cover and climate conditions (i.e. arid grassland, temperate forest and subhumid cropland). Using the reference P‐M model with a semiempirical soil moisture function to adjust for water‐limiting conditions yielded ET estimates in reasonable agreement with the observations [root mean square error (RMSE) of 64–87 W m?2 for half‐hourly and RMSE of 0.5–1.9 mm day?1 for daily] and similar to the complex Common Land Model (RMSE of 60–94 W m?2 for half‐hourly and RMSE of 0.4–2.1 mm day?1 for daily) at the grassland and cropland sites. However, the semiempirical soil moisture function was not applicable particularly for the P‐T model at the forest site, suggesting that adjustments to key model variables may be required when applied to diverse land covers. On the other hand, under certain land cover/environmental conditions, the use of microwave‐derived soil moisture information was found to be a reliable metric of regional moisture conditions to adjust simple ET models for water‐limited cases. Further studies are needed to evaluate the utility of the simplified methods for different landscapes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The relationship between stream water DOC concentrations and soil organic C pools was investigated at a range of spatial scales in subcatchments of the River Dee system in north‐east Scotland. Catchment percentage peat cover and soil C pools, calculated using local, national and international soils databases, were related to mean DOC concentrations in streams draining small‐ (<5 km2), medium‐ (12–38 km2) and large‐scale (56–150 km2) catchments. The results show that, whilst soil C pool is a good predictor of stream water DOC concentration at all three scales, the strongest relationships were found in the small‐scale catchments. In addition, in both the small‐ and large‐scale catchments, percentage peat cover was as a good predictor of stream water DOC concentration as catchment soil C pool. The data also showed that, for a given soil C pool, streams draining lowland (<700 m) catchments had higher DOC concentrations than those draining upland (>700 m) catchments, suggesting that disturbance and land use may have a small effect on DOC concentration. Our results therefore suggest that the relationship between stream water DOC concentration and catchment soil C pools exists at a range of spatial scales and this relationship appears to be sufficiently robust to be used to predict the effects of changes in catchment soil C storage on stream water DOC concentration. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Dissolved organic carbon export from a cutover and restored peatland   总被引:1,自引:0,他引:1  
High demand for horticultural peat has increased peatland drainage and peat extraction in Canada. The hydrology and carbon cycling of these cutover peatlands is greatly altered, necessitating active restoration efforts to permit the regeneration of Sphagnum mosses and the re‐establishment of natural peatland function. The effect of peatland extraction and restoration on the export of dissolved organic carbon (DOC) was examined for three successive seasons (May to October, 1999 to 2001) at two different sites (cutover and restored) in eastern Québec. A shift towards higher DOC concentrations was observed following peatland extraction (maximum: 182·6 mg L?1) and concentrations remained high post‐restoration (maximum: 191·0 mg L?1). The cutover site exported more DOC than the restored site in all three study seasons. The highest exports occurred during the wettest year (1999), with cutover and restored site export of 10·3 and 4·8 g m?2, respectively. In 2000, 8·5 g C m?2 was released from the cutover site, while the restored site released less than half that amount (3·4 g C m?2). In 2001, the restored site released about the same amount of DOC as in the previous year (3·5 g C m?2), while the cutover site load dropped to 6·2 g C m?2. Both sites were net exporters of DOC in all years. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
V. Chaplot  O. Ribolzi 《水文研究》2014,28(21):5354-5366
Dissolved organic carbon (DOC) is a key component of the global carbon cycle, but, to date, large uncertainties still exist on its source and fate in first‐order streams. In a 23 ha rangeland and steep‐slope headwater of South Africa, our aim was to quantify the contribution of overland flow (OF), soil water (SW) and ground water (GW) to DOC fluxes (DOCF), and to interpret the results in terms of DOC sources and fate. The average 2010–2011 DOC concentration (DOCC) at the catchment outlet was 4.7 mg C l?1 with a standard error of ±2.5 mg C l?1, which was significantly lower than in SW (15.2 ± 1.6 mg C l?1) and OF (11.9 ± 0.8 mg C l?1), but higher than in GW (2.3 ± 0.6 mg C l?1). Based on end‐member mixing using Si and Na concentration in the water compartments, the average SW contribution to DOCF was 66.4%, followed by OF (30.0%) and GW (3.6%). The resulting estimated DOCF at the catchment outlet was 8.05 g C m2 y?1. This was much higher than the observed value of 2.80 g C m2 y?1, meaning that 5.25 g C m2 y?1 or 65% of the DOC is lost during its downslope and/or downstream transport to the catchment outlet. Complementary investigations revealed that the DOCC in SW dropped from 15.2 ± 1.6 to 2.6 ± 0.3 mg C l?1 during its downslope transport to the river system, which corresponded to a net loss of 5.10 g C m2 y?1, or 97% of the catchment DOC losses. These results on DOC sources and potential fate in headwaters are expected to improve our understanding of the impact of hydrology on the global C‐cycle. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A start‐up study for biohydrogen production from palm oil mill effluent (POME) is carried out in a pilot‐scale up‐flow anaerobic sludge blanket fixed‐film reactor (UASFF). A substrate with a chemical oxygen demand (COD) of 30 g L?1 is used, starting with molasses solution for 30 days and followed by a 10% v/v increment of POME/molasses ratio. At 100% POME, a hydrogen content of 80%, hydrogen production rate of 36 L H2 per day, and maximum COD removal of 48.7% are achieved. Bio‐kinetic coefficients of Monod, first‐order, Grau second‐order, and Stover‐Kincannon kinetic models are calculated to describe the performance of the system. The steady‐state data with 100% POME shows that Monod and Stover‐Kincannon models with bio‐kinetic coefficients of half‐velocity constant (Ks) of 6000 mg COD L?1, microbial decay rate (Kd) of 0.0015 per day, growth yield constant (Y) of 0.786 mg volatile suspended solids (VSS)/mg COD, specific biomass growth rate (μmax) of 0.568 per day, and substrate consumption rate of (Umax) 3.98 g/L day could be considered as superior models with correlation coefficients (R2) of 0.918 and 0.989, respectively, compared to first‐order and Grau's second‐order models with coefficients of K1 1.08 per day, R2 0.739, and K2s 1.69 per day, a = 7.0 per day, b = 0.847.  相似文献   

9.
We identify and assess the relative importance of the principal factors influencing the release of dissolved organic carbon (DOC) and dissolved forms of nitrogen (N) from a small upland headwater dominated by podzolic soils during a sequence of autumn runoff events. We achieve this by subjecting high‐resolution hydrometeorological and hydrochemical data to an R‐mode principal component factor analysis and a stepwise multivariate regression analysis. We find that the release of DOC and N is influenced by four principal factors, namely event magnitude, soil water flow through the Bs horizon, the length of time since the soil profile was last flushed, and rewetting of the H horizon. The release of DOC and dissolved organic nitrogen (DON) is most strongly influenced by the combination of event magnitude and soil water flow through the Bs horizon, and to a lesser extent by the length of time since the soil profile was last flushed. Rewetting of the H horizon also influences the release of DOC, but this is not the case for DON. The release of nitrate (NO3‐N) is most strongly influenced by the combination of the length of time since the soil profile was last flushed and rewetting of the H horizon, and to a lesser extent by event magnitude. Soil water flow through the Bs horizon does not influence the release of NO3‐N. We argue that the mechanisms by which the above factors influence the release of DOC and N are probably strongly associated with moisture‐dependent biological activity, which governs the turnover of organic matter in the soil and limits the availability of NO3‐N in the soil for leaching. We conclude that the release of DOC and N from upland headwaters dominated by podzolic soils is largely controlled by the variable interaction of hydrometeorological factors and moisture‐dependent biological processes, and that a shift in climate towards drier summers and wetter winters may result in the release of DOC and N becoming increasingly variable and more episodic in the future. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Total organic carbon fluxes of the Red River system (Vietnam)   总被引:1,自引:0,他引:1       下载免费PDF全文
Riverine transport of organic carbon from terrestrial ecosystems to the oceans plays an important role in the global carbon cycle. The Red River is located in Southeast Asia where river discharge, sediment loads and fluxes of elements (carbon, nitrogen and phosphorus) associated with suspended solids have been dramatically altered over past decades as a result of reservoir impoundment and land use, population, and climate change. Dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations were measured monthly at four stations of the Red River system from January 2008 to December 2010. The results reveal that POC changed synchronically with total suspended solids (TSS) concentration and with the river discharge, whereas no clear trend was observed for DOC concentration. The mean value of total organic carbon (TOC = DOC + POC) flux in the delta of the Red River was 31.5 × 1013 ± 4.0 × 1013 MgC.yr?1 (range 27.9–35.8 × 1013 MgC.yr?1 which leads to a specific TOC flux of 2012 ± 255 kgC.km?2.yr?1 during this 2008–2010 period. About 80% of the TOC flux was transferred to the estuary during the rainy season as a consequence of the higher river water discharge. The high mean value of the POC:Chl‐a ratio (1585 ± 870 mgC.mgChl‐a?1) and the moderate C:N ratio (7.3 ± 0.1) in the water column system suggest that organic carbon in the Red River system is mainly derived from erosion and soil leaching in the basin. The effect of two new dam impoundments in the Red River was also observable with lower TOC fluxes in 2010 compared with 2008. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Transport and losses of nitrate from sloped soils are closely linked to nitrogen fertilizer management. Previous studies have always focused on different types of fertilizer applications and rarely analysed various initial nitrate distributions as a result of nitrogen fertilizer applications. Under certain conditions, both subsurface lateral saturated flow and vertical leaching dominate nitrate losses. Soil tank experiments and HYDRUS‐2D modelling were used to better understand the subsurface nitrate transport and losses through lateral saturated flow and vertical leaching under various initial nitrate distributions. Low (L: 180 mg L?1), normal (N: 350 mg L?1), and high (H: 500 mg L?1) nitrate concentrations were used in five different distributions (NNNN, NLLN, LHHL, LNLN, and HNHN) along the slope of the tank. The first two treatments (NNNN and NLLN) were analysed both experimentally and numerically. Experiments were conducted under 12 rainfall events at intervals of 3 days. The HYDRUS‐2D model was calibrated and validated against the experimental data and demonstrated good model performance. The other three treatments (LHHL, LNLN, and HNHN) were investigated using the calibrated model. Nitrate concentrations in purple sloped soils declined exponentially with time under intermittent rainfalls, predominantly in the upper soil layers. Non‐uniform initial nitrate distributions contributed to larger differences between four locations along the slope in deeper soil layers. The non‐uniform nitrate distribution either enhanced or reduced decreases in nitrate concentrations in areas with higher or lower initial nitrate concentrations, respectively. Higher nitrate concentrations at the slope foot and along the slope were reduced mainly by lateral flow and vertical leaching, respectively. Increasing nitrogen application rates increased subsurface nitrate losses. Mean subsurface lateral nitrate fluxes were twice as large as mean vertical leaching nitrate fluxes. However, due to longer leaching durations, total nitrate losses due to vertical leaching were comparable with those due to lateral flow, which indicated comparable environmental risks to surface waters and groundwater.  相似文献   

13.
Here we characterize the nutrient content in the outflow of the Green Lake 5 rock glacier, located in the Green Lakes Valley of the Colorado Front Range. Dissolved organic carbon (DOC) was present in all samples with a mean concentration of 0·85 mg L?1 . A one‐way analysis of variance test shows no statistical difference in DOC amounts among surface waters (p = 0·42). Average nitrate concentrations were 69 µmoles L?1 in the outflow of the rock glacier, compared to 7 µmoles L?1 in snow and 25 µmoles L?1 in rain. Nitrate concentrations from the rock glacier generally increased with time, with maximum concentrations of 135 µmoles L?1 in October, among the highest nitrate concentrations reported for high‐elevation surface waters. These high nitrate concentrations appear to be characteristic of rock glacier outflow in the Rocky Mountains, as a paired‐difference t‐test shows that nitrate concentrations from the outflow of 7 additional rock glaciers were significantly greater compared to their reference streams (p = 0·003). End‐member mixing analysis suggest that snow was the dominant source of nitrate in June, ‘soil’ solution was the dominant nitrate source in July, and base flow was the dominant source in September. Fluoresence index values and PARAFAC analyses of dissolved organic matter (DOM) are also consistent with a switch from terrestrial DOM in the summer time period to an increasing aquatic‐like microbial source during the autumn months. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Pseudomonas putida MHF 7109 has been isolated and identified from cow dung microbial consortium for biodegradation of selected petroleum hydrocarbon compounds – benzene, toluene, and o‐xylene (BTX). Each compound was applied separately at concentrations of 50, 100, 250, and 500 mg L?1 in minimal salt medium to evaluate degradation activity of the identified microbial strain. The results indicated that the strain used has high potential to degrade BTX at a concentration of 50 mg L?1 within a period of 48, 96, and 168 h, respectively; whereas the concentration of 100 mg L?1 of benzene and toluene was found to be completely degraded within 120 and 168 h, respectively. Sixty‐two percent of o‐xylene were degraded within 168 h at the 100 mg L?1 concentration level. The maximum degradation rates for BTX were 1.35, 1.04, and 0.51 mg L?1 h?1, respectively. At higher concentrations (250 and 500 mg L?1) BTX inhibited the activity of microorganisms. The mass spectrometry analysis identified the intermediates as catechol, 2‐hydroxymuconic semialdehyde, 3‐methylcatechol, cis‐2‐hydroxypenta‐2,4‐dienoate, 2‐methylbenzyl alcohol, and 1,2‐dihydroxy‐6‐methylcyclohexa‐3,5‐dienecarboxylate, for BTX, respectively. P. putida MHF 7109 has been found to have high potential for biodegradation of volatile petroleum hydrocarbons.  相似文献   

15.
Investigating factors controlling the temporal patterns of nitrogen (N) and dissolved organic carbon (DOC) exports on the basis of a comparative study of different land uses is beneficial for managing water resources, especially in agricultural watersheds. We focused our research on an agricultural watershed (AW) and a forested watershed (FW) located in the Shibetsu watershed of eastern Hokkaido, Japan, to investigate the temporal patterns of N and DOC exports and factors controlling those patterns at different timescales (inter‐annual, seasonal, and hydrological event scales). Results showed that the annual patterns of N and DOC exports significantly varied over time and were probably controlled by climate. Higher discharge volumes in 2003, a wet year, showed higher N and DOC loadings in both watersheds. However, this process was also regulated by land use associated with N inputs. Higher concentrations and loadings were shown in the agricultural watershed. At the seasonal scale, N and DOC exports in the AW and the FW were more likely controlled by sources associated with land use. The Total N (TN) and Nitrate‐N (NO3?‐N) had higher concentrations during snowmelt season in the AW, which may be attributed to manure application in late autumn or early winter in the agricultural watershed. Concentrations of TN, NO3?‐N, dissolved organic nitrogen (DON), and DOC showed higher values during the summer rainy season in the FW, related to higher litter decomposition during summer and autumn and the fertilizer application in the agricultural area during summer. Higher DOC concentrations and loadings were observed during the rainy season in the AW, which is probably attributed to higher DOC production related to temperature and microbial activity during summer and autumn in grasslands. Correlations between discharge and concentrations differed during different periods or in different watersheds, suggesting that weather discharge can adequately represent the fact that N export depends on N concentrations, discharge level, and other factors. The differing correlations between N/DOC concentrations and the Si concentration indicated that the N/DOC exports might occur along different flow paths during different periods. During baseflow, the high NO3?‐N exports were probably derived from deep groundwater and might have percolated from uplands during hydrological events. During hydrological events, NO3?‐N exports may occur along near‐surface flow paths and in deep groundwater, whereas DOC exports could be related to near‐surface flow paths. At the event scale, the relationships between discharge and concentrations of N and DOC were regulated by antecedent soil moisture (shallow groundwater condition) in each watershed. These results indicated that factors controlling N and DOC exports varied at different timescales in the Shibetsu area and that better management of manure application during winter in agricultural lands is urgently needed to control water pollution in streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Carbon transported by rivers is an important component of the global carbon cycle. Here, we report on organic carbon transport along the third largest river in China, the Songhua River, and its major tributaries. Water samples were collected seasonally or more frequently to determine dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations and C/N and stable carbon isotopic ratios. Principal component analysis and multiple regression analysis of these data, in combination with hydrological records for the past 50 years, were used to determine the major factors influencing the riverine carbon fluxes. Results indicate that the organic carbon in the Songhua River basin is derived mainly from terrestrial sources. In the 2008–2009 hydrological year, the mean concentrations of DOC and POC were 5.87 and 2.36 mg/L, and the estimated fluxes of the DOC and POC were 0.30 and 0.14 t·km?2·year?1, respectively. The riverine POC and DOC concentrations were higher in subcatchments with more cropland, but the area‐specific fluxes were lower, owing to decreased discharge. We found that hydrological characteristics and land‐use type (whether forest or cropland) were the most important factors influencing carbon transport in this system. Agricultural activity, particularly irrigation, is the principal cause of changes in water discharge and carbon export. Over the last 50 years, the conversion of forest to cropland has reduced riverine carbon exports mainly through an associated decrease in discharge following increased extraction of water for irrigation.  相似文献   

17.
To detect the causal relationship between cave drip waters and stalagmite laminae, which have been used as a climate change proxy, three drip sites in Beijing Shihua Cave were monitored for discharge and dissolved organic carbon (DOC). Drip discharges and DOC were determined at 0 to 14‐day intervals over the period 2004–2006. Drip discharges show two types of response to surface precipitation variations: (1) a rapid response; and (2) a time‐lagged response. Intra‐annual variability in drip discharge is significantly higher than inter‐annual variability. The content of DOC in all drip waters varies inter‐ and intra‐annually and has good correlation with drip water discharge at the rapid response sites. High DOC was observed in July and August in the three years observed. The flushing of soil organic matter is dependent upon the intensity of rain events. The DOC content of drip water increases sharply above a threshold rainfall intensity (>50 mm d?1) and shows several pulses corresponding with intense rain events (>25 mm d?1). The DOC content was lower and less variable during the dry period than during the rainy period. The shape of DOC peak also varies from year to year as it is influenced by the intensity and frequency of rainfall. The different drip sites show marked differences in DOC response, which are dominated by hydrological behaviour linked to the recharge of the soil and karst micro‐fissure/porosity network. The results explain why not all stalagmite laminae are consistent with climate changes and suggest that the structure of the rainy season events could be preserved in speleothems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Spatial and temporal variability of hydrological responses affecting surface water dissolved organic carbon (DOC) concentrations are important for determining upscaling patterns of DOC export within larger catchments. Annual and intra‐annual variations in DOC concentrations and fluxes were assessed over 2 years at 12 sites (3·40–1837 km2) within the River Dee basin in NE Scotland. Mean annual DOC fluxes, primarily correlated with catchment soil coverage, ranged from 3·41 to 9·48 g m?2 yr?1. Periods of seasonal (summer–autumn and winter–spring) DOC concentrations (production) were delineated and related to discharge. Although antecedent temperature mainly determined the timing of switchover between periods of high DOC in the summer‐autumn and low DOC in winter‐spring, inter‐annual variability of export within the same season was largely dependent on its associated water flux. DOC fluxes ranged from 1·39 to 4·80 g m?2 season?1 during summer–autumn and 1·43 to 4·15 g m?2 season?1 in winter–spring.Relationships between DOC areal fluxes and catchment scale indicated that mainstem fluxes reflect the averaging of highly heterogeneous inputs from contrasting headwater catchments, leading to convergent DOC fluxes at catchment sizes of ca 100 km2. However, during summer–autumn periods, in contrast to winter–spring, longitudinal mainstem DOC fluxes continue to decrease, most likely because of increasing biological processes. This highlights the importance of considering seasonal as well as annual changes in DOC fluxes with catchment scale. This study increases our understanding of the temporal variability of DOC upscaling patterns reflecting cumulative changes across different catchment scales and aids modelling of carbon budgets at different stages of riverine systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Boreal mire landscapes are rich in soil carbon and significantly contribute to the carbon input of aquatic ecosystems. They are composed of different mesoscale ecohydrological subunits, whose individual contributions to the water and carbon export of mire catchments are not well understood. The spring snowmelt period is the major hydrological event in the annual water cycle of the boreal regions and strongly influences the carbon flux between the terrestrial and aquatic systems. The aim of this study was (1) to provide a conceptual understanding of the spatial and temporal dynamics of the surface water chemistry along a swamp forest‐fen‐bog gradient during the snowmelt period, (2) to quantify the exported dissolved organic carbon (DOC) content in the runoff and (3) to identify the ecohydrological landscape unit that contributes most to DOC export during the snowmelt period in a heterogeneous mire complex in Northwest Russia. The highest DOC concentrations were detected in the swamp forest, and the lowest concentrations were observed at the treeless bog by the end of the snowmelt period (swamp forest: 37–43 mg l?1, bog: 13–17 mg l?1). During the spring snowmelt period, a significant amount (~1.7 g C m?2) of DOC was transferred by the ~74 mm of runoff from the catchment into the river. Variability in the thawing periods led to differences in the relative contributions of each ecohydrological zone to the carbon export measured at a stream channel draining the studied part of the mire complex. An increased understanding of the variation in DOC concentrations and contributions from the mesoscale ecohydrological subunits to carbon export can help to predict the potential regional loss of DOC based on land cover type under climate change. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Elevated dissolved organic carbon (DOC) has been detected in groundwater beneath irrigated sugarcane on the Burdekin coastal plain of tropical northeast Australia. The maximum value of 82 mg/L is to our knowledge the highest DOC reported for groundwater beneath irrigated cropping systems. More than half of the groundwater sampled in January 2004 (n = 46) exhibited DOC concentrations greater than 30 mg/L. DOC was progressively lower in October 2004 and January 2005, with a total decrease greater than 90% indicating varying load(s) to the aquifer. It was hypothesized that the elevated DOC found in this groundwater system is sourced at or near the soil surface and supplied to the aquifer via vertical recharge following above average rainfall. Possible sources of DOC include organic‐rich sugar mill by‐products applied as fertilizer and/or sugarcane sap released during harvest. CFC‐12 vertical flow rates supported the hypothesis that elevated DOC (>40 mg/L) in the groundwater results from recharge events in which annual precipitation exceeds 1500 mm/year (average = 960 mm/year). Occurrence of elevated DOC concentrations, absence of electron acceptors (O2 and NO3) and both Fe2+ and Mn2+ greater than 1 mg/L in shallow groundwater suggest that the DOC compounds are chemically labile. The consequence of high concentrations of labile DOC may be positive (e.g., denitrification) or negative (e.g., enhanced metal mobility and biofouling), and highlights the need to account for a wider range of water quality parameters when considering the impacts of land use on the ecology of receiving waters and/or suitability of groundwater for irrigated agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号